"vscode:/vscode.git/clone" did not exist on "2624090ff4ebead4c99d7d59745921d6059f9a61"
clip.cpp 218 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
10
#include "ggml-alloc.h"
#include "ggml-backend.h"
11
#include "gguf.h"
12
13
14
15
16
17
18
19

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <stdexcept>
20
#include <unordered_set>
21
22
23
#include <vector>
#include <cinttypes>
#include <limits>
24
#include <array>
25
#include <functional>
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
40
struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
41

42
43
enum ffn_op_type {
    FFN_GELU,
44
    FFN_GELU_ERF,
45
46
47
48
49
50
51
52
53
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

54
//#define CLIP_DEBUG_FUNCTIONS
55
56
57
58
59

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
60
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
79
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

169
170
171
172
173
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

174
struct clip_hparams {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
175
176
177
178
179
180
181
    int32_t image_size = 0;
    int32_t patch_size = 0;
    int32_t n_embd = 0;
    int32_t n_ff = 0;
    int32_t projection_dim = 0;
    int32_t n_head = 0;
    int32_t n_layer = 0;
182
    // idefics3
Daniel Hiltgen's avatar
Daniel Hiltgen committed
183
184
185
186
    int32_t image_longest_edge = 0;
    int32_t image_min_pixels = -1;
    int32_t image_max_pixels = -1;
    int32_t n_merge = 0; // number of patch merges **per-side**
187

188
189
190
    float image_mean[3];
    float image_std[3];

191
192
193
    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;
194
    int32_t warmup_audio_size = 3000;
195
196
197

    ffn_op_type ffn_op = FFN_GELU;

198
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
199

200
201
    float eps = 1e-6;
    float rope_theta = 0.0;
202

203
    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
204
    int32_t image_crop_resolution;
205
    std::unordered_set<int32_t> vision_feature_layer;
206
207
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
208
209
210
211
212
213
214
215

    // audio
    int32_t n_mel_bins = 0; // whisper preprocessor
    int32_t proj_stack_factor = 0; // ultravox

    // legacy
    bool has_llava_projector = false;
    int minicpmv_version = 0;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
216
    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number
Daniel Hiltgen's avatar
Daniel Hiltgen committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    // custom value provided by user, can be undefined if not set
    int32_t custom_image_min_tokens = -1;
    int32_t custom_image_max_tokens = -1;

    void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
        const int cur_merge = n_merge == 0 ? 1 : n_merge;
        const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
        image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
        image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
        warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
    }

    void set_warmup_n_tokens(int n_tokens) {
        int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
        GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
        const int cur_merge = n_merge == 0 ? 1 : n_merge;
        warmup_image_size = n_tok_per_side * patch_size * cur_merge;
        // TODO: support warmup size for custom token numbers
    }
237
238
239
240
};

struct clip_layer {
    // attention
241
242
243
244
245
246
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
247
248
    ggml_tensor * qkv_w = nullptr;
    ggml_tensor * qkv_b = nullptr;
249

250
251
    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;
252

253
254
    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;
255

256
257
258
    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;
259

260
261
262
263
264
265
    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;
266
267

    // layernorm 2
268
269
270
271
272
273
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
274
275
276
277
278
279
280
281
282
283
284
285

    // qwen3vl deepstack merger
    ggml_tensor * deepstack_norm_w = nullptr;
    ggml_tensor * deepstack_norm_b = nullptr;
    ggml_tensor * deepstack_fc1_w = nullptr;
    ggml_tensor * deepstack_fc1_b = nullptr;
    ggml_tensor * deepstack_fc2_w = nullptr;
    ggml_tensor * deepstack_fc2_b = nullptr;

    bool has_deepstack() const {
        return deepstack_fc1_w != nullptr;
    }
286
287
};

288
289
290
291
struct clip_model {
    clip_modality modality = CLIP_MODALITY_VISION;
    projector_type proj_type = PROJECTOR_TYPE_MLP;
    clip_hparams hparams;
292
293

    // embeddings
294
295
296
297
298
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;
299

300
301
    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;
302
303
304

    std::vector<clip_layer> layers;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
305
306
    int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer

307
308
    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;
309

310
311
312
    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
    ggml_tensor * mm_fc_w;
    ggml_tensor * mm_fc_b;
313
314

    // LLaVA projection
315
    ggml_tensor * mm_input_norm_w = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
    ggml_tensor * mm_input_norm_b = nullptr;
317
318
319
320
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;
321

322
    ggml_tensor * image_newline = nullptr;
323
324

    // Yi type models with mlp+normalization projection
325
326
327
328
329
330
331
332
333
334
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;
335

336
    // MobileVLM projection
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
361
362

    // MobileVLM_V2 projection
363
364
365
366
367
368
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;
369
370

    // MINICPMV projection
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;
389
390

    // gemma3
391
392
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;
393
394

    // pixtral
395
396
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;
397

398
399
400
401
402
403
404
405
    // ultravox / whisper encoder
    ggml_tensor * conv1d_1_w = nullptr;
    ggml_tensor * conv1d_1_b = nullptr;
    ggml_tensor * conv1d_2_w = nullptr;
    ggml_tensor * conv1d_2_b = nullptr;
    ggml_tensor * mm_norm_pre_w = nullptr;
    ggml_tensor * mm_norm_mid_w = nullptr;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
406
407
408
409
410
411
412
413
414
    // cogvlm
    ggml_tensor * mm_post_fc_norm_w = nullptr;
    ggml_tensor * mm_post_fc_norm_b = nullptr;
    ggml_tensor * mm_h_to_4h_w = nullptr;
    ggml_tensor * mm_gate_w = nullptr;
    ggml_tensor * mm_4h_to_h_w = nullptr;
    ggml_tensor * mm_boi = nullptr;
    ggml_tensor * mm_eoi = nullptr;

415
416
417
418
    bool audio_has_avgpool() const {
        return proj_type == PROJECTOR_TYPE_QWEN2A
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
419

420
421
422
423
424
    bool audio_has_stack_frames() const {
        return proj_type == PROJECTOR_TYPE_ULTRAVOX
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
};
425

426
427
struct clip_ctx {
    clip_model model;
428

429
430
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
431
432
433

    std::vector<uint8_t> buf_compute_meta;

434
435
436
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

437
438
    ggml_backend_t backend = nullptr;
    ggml_backend_t backend_cpu = nullptr;
439
440
    ggml_backend_buffer_ptr buf;

441
    int max_nodes = 8192;
442
    ggml_backend_sched_ptr sched;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
443
    clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
444

445
446
447
    // for debugging
    bool debug_graph = false;
    std::vector<ggml_tensor *> debug_print_tensors;
448

449
    clip_ctx(clip_context_params & ctx_params) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
450
        flash_attn_type = ctx_params.flash_attn_type;
451
        debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
452
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
453
454
455
        if (!backend_cpu) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
456
457
458
459
460
461
462
463
464
465
        if (ctx_params.use_gpu) {
            auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
            if (backend_name != nullptr) {
                backend = ggml_backend_init_by_name(backend_name, nullptr);
                if (!backend) {
                    LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
                }
            }
            if (!backend) {
                backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
466
                backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
467
468
            }
        }
469
470
471
472
473
474
475
476
477
478

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
479
480
481
482
483
484
485
        if (ctx_params.image_min_tokens > 0) {
            model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
        }
        if (ctx_params.image_max_tokens > 0) {
            model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
        }

486
487
488
489
        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
490
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
491
492
493
494
495
496
497
498
499
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
500
501
502
503
504

    // this function is added so that we don't change too much of the existing code
    projector_type proj_type() const {
        return model.proj_type;
    }
505
506
};

507
508
struct clip_graph {
    clip_ctx * ctx;
509
    const clip_model & model;
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    const clip_hparams & hparams;

    // we only support single image per batch
    const clip_image_f32 & img;

    const int patch_size;
    const int n_patches_x;
    const int n_patches_y;
    const int n_patches;
    const int n_embd;
    const int n_head;
    const int d_head;
    const int n_layer;
    const float eps;
    const float kq_scale;

    ggml_context_ptr ctx0_ptr;
    ggml_context * ctx0;
    ggml_cgraph * gf;

    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
            ctx(ctx),
532
            model(ctx->model),
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
            hparams(model.hparams),
            img(img),
            patch_size(hparams.patch_size),
            n_patches_x(img.nx / patch_size),
            n_patches_y(img.ny / patch_size),
            n_patches(n_patches_x * n_patches_y),
            n_embd(hparams.n_embd),
            n_head(hparams.n_head),
            d_head(n_embd / n_head),
            n_layer(hparams.n_layer),
            eps(hparams.eps),
            kq_scale(1.0f / sqrtf((float)d_head)) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };
        ctx0_ptr.reset(ggml_init(params));
        ctx0 = ctx0_ptr.get();
552
        gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
553
554
555
556
    }

    ggml_cgraph * build_siglip() {
        ggml_tensor * inp = build_inp();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
557
558
559
560
561
562

        ggml_tensor * learned_pos_embd = model.position_embeddings;
        if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            learned_pos_embd = resize_position_embeddings();
        }

563
564
565
566
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
567
                                learned_pos_embd,
568
569
                                nullptr);

570
        if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
571
572
573
            const int batch_size = 1;
            GGML_ASSERT(n_patches_x == n_patches_y);
            const int patches_per_image = n_patches_x;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
574
            const int kernel_size = hparams.n_merge;
575

Daniel Hiltgen's avatar
Daniel Hiltgen committed
576
577
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

            // doing a pool2d to reduce the number of output tokens
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));

            // apply norm before projection
            cur = ggml_rms_norm(ctx0, cur, eps);
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);

            // apply projection
            cur = ggml_mul_mat(ctx0,
                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
                cur);

593
        } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
594
            // pixel_shuffle
595
            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
Daniel Hiltgen's avatar
Daniel Hiltgen committed
596
            const int scale_factor = model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
597
598
            cur = build_patch_merge_permute(cur, scale_factor);
            cur = ggml_mul_mat(ctx0, model.projection, cur);
599

Daniel Hiltgen's avatar
Daniel Hiltgen committed
600
601
        } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            // pixel unshuffle block
Daniel Hiltgen's avatar
Daniel Hiltgen committed
602
            const int scale_factor = model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
603
            cur = build_patch_merge_permute(cur, scale_factor);
604

Daniel Hiltgen's avatar
Daniel Hiltgen committed
605
606
607
608
609
610
611
612
613
614
            // projection
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);

            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
615
616
617
618
619
620
621
622
623

        } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
            cur = build_ffn(cur,
                model.mm_0_w, model.mm_0_b,
                nullptr, nullptr,
                model.mm_1_w, model.mm_1_b,
                hparams.ffn_op,
                -1);

624
625
        } else {
            GGML_ABORT("SigLIP: Unsupported projector type");
626
627
        }

628
629
        // build the graph
        ggml_build_forward_expand(gf, cur);
630

631
632
        return gf;
    }
633

634
    ggml_cgraph * build_pixtral() {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
635
        const int n_merge = hparams.n_merge;
636

637
638
639
640
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
641

642
643
644
        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
645

646
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
647
            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
648
        };
649

650
651
652
653
654
655
656
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_RMS,
                                hparams.ffn_op,
                                nullptr, // no learned pos embd
                                add_pos);
657

658
659
660
        // mistral small 3.1 patch merger
        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
        if (model.mm_patch_merger_w) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
661
            GGML_ASSERT(hparams.n_merge > 0);
662

663
            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
664

665
666
667
668
            // reshape image tokens to 2D grid
            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
            cur = ggml_cont(ctx0, cur);
669

670
671
672
673
            // torch.nn.functional.unfold is just an im2col under the hood
            // we just need a dummy kernel to make it work
            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
674

675
676
677
            // project to n_embd
            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
678
679
        }

680
681
682
683
684
685
        // LlavaMultiModalProjector (always using GELU activation)
        {
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            if (model.mm_1_b) {
                cur = ggml_add(ctx0, cur, model.mm_1_b);
            }
686

687
688
689
690
691
692
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            if (model.mm_2_b) {
                cur = ggml_add(ctx0, cur, model.mm_2_b);
            }
        }
693

694
        // arrangement of the [IMG_BREAK] token
Daniel Hiltgen's avatar
Daniel Hiltgen committed
695
        if (model.token_embd_img_break) {
696
697
698
699
            // not efficient, but works
            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
700

701
702
703
704
705
            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
            const int p_total         = p_x * p_y;
            const int n_embd_text     = cur->ne[0];
            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
706

707
708
709
710
711
712
713
714
715
            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
            tmp = ggml_concat(ctx0, tmp, tok, 1);
            cur = ggml_view_2d(ctx0, tmp,
                n_embd_text, n_tokens_output,
                ggml_row_size(tmp->type, n_embd_text), 0);
        }
716

717
718
        // build the graph
        ggml_build_forward_expand(gf, cur);
719

720
        return gf;
721
722
    }

723
724
725
726
    // Qwen2VL and Qwen2.5VL use M-RoPE
    ggml_cgraph * build_qwen2vl() {
        GGML_ASSERT(model.patch_bias == nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);
727

728
729
730
731
732
        const int batch_size       = 1;
        const bool use_window_attn = hparams.n_wa_pattern > 0;
        const int n_wa_pattern     = hparams.n_wa_pattern;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
733

734
        norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
735
736
            ? NORM_TYPE_RMS // qwen 2.5 vl
            : NORM_TYPE_NORMAL; // qwen 2 vl
737

738
        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
739

740
741
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
742

743
744
        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
745

746
747
748
749
750
        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
751
752
            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_cont_4d(
753
754
755
756
757
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
758
759
            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
            inp = ggml_cont_3d(
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        ggml_tensor * inpL           = inp;
        ggml_tensor * window_mask    = nullptr;
        ggml_tensor * window_idx     = nullptr;
        ggml_tensor * inv_window_idx = nullptr;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        if (use_window_attn) {
            // handle window attention inputs
            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(inv_window_idx, "inv_window_idx");
            ggml_set_input(inv_window_idx);
            // mask for window attention
            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
            ggml_set_name(window_mask, "window_mask");
            ggml_set_input(window_mask);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
788
789
790
791
792
793
794
795
796
            // if flash attn is used, we need to pad the mask and cast to f16
            if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
                int n_pad = GGML_PAD(window_mask->ne[1], GGML_KQ_MASK_PAD) - window_mask->ne[1];
                if (n_pad > 0) {
                    window_mask = ggml_pad(ctx0, window_mask, 0, n_pad, 0, 0);
                }
                window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
            }

797
798
799
800
801
802
803
804
805
806
807
            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
808

809
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
810

811
812
813
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);
814

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
            // self-attention
            {
                ggml_tensor * Qcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
                ggml_tensor * Kcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
                ggml_tensor * Vcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
839

840
841
                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);
842

843
                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
844

845
846
847
848
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
                cb(cur, "attn_out", il);
            }
849

850
851
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
852

853
            inpL = cur; // inpL = residual, cur = hidden_states
854

855
            cb(cur, "ffn_inp", il);
856

857
858
859
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
860

861
862
863
864
865
866
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
867

868
            cb(cur, "ffn_out", il);
869

870
871
872
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
873

874
            inpL = cur;
875
876
        }

877
878
879
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
880
881
        }

882
883
884
        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
885

886
887
        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
888

889
890
891
892
        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
893
894
895
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

896
897
898
899
        if (use_window_attn) {
            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(window_idx, "window_idx");
            ggml_set_input(window_idx);
900

901
902
903
904
905
906
            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
        }
907

908
909
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
910

911
        return gf;
912
913
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
    // Qwen3VL
    ggml_cgraph * build_qwen3vl() {
        GGML_ASSERT(model.patch_bias != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);

        const int batch_size       = 1;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position

        norm_type norm_t = NORM_TYPE_NORMAL;

        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};

        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);

        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);

        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_cont_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
            inp = ggml_cont_3d(
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // add patch bias
        if (model.patch_bias != nullptr) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }

        // calculate absolute position embedding and apply
        ggml_tensor * learned_pos_embd = resize_position_embeddings();
        learned_pos_embd = ggml_cont_4d(
            ctx0, learned_pos_embd,
            n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
        learned_pos_embd = ggml_reshape_4d(
            ctx0, learned_pos_embd,
            n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
        learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
        learned_pos_embd = ggml_cont_3d(
            ctx0, learned_pos_embd,
            n_embd, n_patches_x * n_patches_y, batch_size);
        inp = ggml_add(ctx0, inp, learned_pos_embd);
        cb(inp, "inp_pos_emb", -1);

        ggml_tensor * inpL = inp;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
        ggml_tensor * deepstack_features = nullptr;
        const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];

            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
                cur = ggml_add(ctx0, cur, layer.qkv_b);

                ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                        /* nb1    */ ggml_row_size(cur->type, d_head),
                        /* nb2    */ cur->nb[1],
                        /* offset */ 0);

                ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                        /* nb1    */ ggml_row_size(cur->type, d_head),
                        /* nb2    */ cur->nb[1],
                        /* offset */ ggml_row_size(cur->type, n_embd));

                ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                        /* nb1    */ ggml_row_size(cur->type, d_head),
                        /* nb2    */ cur->nb[1],
                        /* offset */ ggml_row_size(cur->type, 2 * n_embd));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);

                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);

                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }

            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);

            inpL = cur; // inpL = residual, cur = hidden_states

            cb(cur, "ffn_inp", il);

            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);

            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);

            cb(cur, "ffn_out", il);

            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);

            if (layer.has_deepstack()) {
                ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
                feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
                feat = build_ffn(feat,
                    layer.deepstack_fc1_w, layer.deepstack_fc1_b,
                    nullptr, nullptr,
                    layer.deepstack_fc2_w, layer.deepstack_fc2_b,
                    ffn_op_type::FFN_GELU, il);

                if(!deepstack_features) {
                    deepstack_features = feat;
                } else {
                    // concat along the feature dimension
                    deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
                }
            }

            inpL = cur;
        }

        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
        }

        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);

        embeddings = build_ffn(embeddings,
            model.mm_0_w, model.mm_0_b,
            nullptr, nullptr,
            model.mm_1_w, model.mm_1_b,
            ffn_op_type::FFN_GELU, -1);

        embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension

        // build the graph
        ggml_build_forward_expand(gf, embeddings);

        return gf;
    }
1104

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1105
    ggml_cgraph * build_minicpmv() {
1106
        GGML_ASSERT(model.class_embedding == nullptr);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1107
1108
        const int n_pos       = n_patches;
        const int n_embd_proj = clip_n_mmproj_embd(ctx);
1109

1110
        // position embeddings for the projector (not for ViT)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
        // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
        // base frequency omega
        ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
        ggml_set_name(omega, "omega");
        ggml_set_input(omega);

        // 2D input positions (using float for sinusoidal embeddings)
        ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
        ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
1124

1125
1126
1127
1128
        // for selecting learned pos embd, used by ViT
        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
1129

1130
1131
1132
1133
        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);

        ggml_tensor * inp = build_inp();
        ggml_tensor * embeddings = build_vit(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1134
                                inp, n_pos,
1135
1136
1137
1138
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);
1139

1140
        // resampler projector (it is just another transformer)
1141

1142
1143
        ggml_tensor * q = model.mm_model_query;
        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
1144

1145
        // norm
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1146
        q = build_norm(q, model.mm_model_ln_q_w,  model.mm_model_ln_q_b,  NORM_TYPE_NORMAL, eps, -1);
1147
        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
1148

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        // calculate sinusoidal pos embd
        ggml_tensor * pos_embed = nullptr;
        {
            // outer product
            ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
            ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
            ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
            // sin and cos
            ggml_tensor * pos_embd_x = ggml_concat(
                ctx0,
                ggml_sin(ctx0, theta_x),
                ggml_cos(ctx0, theta_x),
                0 // concat on first dim
            );
            ggml_tensor * pos_embd_y = ggml_concat(
                ctx0,
                ggml_sin(ctx0, theta_y),
                ggml_cos(ctx0, theta_y),
                0 // concat on first dim
            );
            pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
        }

1172
1173
        // k = v + pos_embed
        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
1174

1175
1176
1177
        // attention
        {
            const int d_head = 128;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1178
            int n_head = n_embd_proj/d_head;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1179
1180
            // Use actual config value if available, otherwise fall back to hardcoded values
            int num_query = ctx->model.hparams.minicpmv_query_num;
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            ggml_tensor * Q = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
                model.mm_model_attn_q_b);
            ggml_tensor * K = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
                model.mm_model_attn_k_b);
            ggml_tensor * V = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
                model.mm_model_attn_v_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);

            cb(Q, "resampler_Q", -1);
            cb(K, "resampler_K", -1);
            cb(V, "resampler_V", -1);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1199
            float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
1200
1201
1202
            embeddings = build_attn(
                model.mm_model_attn_o_w,
                model.mm_model_attn_o_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1203
                Q, K, V, nullptr, resampler_kq_scale, -1);
1204
1205
1206
1207
1208
1209
1210
            cb(embeddings, "resampler_attn_out", -1);
        }
        // layernorm
        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);

        // projection
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
1211

1212
1213
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1214

1215
        return gf;
1216
1217
    }

1218
1219
1220
    ggml_cgraph * build_internvl() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
1221

1222
1223
        const int n_pos = n_patches + 1;
        ggml_tensor * inp = build_inp();
1224

1225
1226
        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
1227

1228
1229
1230
1231
1232
        // The larger models use a different ViT, which uses RMS norm instead of layer norm
        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
1233

1234
1235
1236
1237
1238
1239
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                norm_t,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);
1240

1241
1242
1243
1244
        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);
1245

1246
        // pixel shuffle
1247
        {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1248
            const int scale_factor = model.hparams.n_merge;
1249
1250
1251
1252
1253
1254
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = n_patches_y;
            const int width  = n_patches_x;
            GGML_ASSERT(scale_factor > 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1255
            cur = ggml_cont_4d(ctx0, cur,
1256
1257
1258
1259
1260
1261
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1262
            cur = ggml_cont_2d(ctx0, cur,
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
                n_embd * scale_factor * scale_factor,
                cur->ne[1] * cur->ne[2]);
        }

        // projector (always using GELU activation)
        {
            // projector LayerNorm uses pytorch's default eps = 1e-5
            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_3_b);
        }
1278

1279
1280
        // build the graph
        ggml_build_forward_expand(gf, cur);
1281

1282
1283
        return gf;
    }
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    ggml_cgraph * build_llama4() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * inp = build_inp_raw();

        // Llama4UnfoldConvolution
        {
            ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
                                                    patch_size, patch_size, 3, n_embd);
            inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
            inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
            inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
            cb(inp, "patch_conv", -1);
        }

        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
            // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                add_pos);

        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);

        // pixel shuffle
        // based on Llama4VisionPixelShuffleMLP
        // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
        {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1338
            const int scale_factor = model.hparams.n_merge;
1339
1340
1341
1342
1343
1344
1345
1346
1347
            const int bsz = 1; // batch size, always 1 for now since we don't support batching
            GGML_ASSERT(scale_factor > 0);
            GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
            cur = ggml_reshape_4d(ctx0, cur,
                n_embd * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1348
            cur = ggml_cont_4d(ctx0, cur,
1349
1350
1351
1352
                n_embd * scale_factor * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y / scale_factor,
                bsz);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1353
            //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
1354
            // flatten to 2D
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1355
            cur = ggml_cont_2d(ctx0, cur,
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
                n_embd * scale_factor * scale_factor,
                n_patches / scale_factor / scale_factor);
            cb(cur, "pixel_shuffle", -1);
        }

        // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
        {
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cb(cur, "adapter_mlp", -1);
        }

        // Llama4MultiModalProjector
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
        cb(cur, "projected", -1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
    ggml_cgraph * build_kimivl() {
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * learned_pos_embd = resize_position_embeddings();

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };

        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                add_pos);

        cb(cur, "vit_out", -1);

        {
            // patch_merger
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1410
            const int scale_factor = model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
            cur = build_patch_merge_permute(cur, scale_factor);

            // projection norm
            int proj_inp_dim = cur->ne[0];
            cur = ggml_view_2d(ctx0, cur,
                n_embd, cur->ne[1] * scale_factor * scale_factor,
                ggml_row_size(cur->type, n_embd), 0);
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
            cur = ggml_view_2d(ctx0, cur,
                proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
                ggml_row_size(cur->type, proj_inp_dim), 0);
            cb(cur, "proj_inp_normed", -1);

            // projection mlp
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
            cb(cur, "proj_out", -1);
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

1441
1442
1443
1444
1445
    // this graph is used by llava, granite and glm
    // due to having embedding_stack (used by granite), we cannot reuse build_vit
    ggml_cgraph * build_llava() {
        const int batch_size = 1;
        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
1446

1447
        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
1448

1449
1450
1451
1452
1453
1454
        // Calculate the deepest feature layer based on hparams and projector type
        int max_feature_layer = n_layer;
        {
            // Get the index of the second to last layer; this is the default for models that have a llava projector
            int il_last = hparams.n_layer - 1;
            int deepest_feature_layer = -1;
1455

1456
            if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1457
1458
                il_last += 1;
            }
1459

1460
1461
1462
1463
1464
1465
            // If we set explicit vision feature layers, only go up to the deepest one
            // NOTE: only used by granite-vision models for now
            for (const auto & feature_layer : hparams.vision_feature_layer) {
                if (feature_layer > deepest_feature_layer) {
                    deepest_feature_layer = feature_layer;
                }
1466
            }
1467
1468
            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
        }
1469

1470
        ggml_tensor * inp = build_inp();
1471

1472
1473
1474
        // concat class_embeddings and patch_embeddings
        if (model.class_embedding) {
            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
1475
1476
        }

1477
1478
1479
        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
1480

1481
        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
1482

1483
        ggml_tensor * inpL = inp;
1484

1485
1486
1487
1488
1489
        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
            cb(inpL, "pre_ln", -1);
        }
1490

1491
1492
        std::vector<ggml_tensor *> embedding_stack;
        const auto & vision_feature_layer = hparams.vision_feature_layer;
1493

1494
1495
1496
1497
        // loop over layers
        for (int il = 0; il < max_feature_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
1498

1499
1500
1501
1502
1503
            // If this is an embedding feature layer, save the output.
            // NOTE: 0 index here refers to the input to the encoder.
            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
                embedding_stack.push_back(cur);
            }
1504

1505
1506
1507
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "layer_inp_normed", il);
1508

1509
1510
1511
1512
1513
1514
            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1515

1516
1517
1518
1519
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1520

1521
1522
1523
1524
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1525

1526
1527
1528
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1529

1530
1531
1532
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1533

1534
1535
1536
1537
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }
1538

1539
1540
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1541

1542
            inpL = cur; // inpL = residual, cur = hidden_states
1543

1544
            cb(cur, "ffn_inp", il);
1545

1546
1547
1548
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_inp_normed", il);
1549

1550
1551
1552
1553
1554
1555
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
1556

1557
            cb(cur, "ffn_out", il);
1558

1559
1560
1561
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1562

1563
            inpL = cur;
1564
        }
1565

1566
1567
1568
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
1569
        }
1570

1571
        ggml_tensor * embeddings = inpL;
1572

1573
1574
1575
1576
1577
1578
        // process vision feature layers (used by granite)
        {
            // final layer is a vision feature layer
            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
                embedding_stack.push_back(inpL);
            }
1579

1580
1581
1582
1583
1584
1585
1586
1587
            // If feature layers are explicitly set, stack them (if we have multiple)
            if (!embedding_stack.empty()) {
                embeddings = embedding_stack[0];
                for (size_t i = 1; i < embedding_stack.size(); i++) {
                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
                }
            }
        }
1588

1589
        // llava projector (also used by granite)
1590
        if (ctx->model.hparams.has_llava_projector) {
1591
            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
1592

1593
1594
1595
            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
            ggml_set_name(patches, "patches");
            ggml_set_input(patches);
1596

1597
1598
1599
            // shape [1, 576, 1024]
            // ne is whcn, ne = [1024, 576, 1, 1]
            embeddings = ggml_get_rows(ctx0, embeddings, patches);
1600

1601
            // print_tensor_info(embeddings, "embeddings");
1602

1603
            // llava projector
1604
            if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
1605
1606
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
1607

1608
1609
1610
1611
1612
1613
                embeddings = ggml_gelu(ctx0, embeddings);
                if (model.mm_2_w) {
                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
                }
            }
1614
            else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
                // First LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                    model.mm_1_b);

                // GELU activation
                embeddings = ggml_gelu(ctx0, embeddings);

                // Second linear layer
                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

                // Second LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                    model.mm_4_b);
            }
1635
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
                // MobileVLM projector
                int n_patch = 24;
                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
                mlp_1 = ggml_gelu(ctx0, mlp_1);
                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

                // block 1
                ggml_tensor * block_1 = nullptr;
                {
                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1649
1650
                    mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
                    mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
                    // stride = 1, padding = 1, bias is nullptr
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                    // layer norm
                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);
                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // residual
                    block_1 = ggml_add(ctx0, mlp_3, block_1);
                }
1696

1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
                // block_2
                {
                    // stride = 2
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // layer norm
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    // not sure the parameters is right for globalAvgPooling
                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);

                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
                }
                embeddings = block_1;
            }
1745
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
1746
1747
1748
1749
1750
1751
1752
1753
1754
            {
                int n_patch = 24;
                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
                mlp_0 = ggml_gelu(ctx0, mlp_0);
                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
                // mlp_2 ne = [2048, 576, 1, 1]
                // // AVG Pool Layer 2*2, strides = 2
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1755
                mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
1756
                // mlp_2 ne = [576, 2048, 1, 1]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1757
                mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
                // mlp_2 ne [24, 24, 2048, 1]
                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
                // weight ne = [3, 3, 2048, 1]
                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
                embeddings = peg_0;
            }
            else {
                GGML_ABORT("fatal error");
            }
        }
1773

1774
        // glm projector
1775
        else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1776
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1777
1778
            embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
            embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            // GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
1792
                embeddings = ggml_swiglu_split(ctx0, embeddings, x);
1793
1794
1795
1796
1797
1798
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
            // arrangement of BOI/EOI token embeddings
            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1799
1800
                embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
                embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
1801
1802
            }
        }
1803

1804
1805
1806
        else {
            GGML_ABORT("llava: unknown projector type");
        }
1807

1808
1809
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1810

1811
        return gf;
1812
    }
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
    // whisper encoder with custom projector
    ggml_cgraph * build_whisper_enc() {
        const int n_frames = img.nx;
        const int n_pos    = n_frames / 2;
        GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);

        ggml_tensor * inp = build_inp_raw(1);

        // conv1d block
        {
            // convolution + gelu
            ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_1_b);

            cur = ggml_gelu_erf(ctx0, cur);

            cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_2_b);

            cur = ggml_gelu_erf(ctx0, cur);
            // transpose
            inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cb(inp, "after_conv1d", -1);
        }

        // sanity check (only check one layer, but it should be the same for all)
        GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
        GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
        GGML_ASSERT(model.layers[0].q_b);
        GGML_ASSERT(model.layers[0].v_b);
        GGML_ASSERT(!model.layers[0].k_b); // no bias for k
        GGML_ASSERT(model.post_ln_w && model.post_ln_b);

        ggml_tensor * pos_embd_selected = ggml_view_2d(
            ctx0, model.position_embeddings,
            model.position_embeddings->ne[0], n_pos,
            model.position_embeddings->nb[1], 0
        );
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                pos_embd_selected,
                                nullptr);

        cb(cur, "after_transformer", -1);

        if (model.audio_has_stack_frames()) {
            // StackAudioFrames
            // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
            int64_t stride = n_embd * hparams.proj_stack_factor;
            int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
            int64_t pad = padded_len - ggml_nelements(cur);
            if (pad > 0) {
                cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
                cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
            }
            cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
                                ggml_row_size(cur->type, stride), 0);
            cb(cur, "after_stacked", -1);
        }

        if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
            // UltravoxProjector
            // pre-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);

            // ffn in
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);

            // swiglu
            // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
            cur = ggml_swiglu_swapped(ctx0, cur);

            // mid-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);

            // ffn out
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_fc_b);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_gelu_erf(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else {
            GGML_ABORT("%s: unknown projector type", __func__);
        }

        cb(cur, "projected", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
    // cogvlm vision encoder
    ggml_cgraph * build_cogvlm() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // build input and concatenate class embedding
        ggml_tensor * inp = build_inp();
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        inp = ggml_add(ctx0, inp, model.position_embeddings);
        cb(inp, "inp_pos", -1);

        ggml_tensor * inpL = inp;

        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL;

            cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);

            cur = ggml_add(ctx0, cur, layer.qkv_b);

            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
                cur->nb[1], 0);
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
                cur->nb[1], n_embd * sizeof(float));
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
                cur->nb[1], 2 * n_embd * sizeof(float));

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            cur = build_attn(layer.o_w, layer.o_b,
                Qcur, Kcur, Vcur, nullptr, kq_scale, il);
            cb(cur, "attn_out", il);

            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "attn_post_norm", il);

            cur = ggml_add(ctx0, cur, inpL);
            inpL = cur;

            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);

            cb(cur, "ffn_out", il);

            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_post_norm", il);

            cur = ggml_add(ctx0, cur, inpL);
            cb(cur, "layer_out", il);
            inpL = cur;

        }

        // remove CLS token (like build_llama4 does)
        ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
            n_embd, n_patches,
            ggml_row_size(inpL->type, n_embd), 0);

        // Multiply with mm_model_proj
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);

        // Apply layernorm, weight, bias
        cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);

        // Apply GELU
        cur = ggml_gelu_inplace(ctx0, cur);

        // Branch 1: multiply with mm_h_to_4h_w
        ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);

        // Branch 2: multiply with mm_gate_w
        ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);

        // Apply silu
        gate = ggml_swiglu_split(ctx0, gate, h_to_4h);

        // Apply mm_4h_to_h_w
        cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);

        // Concatenate with boi and eoi
        cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
        cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

2015
2016
2017
2018
2019
private:
    //
    // utility functions
    //

2020
2021
2022
2023
2024
2025
2026
2027
2028
    void cb(ggml_tensor * cur0, const char * name, int il) const {
        if (ctx->debug_graph) {
            ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
            std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
            ggml_set_name(cur, cur_name.c_str());
            ggml_set_output(cur);
            ggml_build_forward_expand(gf, cur);
            ctx->debug_print_tensors.push_back(cur);
        }
2029
2030
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
    // siglip2 naflex
    ggml_tensor * resize_position_embeddings() {
        ggml_tensor * pos_embd = model.position_embeddings;
        const int height       = img.ny / patch_size;
        const int width        = img.nx / patch_size;
        const uint32_t mode    = GGML_SCALE_MODE_BILINEAR;
        const int n_per_side   = (int)std::sqrt(pos_embd->ne[1]);

        GGML_ASSERT(pos_embd);

        if (height == n_per_side && width == n_per_side) {
            return pos_embd;
        }

        pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side);  // -> (n_embd, n_per_side, n_per_side)
        pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3);                         // -> (n_per_side, n_per_side, n_embd)
        pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
        pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3);                         // -> (n_embd, width, height)
        pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);             // -> (n_embd, width * height)

        return pos_embd;
    }

2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
    // build vision transformer (ViT) cgraph
    // this function should cover most of the models
    // if your model has specific features, you should probably duplicate this function
    ggml_tensor * build_vit(
                ggml_tensor * inp,
                int64_t n_pos,
                norm_type norm_t,
                ffn_op_type ffn_t,
                ggml_tensor * learned_pos_embd,
                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
            ) {
        if (learned_pos_embd) {
            inp = ggml_add(ctx0, inp, learned_pos_embd);
            cb(inp, "pos_embed", -1);
        }

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
2093

2094
2095
2096
2097
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
2098

2099
2100
2101
2102
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
2103

2104
2105
2106
2107
                if (layer.q_norm) {
                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
                    cb(Qcur, "Qcur_norm", il);
                }
2108

2109
2110
2111
2112
                if (layer.k_norm) {
                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
                    cb(Kcur, "Kcur_norm", il);
                }
2113

2114
2115
2116
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
2117

2118
2119
2120
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
2121

2122
2123
2124
2125
2126
2127
                if (add_pos) {
                    Qcur = add_pos(Qcur, layer);
                    Kcur = add_pos(Kcur, layer);
                    cb(Qcur, "Qcur_pos", il);
                    cb(Kcur, "Kcur_pos", il);
                }
2128

2129
2130
2131
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
2132
            }
2133

2134
2135
2136
            if (layer.ls_1_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
                cb(cur, "attn_out_scaled", il);
2137
            }
2138

2139
2140
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
2141

2142
            inpL = cur; // inpL = residual, cur = hidden_states
2143

2144
            cb(cur, "ffn_inp", il);
2145

2146
2147
2148
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
2149

2150
2151
2152
2153
2154
2155
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                ffn_t, il);
2156

2157
            cb(cur, "ffn_out", il);
2158

2159
2160
2161
2162
            if (layer.ls_2_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
                cb(cur, "ffn_out_scaled", il);
            }
2163

2164
2165
2166
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
2167

2168
            inpL = cur;
2169
2170
        }

2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
        if (ctx->model.audio_has_avgpool()) {
            ggml_tensor * cur = inpL;
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            inpL = cur;
        }

2181
2182
2183
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
2184
        }
2185
2186
        return inpL;
    }
2187

2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
    // build the input after conv2d (inp_raw --> patches)
    // returns tensor with shape [n_embd, n_patches]
    ggml_tensor * build_inp() {
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
        if (model.patch_bias) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }
        return inp;
    }
2201

2202
2203
    ggml_tensor * build_inp_raw(int channels = 3) {
        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
2204
2205
2206
        ggml_set_name(inp_raw, "inp_raw");
        ggml_set_input(inp_raw);
        return inp_raw;
2207
2208
    }

2209
2210
2211
2212
2213
2214
2215
    ggml_tensor * build_norm(
            ggml_tensor * cur,
            ggml_tensor * mw,
            ggml_tensor * mb,
            norm_type type,
            float norm_eps,
            int il) const {
2216

2217
2218
2219
        cur = type == NORM_TYPE_RMS
            ? ggml_rms_norm(ctx0, cur, norm_eps)
            : ggml_norm(ctx0, cur, norm_eps);
2220

2221
2222
2223
        if (mw || mb) {
            cb(cur, "norm", il);
        }
2224

2225
2226
2227
2228
2229
        if (mw) {
            cur = ggml_mul(ctx0, cur, mw);
            if (mb) {
                cb(cur, "norm_w", il);
            }
2230
2231
        }

2232
2233
2234
        if (mb) {
            cur = ggml_add(ctx0, cur, mb);
        }
2235

2236
2237
        return cur;
    }
2238

2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
    ggml_tensor * build_ffn(
            ggml_tensor * cur,
            ggml_tensor * up,
            ggml_tensor * up_b,
            ggml_tensor * gate,
            ggml_tensor * gate_b,
            ggml_tensor * down,
            ggml_tensor * down_b,
            ffn_op_type type_op,
            int il) const {
2249

2250
2251
        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
        cb(tmp, "ffn_up", il);
2252

2253
2254
2255
2256
        if (up_b) {
            tmp = ggml_add(ctx0, tmp, up_b);
            cb(tmp, "ffn_up_b", il);
        }
2257

2258
2259
2260
2261
2262
2263
2264
        if (gate) {
            cur = ggml_mul_mat(ctx0, gate, cur);
            cb(cur, "ffn_gate", il);

            if (gate_b) {
                cur = ggml_add(ctx0, cur, gate_b);
                cb(cur, "ffn_gate_b", il);
2265
            }
2266
2267
        } else {
            cur = tmp;
2268
2269
        }

2270
        // we only support parallel ffn for now
2271
2272
        switch (type_op) {
            case FFN_SILU:
2273
2274
2275
2276
                if (gate) {
                    cur = ggml_swiglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_swiglu", il);
                } else {
2277
2278
2279
2280
                    cur = ggml_silu(ctx0, cur);
                    cb(cur, "ffn_silu", il);
                } break;
            case FFN_GELU:
2281
2282
2283
2284
                if (gate) {
                    cur = ggml_geglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu", il);
                } else {
2285
2286
2287
                    cur = ggml_gelu(ctx0, cur);
                    cb(cur, "ffn_gelu", il);
                } break;
2288
2289
2290
2291
2292
2293
2294
2295
            case FFN_GELU_ERF:
                if (gate) {
                    cur = ggml_geglu_erf_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_erf", il);
                } else {
                    cur = ggml_gelu_erf(ctx0, cur);
                    cb(cur, "ffn_gelu_erf", il);
                } break;
2296
            case FFN_GELU_QUICK:
2297
2298
2299
2300
                if (gate) {
                    cur = ggml_geglu_quick_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_quick", il);
                } else {
2301
                    cur = ggml_gelu_quick(ctx0, cur);
2302
                    cb(cur, "ffn_gelu_quick", il);
2303
                } break;
2304
        }
2305
2306
2307

        if (down) {
            cur = ggml_mul_mat(ctx0, down, cur);
2308
        }
2309
2310
2311

        if (down_b) {
            cb(cur, "ffn_down", il);
2312
        }
2313
2314
2315

        if (down_b) {
            cur = ggml_add(ctx0, cur, down_b);
2316
        }
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343

        return cur;
    }

    ggml_tensor * build_attn(
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur,
            ggml_tensor * k_cur,
            ggml_tensor * v_cur,
            ggml_tensor * kq_mask,
            float kq_scale,
            int il) const {
        // these nodes are added to the graph together so that they are not reordered
        // by doing so, the number of splits in the graph is reduced
        ggml_build_forward_expand(gf, q_cur);
        ggml_build_forward_expand(gf, k_cur);
        ggml_build_forward_expand(gf, v_cur);

        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
        //cb(q, "q", il);

        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
        //cb(k, "k", il);

        ggml_tensor * cur;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
        if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
            ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);

            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);

            cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
            ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);

            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);

        } else {
            ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
            v = ggml_cont(ctx0, v);

2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
            const auto n_tokens = q->ne[1];
            const auto n_head   = q->ne[2];

            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            // F32 may not needed for vision encoders?
            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);

            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
2371
2372
        }

2373
        cb(cur, "kqv_out", il);
2374

2375
2376
        if (wo) {
            cur = ggml_mul_mat(ctx0, wo, cur);
2377
        }
2378

2379
2380
        if (wo_b) {
            cur = ggml_add(ctx0, cur, wo_b);
2381
        }
2382
2383

        return cur;
2384
    }
2385

2386
2387
2388
2389
2390
2391
    // implementation of the 2D RoPE without adding a new op in ggml
    // this is not efficient (use double the memory), but works on all backends
    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
    static ggml_tensor * build_rope_2d(
        ggml_context * ctx0,
        ggml_tensor * cur,
2392
2393
2394
2395
        ggml_tensor * pos_a, // first half
        ggml_tensor * pos_b, // second half
        const float freq_base,
        const bool interleave_freq
2396
2397
2398
2399
    ) {
        const int64_t n_dim  = cur->ne[0];
        const int64_t n_head = cur->ne[1];
        const int64_t n_pos  = cur->ne[2];
2400

2401
2402
2403
2404
2405
2406
2407
2408
        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
        // first half of cur will use 1e-0, 1e-2 (even)
        // second half of cur will use 1e-1, 1e-3 (odd)
        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
        // then for the second half, we use freq_scale to shift the inv_freq
        //  ^ why? replace (2i) with (2i+1) in the above equation
2409
2410
2411
        const float freq_scale_odd = interleave_freq
                                    ? std::pow(freq_base, (float)-2/n_dim)
                                    : 1.0;
2412

2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
        // first half
        ggml_tensor * first;
        {
            first = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                0);
            first = ggml_rope_ext(
                ctx0,
                first,
2424
                pos_a,      // positions
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        // second half
        ggml_tensor * second;
        {
            second = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                n_dim/2 * ggml_element_size(cur));
            second = ggml_rope_ext(
                ctx0,
                second,
2443
                pos_b,      // positions
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                freq_scale_odd,
                0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        cur = ggml_concat(ctx0, first, second, 0);
        return cur;
2454
    }
2455

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
    // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
    // support dynamic resolution
    ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
        GGML_ASSERT(scale_factor > 1);

        const int n_embd = cur->ne[0];
        int width  = img.nx / patch_size;
        int height = img.ny / patch_size;

        // pad width and height to factor
        const int64_t pad_width  = CLIP_ALIGN(width,  scale_factor) - width;
        const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
        cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
        if (pad_width || pad_height) {
            cur     = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
            width  += pad_width;
            height += pad_height;
        }

        // unshuffle h
        cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        // unshuffle w
        cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
        cb(cur, "pixel_shuffle", -1);

        return cur;
    }

2489
};
2490

2491
2492
2493
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
    clip_graph graph(ctx, *imgs.entries[0]);
2494

2495
    ggml_cgraph * res;
2496

2497
    switch (ctx->proj_type()) {
2498
2499
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2500
        case PROJECTOR_TYPE_LFM2:
2501
            {
2502
                res = graph.build_siglip();
2503
2504
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2505
        case PROJECTOR_TYPE_LIGHTONOCR:
2506
            {
2507
                res = graph.build_pixtral();
2508
            } break;
2509
        case PROJECTOR_TYPE_QWEN2VL:
2510
2511
        case PROJECTOR_TYPE_QWEN25VL:
            {
2512
2513
                res = graph.build_qwen2vl();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2514
2515
2516
2517
        case PROJECTOR_TYPE_QWEN3VL:
            {
                res = graph.build_qwen3vl();
            } break;
2518
2519
2520
2521
2522
2523
2524
        case PROJECTOR_TYPE_MINICPMV:
            {
                res = graph.build_minicpmv();
            } break;
        case PROJECTOR_TYPE_INTERNVL:
            {
                res = graph.build_internvl();
2525
            } break;
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
        case PROJECTOR_TYPE_LLAMA4:
            {
                res = graph.build_llama4();
            } break;
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_QWEN2A:
            {
                res = graph.build_whisper_enc();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2536
2537
2538
2539
        case PROJECTOR_TYPE_KIMIVL:
            {
                res = graph.build_kimivl();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2540
2541
2542
2543
2544
2545
2546
2547
        case PROJECTOR_TYPE_JANUS_PRO:
            {
                res = graph.build_siglip();
            } break;
        case PROJECTOR_TYPE_COGVLM:
            {
                res = graph.build_cogvlm();
            } break;
2548
2549
        default:
            {
2550
                res = graph.build_llava();
2551
            } break;
2552
    }
2553
    return res;
2554
}
2555

2556
2557
2558
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
2559

2560
    std::string fname;
2561

2562
    size_t model_size = 0; // in bytes
2563

2564
2565
2566
2567
2568
    bool has_vision = false;
    bool has_audio  = false;

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
    clip_model_loader(const char * fname) : fname(fname) {
2569
2570
2571
2572
2573
2574
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
2575

2576
2577
2578
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
2579
2580
        }

2581
        ctx_meta.reset(meta);
2582

2583
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
2584

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
2598
2599
        }

2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
        // modalities
        {
            get_bool(KEY_HAS_VISION_ENC, has_vision, false);
            get_bool(KEY_HAS_AUDIO_ENC,  has_audio,  false);

            if (has_vision) {
                LOG_INF("%s: has vision encoder\n", __func__);
            }
            if (has_audio) {
                LOG_INF("%s: has audio encoder\n", __func__);
            }
        }

2613
2614
2615
2616
2617
2618
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
2619
                ggml_tensor * cur = ggml_get_tensor(meta, name);
2620
2621
2622
2623
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
2624
2625
2626
2627
            }
        }
    }

2628
2629
    void load_hparams(clip_model & model, clip_modality modality) {
        auto & hparams = model.hparams;
2630
        std::string log_ffn_op; // for logging
2631

2632
2633
2634
2635
2636
2637
2638
2639
2640
        // sanity check
        if (modality == CLIP_MODALITY_VISION) {
            GGML_ASSERT(has_vision);
        } else if (modality == CLIP_MODALITY_AUDIO) {
            GGML_ASSERT(has_audio);
        }
        model.modality = modality;


2641
        // projector type
2642
        std::string proj_type;
2643
        {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2644
            // default key
2645
            get_string(KEY_PROJ_TYPE, proj_type, false);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2646
2647
2648
2649
2650

            // for models with mixed modalities
            if (proj_type.empty()) {
                if (modality == CLIP_MODALITY_VISION) {
                    get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2651
2652
2653
2654
                    if (proj_type.empty()) {
                        // Assume MLP if no projector type listed
                        proj_type = "mlp";
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2655
2656
2657
2658
2659
                } else if (modality == CLIP_MODALITY_AUDIO) {
                    get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
                } else {
                    GGML_ABORT("unknown modality");
                }
2660
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2661
2662
2663

            model.proj_type = clip_projector_type_from_string(proj_type);

2664
            if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
2665
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
2666
            }
2667

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2668
            // correct arch for multimodal models (legacy method)
2669
2670
2671
2672
2673
            if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
                model.proj_type = modality == CLIP_MODALITY_VISION
                                    ? PROJECTOR_TYPE_QWEN25VL
                                    : PROJECTOR_TYPE_QWEN2A;
            }
2674
2675
        }

2676
2677
2678
        const bool is_vision = model.modality == CLIP_MODALITY_VISION;
        const bool is_audio  = model.modality == CLIP_MODALITY_AUDIO;

2679
2680
        // other hparams
        {
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
            const char * prefix = is_vision ? "vision" : "audio";
            get_u32(string_format(KEY_N_EMBD,         prefix), hparams.n_embd);
            get_u32(string_format(KEY_N_HEAD,         prefix), hparams.n_head);
            get_u32(string_format(KEY_N_FF,           prefix), hparams.n_ff);
            get_u32(string_format(KEY_N_BLOCK,        prefix), hparams.n_layer);
            get_u32(string_format(KEY_PROJ_DIM,       prefix), hparams.projection_dim);
            get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);

            if (is_vision) {
                get_u32(KEY_IMAGE_SIZE, hparams.image_size);
                get_u32(KEY_PATCH_SIZE, hparams.patch_size);
                get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
                get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
                get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
                if (hparams.minicpmv_query_num == 0) {
                    // Fallback to hardcoded values for legacy models
                    if (hparams.minicpmv_version == 3) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 4) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 5) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 6) {
                        hparams.minicpmv_query_num = 64;
                    } else {
                        hparams.minicpmv_query_num = 96;
                    }
                }
2709
2710
            } else if (is_audio) {
                get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2711
2712
2713
                // some hparams are unused, but still need to set to avoid issues
                hparams.image_size = 0;
                hparams.patch_size = 1;
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731

            } else {
                GGML_ASSERT(false && "unknown modality");
            }

            // for pinpoints, we need to convert it into a list of resolution candidates
            {
                std::vector<int> pinpoints;
                get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
                if (!pinpoints.empty()) {
                    for (size_t i = 0; i < pinpoints.size(); i += 2) {
                        hparams.image_res_candidates.push_back({
                            pinpoints[i],
                            pinpoints[i+1],
                        });
                    }
                }
            }
2732

2733
2734
2735
            // default warmup value
            hparams.warmup_image_size = hparams.image_size;

2736
2737
2738
2739
            hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
                                       || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                                       || model.proj_type == PROJECTOR_TYPE_LDP
                                       || model.proj_type == PROJECTOR_TYPE_LDPV2;
2740

2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
            {
                bool use_gelu = false;
                bool use_silu = false;
                get_bool(KEY_USE_GELU, use_gelu, false);
                get_bool(KEY_USE_SILU, use_silu, false);
                if (use_gelu && use_silu) {
                    throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
                }
                if (use_gelu) {
                    hparams.ffn_op = FFN_GELU;
                    log_ffn_op = "gelu";
                } else if (use_silu) {
                    hparams.ffn_op = FFN_SILU;
                    log_ffn_op = "silu";
                } else {
                    hparams.ffn_op = FFN_GELU_QUICK;
                    log_ffn_op = "gelu_quick";
                }
            }

2761
2762
2763
2764
2765
2766
2767
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
2768

2769
            if (is_vision) {
2770
2771
2772
2773
2774
2775
2776
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
2777
2778
                    hparams.image_mean[i] = mean_data[i];
                    hparams.image_std[i]  = std_data[i];
2779
                }
2780
2781
            }

2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
2793
2794

            // model-specific params
2795
            switch (model.proj_type) {
2796
2797
                case PROJECTOR_TYPE_MINICPMV:
                    {
2798
2799
                        if (hparams.minicpmv_version == 0) {
                            hparams.minicpmv_version = 2; // default to 2 if not set
2800
2801
                        }
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2802
2803
2804
2805
                case PROJECTOR_TYPE_INTERNVL:
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                    } break;
2806
                case PROJECTOR_TYPE_IDEFICS3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2807
2808
2809
2810
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                        get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2811
                case PROJECTOR_TYPE_LFM2:
2812
                    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2813
2814
2815
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                        // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
                        hparams.set_limit_image_tokens(64, 256);
2816
2817
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2818
                case PROJECTOR_TYPE_LIGHTONOCR:
2819
                    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2820
2821
2822
                        // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
                        // TODO: verify the image_min_tokens
                        hparams.n_merge = 1; // the original pixtral does not use patch merging
2823
                        hparams.rope_theta = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2824
2825
2826
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
                        hparams.set_limit_image_tokens(8, 1024);
                        hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
2827
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2828
2829
2830
                case PROJECTOR_TYPE_KIMIVL:
                    {
                        hparams.rope_theta = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2831
2832
2833
2834
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                        // TODO: check kimivl preprocessor for exact values
                        hparams.set_limit_image_tokens(8, 1024);
                        hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2835
                    } break;
2836
2837
2838
2839
                case PROJECTOR_TYPE_GEMMA3:
                    {
                        // default value (used by all model sizes in gemma 3 family)
                        // number of patches for each **side** is reduced by a factor of 4
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2840
                        hparams.n_merge = 4;
2841
                        // test model (tinygemma3) has a different value, we optionally read it
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2842
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
2843
2844
                    } break;
                case PROJECTOR_TYPE_QWEN2VL:
2845
                case PROJECTOR_TYPE_QWEN25VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2846
                case PROJECTOR_TYPE_QWEN3VL:
2847
                    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
                        hparams.n_merge = 2; // default value for Qwen 2 and 2.5
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
                        // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
                        hparams.set_limit_image_tokens(8, 4096);
                        hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
                        const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
                        if (hparams.image_min_pixels < warn_min_pixels) {
                            LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
                            LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
                            LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
                        }
2860
                    } break;
2861
2862
2863
                case PROJECTOR_TYPE_LLAMA4:
                    {
                        hparams.rope_theta = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2864
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
                        set_llava_uhd_res_candidates(model, 3);
                    } break;
                case PROJECTOR_TYPE_ULTRAVOX:
                case PROJECTOR_TYPE_QWEN2A:
                case PROJECTOR_TYPE_VOXTRAL:
                    {
                        bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
                                             model.proj_type == PROJECTOR_TYPE_VOXTRAL;
                        get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
                        if (hparams.n_mel_bins != 128) {
                            throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
                        }
                        hparams.ffn_op = FFN_GELU_ERF;
                        log_ffn_op = "gelu_erf"; // temporary solution for logging
                    } break;
2880
2881
2882
                default:
                    break;
            }
2883

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2884
2885
2886
2887
2888
2889
2890
2891
            // sanity check
            {
                if (hparams.image_max_pixels < hparams.image_min_pixels) {
                    throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
                }
            }

            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
2892
2893
2894
2895
            LOG_INF("%s: n_embd:             %d\n", __func__, hparams.n_embd);
            LOG_INF("%s: n_head:             %d\n", __func__, hparams.n_head);
            LOG_INF("%s: n_ff:               %d\n", __func__, hparams.n_ff);
            LOG_INF("%s: n_layer:            %d\n", __func__, hparams.n_layer);
2896
            LOG_INF("%s: ffn_op:             %s\n", __func__, log_ffn_op.c_str());
2897
            LOG_INF("%s: projection_dim:     %d\n", __func__, hparams.projection_dim);
2898
2899
2900
2901
2902
2903
            if (is_vision) {
                LOG_INF("\n--- vision hparams ---\n");
                LOG_INF("%s: image_size:         %d\n", __func__, hparams.image_size);
                LOG_INF("%s: patch_size:         %d\n", __func__, hparams.patch_size);
                LOG_INF("%s: has_llava_proj:     %d\n", __func__, hparams.has_llava_projector);
                LOG_INF("%s: minicpmv_version:   %d\n", __func__, hparams.minicpmv_version);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2904
                LOG_INF("%s: n_merge:            %d\n", __func__, hparams.n_merge);
2905
                LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2906
2907
2908
2909
2910
2911
                if (hparams.image_min_pixels > 0) {
                    LOG_INF("%s: image_min_pixels:   %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
                }
                if (hparams.image_max_pixels > 0) {
                    LOG_INF("%s: image_max_pixels:   %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
                }
2912
2913
2914
2915
2916
            } else if (is_audio) {
                LOG_INF("\n--- audio hparams ---\n");
                LOG_INF("%s: n_mel_bins:         %d\n", __func__, hparams.n_mel_bins);
                LOG_INF("%s: proj_stack_factor:  %d\n", __func__, hparams.proj_stack_factor);
            }
2917
            LOG_INF("\n");
2918
2919
2920
2921
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
2922

2923
2924
2925
    void load_tensors(clip_ctx & ctx_clip) {
        auto & model = ctx_clip.model;
        auto & hparams = model.hparams;
2926
2927
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
2928

2929
2930
2931
        // TODO @ngxson : support both audio and video in the future
        const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";

2932
2933
2934
2935
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
2936
2937
        }

2938
2939
        // create data context
        struct ggml_init_params params = {
2940
            /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
2941
2942
2943
2944
2945
2946
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
2947
2948
        }

2949
2950
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
2951
            ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
2952
2953
2954
2955
2956
2957
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
2958
                ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
2959
2960
2961
2962
2963
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
2964

2965
        model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
2966

2967
2968
        model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
        model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"),   false);
2969

2970
2971
        model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
        model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"),   false);
2972

2973
2974
2975
        model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
2976

2977
        model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
2978

2979
        // layers
2980
        model.layers.resize(hparams.n_layer);
2981
        for (int il = 0; il < hparams.n_layer; ++il) {
2982
            auto & layer = model.layers[il];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2983
2984
2985
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "weight"), false);
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "weight"), false);
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "weight"), false);
2986
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2987
            layer.qkv_w  = get_tensor(string_format(TN_ATTN_QKV,    prefix, il, "weight"), false);
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
            layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
            layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        prefix, il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        prefix, il, "weight"), false);
            layer.ls_1_w = get_tensor(string_format(TN_LS_1,        prefix, il, "weight"), false); // no bias
            layer.ls_2_w = get_tensor(string_format(TN_LS_2,        prefix, il, "weight"), false); // no bias

            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2999
            layer.qkv_b  = get_tensor(string_format(TN_ATTN_QKV,    prefix, il, "bias"), false);
3000
3001
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        prefix, il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        prefix, il, "bias"), false);
3002

3003
            // ffn
3004
3005
3006
3007
3008
3009
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"),   false);
3010

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022

            // qwen3vl deepstack layer
            layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
            layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
            layer.deepstack_fc1_w  = get_tensor(string_format(TN_DEEPSTACK_FC1,  il, "weight"), false);
            layer.deepstack_fc1_b  = get_tensor(string_format(TN_DEEPSTACK_FC1,  il, "bias"), false);
            layer.deepstack_fc2_w  = get_tensor(string_format(TN_DEEPSTACK_FC2,  il, "weight"), false);
            layer.deepstack_fc2_b  = get_tensor(string_format(TN_DEEPSTACK_FC2,  il, "bias"), false);
            if (layer.has_deepstack()) {
                model.n_deepstack_layers++;
            }

3023
3024
            // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
            // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
            bool is_ffn_swapped = (
                    // only old models need this fix
                    model.proj_type == PROJECTOR_TYPE_MLP
                    || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                    || model.proj_type == PROJECTOR_TYPE_LDP
                    || model.proj_type == PROJECTOR_TYPE_LDPV2
                    || model.proj_type == PROJECTOR_TYPE_QWEN2VL
                    || model.proj_type == PROJECTOR_TYPE_QWEN25VL
                    || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
                    || model.proj_type == PROJECTOR_TYPE_GEMMA3
                    || model.proj_type == PROJECTOR_TYPE_IDEFICS3
                    || model.proj_type == PROJECTOR_TYPE_MINICPMV
                ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
            if (is_ffn_swapped) {
3039
3040
3041
3042
3043
3044
3045
3046
                // swap up and down weights
                ggml_tensor * tmp = layer.ff_up_w;
                layer.ff_up_w = layer.ff_down_w;
                layer.ff_down_w = tmp;
                // swap up and down biases
                tmp = layer.ff_up_b;
                layer.ff_up_b = layer.ff_down_b;
                layer.ff_down_b = tmp;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3047
3048
3049
                if (il == 0) {
                    LOG_WRN("%s: ffn up/down are swapped\n", __func__);
                }
3050
            }
3051
3052
        }

3053
        switch (model.proj_type) {
3054
3055
3056
3057
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
3058
3059
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
3060
                    // Yi-type llava
3061
3062
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
3063
                    // missing in Yi-type llava
3064
3065
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
3066
                    // Yi-type llava
3067
3068
3069
3070
3071
                    model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (model.mm_3_w) {
3072
                        // TODO: this is a hack to support Yi-type llava
3073
                        model.proj_type = PROJECTOR_TYPE_MLP_NORM;
3074
                    }
3075
                    model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
3076
3077
3078
3079
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
3104
3105
3106
3107
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
3108
3109
3110
3111
3112
3113
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
3114
                } break;
3115
            case PROJECTOR_TYPE_MINICPMV:
3116
                {
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
                    // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
3136
3137
3138
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
3139
3140
3141
3142
3143
3144
3145
3146
                    model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3147
3148
                    model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
                    model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
3149
                } break;
3150
3151
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
3152
                {
3153
3154
3155
3156
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
3157
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3158
3159
3160
3161
3162
3163
3164
            case PROJECTOR_TYPE_QWEN3VL:
                {
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
3165
3166
            case PROJECTOR_TYPE_GEMMA3:
                {
3167
3168
                    model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
3169
                } break;
3170
3171
            case PROJECTOR_TYPE_IDEFICS3:
                {
3172
                    model.projection = get_tensor(TN_MM_PROJECTOR);
3173
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
            case PROJECTOR_TYPE_LFM2:
            case PROJECTOR_TYPE_KIMIVL:
                {
                    model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
                    model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
3184
3185
            case PROJECTOR_TYPE_PIXTRAL:
                {
3186
3187
3188
3189
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
3190
                    // [IMG_BREAK] token embedding
3191
                    model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
3192
                    // for mistral small 3.1
3193
3194
3195
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3196
3197
3198
3199
3200
3201
3202
3203
3204
            case PROJECTOR_TYPE_LIGHTONOCR:
                {
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
            case PROJECTOR_TYPE_ULTRAVOX:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
                    model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
                    model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
                } break;
            case PROJECTOR_TYPE_QWEN2A:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
                    model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
                } break;
            case PROJECTOR_TYPE_VOXTRAL:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
3233
3234
3235
                } break;
            case PROJECTOR_TYPE_INTERNVL:
                {
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
                    model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                } break;
            case PROJECTOR_TYPE_LLAMA4:
                {
                    model.mm_model_proj    = get_tensor(TN_MM_PROJECTOR);
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
3248
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
            case PROJECTOR_TYPE_COGVLM:
                {
                    model.mm_model_proj     = get_tensor(TN_MM_PROJECTOR);
                    model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
                    model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
                    model.mm_h_to_4h_w      = get_tensor(string_format(TN_MM_H_TO_4H,      "weight"));
                    model.mm_gate_w         = get_tensor(string_format(TN_MM_GATE,         "weight"));
                    model.mm_4h_to_h_w      = get_tensor(string_format(TN_MM_4H_TO_H,      "weight"));
                    model.mm_boi            = get_tensor(TN_TOK_BOI);
                    model.mm_eoi            = get_tensor(TN_TOK_EOI);
                } break;
            case PROJECTOR_TYPE_JANUS_PRO:
                {
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                } break;
3267
3268
3269
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
3270

3271
3272
3273
        // load data
        {
            std::vector<uint8_t> read_buf;
3274
3275

#ifdef _WIN32
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
3286
#if __GLIBCXX__
3287
3288
3289
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
3290
#else // MSVC
3291
3292
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
3293
#endif
3294
            free(wbuf);
3295
#else
3296
            auto fin = std::ifstream(fname, std::ios::binary);
3297
3298
#endif
            if (!fin) {
3299
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
3300
            }
3301
3302
3303
3304
3305
3306

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
3307
                ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
3323
3324
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
3325
            close(fd);
3326
#else
3327
            fin.close();
3328
#endif
3329
3330
3331

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
3332
3333
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
    struct support_info_op {
        ggml_tensor * op;

        // true if the op runs on the accelerated ctx_clip.backend
        bool is_accel = true;
    };

    struct support_info_graph {
        // whether the clip_ctx.backend supports flash attention
        bool fattn = true;
        ggml_tensor * fattn_op = nullptr; // for debugging

        std::vector<support_info_op> ops;
    };

    static void warmup(clip_ctx & ctx_clip) {
        support_info_graph info;

        if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
            // try to enable flash attention to see if it's supported
            ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
            info = alloc_compute_meta(ctx_clip);
            if (!info.fattn && info.fattn_op) {
                auto op = info.fattn_op;
                LOG_WRN("%s: *****************************************************************\n", __func__);
                LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
                LOG_WRN("%s: op params: \n", __func__);
                static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
                    LOG_WRN("%s:   %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
                            name, ggml_type_name(t->type),
                            t->ne[0], t->ne[1], t->ne[2], t->ne[3],
                            t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
                };
                print_shape(__func__, " dst", op);
                print_shape(__func__, "src0", op->src[0]);
                print_shape(__func__, "src1", op->src[1]);
                print_shape(__func__, "src2", op->src[2]);
                LOG_WRN("%s: please report this on github as an issue\n", __func__);
                LOG_WRN("%s: *****************************************************************\n", __func__);
                ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
                alloc_compute_meta(ctx_clip);
            }
        } else {
            info = alloc_compute_meta(ctx_clip);
            if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
                LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
            }
        }

        LOG_INF("%s: flash attention is %s\n", __func__,
            (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");

        // print ops that are not supported by the GPU backend (if there is one)
        if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
            std::vector<support_info_op> unsupported_ops;
            for (const auto & op : info.ops) {
                if (!op.is_accel) {
                    unsupported_ops.push_back(op);
                }
            }
            if (!unsupported_ops.empty()) {
                LOG_WRN("%s: *****************************************************************\n", __func__);
                LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
                LOG_WRN("%s:          the performance will be suboptimal                      \n", __func__);
                LOG_WRN("%s:          list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
                for (const auto & op : unsupported_ops) {
                    LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
                            ggml_op_name(op.op->op),
                            ggml_type_name(op.op->type),
                            op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
                }
                LOG_WRN("%s: flash attention is %s\n", __func__,
                    (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
                LOG_WRN("%s: please report this on github as an issue\n", __func__);
                LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
                LOG_WRN("%s: *****************************************************************\n", __func__);
            }
        }
    }

    static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
3415
        const auto & hparams = ctx_clip.model.hparams;
3416
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
3417
3418
3419
3420

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
3421
3422
3423
        if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
            img->nx = hparams.warmup_image_size;
            img->ny = hparams.warmup_image_size;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3424
            LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
3425
3426
3427
        } else {
            img->nx = hparams.warmup_audio_size;
            img->ny = hparams.n_mel_bins;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3428
            LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
3429
        }
3430
3431
        batch.entries.push_back(std::move(img));

3432
        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
3433
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
3434

3435
3436
3437
3438
3439
3440
3441
3442
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
3443
            }
3444
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470

        const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
        const int n_nodes  = ggml_graph_n_nodes(gf);

        LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__,  n_splits, n_nodes);

        support_info_graph res {
            /*.fattn    = */ true,
            /*.fattn_op = */ nullptr,
            /*.ops      = */ {},
        };

        // check op support
        for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
            ggml_tensor * node = ggml_graph_node(gf, i);
            res.ops.push_back({node, true});
            if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
                res.ops.back().is_accel = false;
                if (node->op == GGML_OP_FLASH_ATTN_EXT) {
                    res.fattn    = false;
                    res.fattn_op = node;
                }
            }
        }

        return res;
3471
    }
3472

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3473
    void get_bool(const std::string & key, bool & output, bool required = true) const {
3474
3475
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3476
3477
3478
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3479
3480
3481
3482
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
3483

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3484
    void get_i32(const std::string & key, int & output, bool required = true) const {
3485
3486
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3487
3488
3489
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3490
3491
3492
3493
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
3494

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3495
    void get_u32(const std::string & key, int & output, bool required = true) const {
3496
3497
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3498
3499
3500
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3501
            return;
3502
        }
3503
3504
3505
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3506
    void get_f32(const std::string & key, float & output, bool required = true) const {
3507
3508
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3509
3510
3511
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3512
3513
3514
3515
3516
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3517
    void get_string(const std::string & key, std::string & output, bool required = true) const {
3518
3519
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3520
3521
3522
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3523
            return;
3524
        }
3525
3526
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
3527

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3528
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
3529
3530
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3531
3532
3533
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3534
3535
3536
3537
3538
3539
3540
3541
3542
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
3543

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3544
    static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
        auto & hparams = model.hparams;
        for (int x = 1; x <= max_patches_per_side; x++) {
            for (int y = 1; y <= max_patches_per_side; y++) {
                if (x == 1 && y == 1) {
                    continue; // skip the first point
                }
                hparams.image_res_candidates.push_back(clip_image_size{
                    x*hparams.image_size,
                    y*hparams.image_size,
                });
            }
        }
    }
};
3559

3560
3561
3562
struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
    clip_ctx * ctx_vision = nullptr;
    clip_ctx * ctx_audio = nullptr;
3563
3564

    try {
3565
3566
3567
3568
3569
3570
        clip_model_loader loader(fname);

        if (loader.has_vision) {
            ctx_vision = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
            loader.load_tensors(*ctx_vision);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3571
            loader.warmup(*ctx_vision);
3572
3573
3574
3575
3576
3577
        }

        if (loader.has_audio) {
            ctx_audio = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
            loader.load_tensors(*ctx_audio);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3578
            loader.warmup(*ctx_audio);
3579
3580
        }

3581
3582
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3583
3584
3585
3586

        delete ctx_vision;
        delete ctx_audio;

3587
        return {nullptr, nullptr};
3588
3589
    }

3590
    return {ctx_vision, ctx_audio};
3591
3592
}

3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3624
3625
3626
3627
void clip_image_u8_free(struct clip_image_u8  * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
3645
    }
3646
    return batch->entries[idx]->ny;
3647
}
3648
3649
3650
3651
3652

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
3653
    }
3654
    return batch->entries[idx].get();
3655
3656
}

3657
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
3658
3659
3660
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
3661
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
3662
3663
3664
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
3665
3666
3667
3668
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
3669

3670
3671
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
3672
        int c = i % 3; // rgb
3673
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
3674
3675
3676
    }
}

3677
3678
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
struct img_tool {
    enum resize_algo {
        RESIZE_ALGO_BILINEAR,
        RESIZE_ALGO_BICUBIC,
        // RESIZE_ALGO_LANCZOS, // TODO
    };

    static void resize(
            const clip_image_u8 & src,
            clip_image_u8 & dst,
            const clip_image_size & target_resolution,
            resize_algo algo,
            bool add_padding = true, // TODO: define the behavior for add_padding = false
            std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        dst.nx = target_resolution.width;
        dst.ny = target_resolution.height;
        dst.buf.resize(3 * dst.nx * dst.ny);

        if (dst.nx == src.nx && dst.ny == src.ny) {
            // no resize needed, simple copy
            dst.buf = src.buf;
            return;
        }

        if (!add_padding) {
            // direct resize
            switch (algo) {
                case RESIZE_ALGO_BILINEAR:
                    resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
                    break;
                case RESIZE_ALGO_BICUBIC:
                    resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
                    break;
                default:
                    throw std::runtime_error("Unsupported resize algorithm");
            }
        } else {
            // resize with padding
            clip_image_u8 resized_image;
            float scale_w = static_cast<float>(target_resolution.width) / src.nx;
            float scale_h = static_cast<float>(target_resolution.height) / src.ny;
            float scale = std::min(scale_w, scale_h);
            int new_width  = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
            int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);

            switch (algo) {
                case RESIZE_ALGO_BILINEAR:
                    resize_bilinear(src, resized_image, new_width, new_height);
                    break;
                case RESIZE_ALGO_BICUBIC:
                    resize_bicubic(src, resized_image, new_width, new_height);
                    break;
                default:
                    throw std::runtime_error("Unsupported resize algorithm");
            }

            // fill dst with pad_color
            fill(dst, pad_color);

            int offset_x = (target_resolution.width  - new_width)  / 2;
            int offset_y = (target_resolution.height - new_height) / 2;

            composite(dst, resized_image, offset_x, offset_y);
        }
    }

    static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);

        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
            }
        }
    }

    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than longest_edge, it will be resized to longest_edge
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
        GGML_ASSERT(align_size > 0);
        if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
            return {0, 0};
        }

        float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
                               static_cast<float>(longest_edge) / inp_size.height);

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

        auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
        int aligned_width  = ceil_by_factor(target_width_f);
        int aligned_height = ceil_by_factor(target_height_f);

        return {aligned_width, aligned_height};
    }

    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will have min_pixels <= W*H <= max_pixels
    // this is referred as "smart_resize" in transformers code
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
        GGML_ASSERT(align_size > 0);
        const int width  = inp_size.width;
        const int height = inp_size.height;

        auto ceil_by_factor  = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
        auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };

        // always align up first
        int h_bar = std::max(align_size, ceil_by_factor(height));
        int w_bar = std::max(align_size, ceil_by_factor(width));

        if (h_bar * w_bar > max_pixels) {
            const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
            h_bar = std::max(align_size, floor_by_factor(height / beta));
            w_bar = std::max(align_size, floor_by_factor(width  / beta));
        } else if (h_bar * w_bar < min_pixels) {
            const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
            h_bar = ceil_by_factor(height * beta);
            w_bar = ceil_by_factor(width * beta);
        }

        return {w_bar, h_bar};
    }

    // draw src image into dst image at offset (offset_x, offset_y)
    static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
        for (int y = 0; y < src.ny; ++y) {
            for (int x = 0; x < src.nx; ++x) {
                int dx = x + offset_x;
                int dy = y + offset_y;
                // skip pixels that would be out of bounds in the destination
                if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
                    continue;
                }
                size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
                size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
                dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
                dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
            }
        }
    }

    // fill the image with a solid color
    static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
        for (size_t i = 0; i < img.buf.size(); i += 3) {
            img.buf[i]     = color[0];
            img.buf[i + 1] = color[1];
            img.buf[i + 2] = color[2];
        }
    }

private:
3840
    // Bilinear resize function
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3841
    static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
3874

3875
3876
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3877
    static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
3878
3879
3880
3881
3882
3883
3884
3885
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3886
        float C[5] = {};
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
3933
3934
3935
                }
            }
        }
3936
3937

        return true;
3938
3939
    }

3940
3941
3942
3943
3944
3945
3946
3947
3948
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
3949
3950

/**
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
3962
 *
3963
3964
3965
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
3966
 */
3967
3968
3969
3970
3971
3972
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
3973

3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999

        const bool has_slices    = original_size.width > slice_size || original_size.height > slice_size;
        const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();

        if (!has_slices) {
            // skip slicing logic
            res.overview_size = clip_image_size{slice_size, slice_size};
            res.refined_size  = clip_image_size{0, 0};
            res.grid_size     = clip_image_size{0, 0};

            return res;
        }
4000
4001
4002
4003

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
4004
4005
                original_size,
                ctx->model.hparams.image_res_candidates);
4006
4007
4008
4009
4010
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

4011
4012
4013
4014
4015
4016
            LOG_DBG("%s: using pinpoints for slicing\n", __func__);
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width,  res.refined_size.height);

4017
4018
4019
4020
4021
4022
4023
4024
            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
4025
4026
4027
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
4028
4029
                }
            }
4030

4031
4032
4033
4034
            res.grid_size.height = refine_size.height / slice_size;
            res.grid_size.width  = refine_size.width  / slice_size;
            LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);

4035
            return res;
4036
4037
        }

4038
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
4039

4040
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, !has_slices);
4041
        res.overview_size = best_size;
4042

4043
4044
4045
4046
4047
        {
            const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
            const float log_ratio = log((float)original_width / original_height);
            const float ratio = (float)original_width * original_height / (slice_size * slice_size);
            const int multiple = fmin(ceil(ratio), max_slice_nums);
4048

4049
4050
4051
4052
4053
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

4054
4055
4056
4057
4058
4059
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width, res.refined_size.height,
                    res.grid_size.width, res.grid_size.height);

4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
4076
4077
4078
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
4079
4080
4081
                }
            }
        }
4082

4083
4084
        return res;
    }
4085

4086
4087
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4088
        img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
4089

4090
4091
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4092
        img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
4093
4094
4095
4096
4097
4098
4099
4100
4101
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4102
            img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
4103
        } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4104
4105
4106
            // only algo bicubic preserves the ratio; old models rely on this behavior
            // TODO: do we need to support other algos here?
            img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
4107
        }
4108

4109
4110
4111
4112
4113
4114
4115
4116
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4117
            img_tool::crop(*refined_img, *img_slice, x, y, w, h);
4118
            output.push_back(std::move(img_slice));
4119
        }
4120
4121

        return output;
4122
4123
    }

4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
    static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
        float scale_width  = static_cast<float>(target_max.width)  / orig.width;
        float scale_height = static_cast<float>(target_max.height) / orig.height;
        float scale = std::min(scale_width, scale_height);
        return clip_image_size{
            static_cast<int>(orig.width  * scale),
            static_cast<int>(orig.height * scale),
        };
    }

4149
4150
4151
    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
4152
4153
4154
4155
4156
4157
4158
4159
     * For example, when given a list of resolutions:
     *  - 100x100
     *  - 200x100
     *  - 100x200
     *  - 200x200
     *
     * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
     *
4160
4161
4162
4163
4164
4165
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        clip_image_size best_fit;
4166
        int min_wasted_area = std::numeric_limits<int>::max();
4167
        int max_effective_resolution = 0;
4168
4169
4170
4171
4172
4173
4174
4175
4176

        for (const clip_image_size & candidate : possible_resolutions) {
            auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
            int effective_resolution = std::min(
                target_size.width * target_size.height,
                original_size.width * original_size.height);
            int wasted_area = (candidate.width * candidate.height) - effective_resolution;

            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
4177
                max_effective_resolution = effective_resolution;
4178
4179
                min_wasted_area = wasted_area;
                best_fit = candidate;
4180
            }
4181
4182

            LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
4183
        }
4184
4185

        return best_fit;
4186
4187
    }

4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
4230
                }
4231
                ++m;
4232
4233
            }
        }
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
4245
    }
4246
};
4247
4248
4249

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
4250
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
4251
    clip_image_size original_size{img->nx, img->ny};
4252
    auto & params = ctx->model.hparams;
4253

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
    switch (ctx->proj_type()) {
        case PROJECTOR_TYPE_MINICPMV:
            {
                auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
                std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

                for (size_t i = 0; i < imgs.size(); ++i) {
                    // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
                }
4266

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4267
4268
4269
                res_imgs->grid_x = inst.grid_size.width;
                res_imgs->grid_y = inst.grid_size.height;
            } break;
4270

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
        case PROJECTOR_TYPE_QWEN3VL:
            {
                GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
                clip_image_u8 resized;
                const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
                    original_size,
                    params.patch_size * 2,
                    params.image_min_pixels,
                    params.image_max_pixels);
                img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
                // clip_image_save_to_bmp(resized, "preproc.bmp");
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                // clip_image_f32_ptr res(clip_image_f32_init());
                normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
                // res_imgs->data[0] = *res;
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
4290

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
        case PROJECTOR_TYPE_IDEFICS3:
            {
                // The refined size has two steps:
                // 1. Resize w/ aspect-ratio preserving such that the longer side is
                //      the preprocessor longest size
                // 2. Resize w/out preserving aspect ratio such that both sides are
                //      multiples of image_size (always rounding up)
                //
                // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
                const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
                    original_size, params.image_size, params.image_longest_edge);
                // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
                //         __func__, original_size.width, original_size.height,
                //         refined_size.width, refined_size.height);

                llava_uhd::slice_instructions instructions;
                instructions.overview_size = clip_image_size{params.image_size, params.image_size};
                instructions.refined_size = refined_size;
                instructions.grid_size = clip_image_size{
                    static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
                    static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
                };
                for (int y = 0; y < refined_size.height; y += params.image_size) {
                    for (int x = 0; x < refined_size.width; x += params.image_size) {
                        // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
                        instructions.slices.push_back(llava_uhd::slice_coordinates{
                            /* x    */x,
                            /* y    */y,
                            /* size */clip_image_size{
                                std::min(params.image_size, refined_size.width - x),
                                std::min(params.image_size, refined_size.height - y)
                            }
                        });
4324
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
                }
                auto imgs = llava_uhd::slice_image(img, instructions);

                // cast and normalize to f32
                for (size_t i = 0; i < imgs.size(); ++i) {
                    // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
                }
4335

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4336
4337
4338
                res_imgs->grid_x = instructions.grid_size.width;
                res_imgs->grid_y = instructions.grid_size.height;
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4339

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
        case PROJECTOR_TYPE_GLM_EDGE:
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
            {
                clip_image_u8 resized_image;
                int sz = params.image_size;
                img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                //clip_image_save_to_bmp(resized_image, "resized.bmp");
                normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4352

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
        case PROJECTOR_TYPE_JANUS_PRO:
            {
                // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
                const std::array<uint8_t, 3> pad_color = {127, 127, 127};
                clip_image_u8 resized_image;
                int sz = params.image_size;
                img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4364

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
        case PROJECTOR_TYPE_PIXTRAL:
        case PROJECTOR_TYPE_LIGHTONOCR:
            {
                GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
                clip_image_u8 resized_image;
                // the original pixtral model doesn't have n_merge
                const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
                const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
                    original_size,
                    params.patch_size * cur_merge,
                    params.image_min_pixels,
                    params.image_max_pixels);
                img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4382

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
        case PROJECTOR_TYPE_LLAMA4:
            {
                GGML_ASSERT(!params.image_res_candidates.empty());
                auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
                std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

                for (size_t i = 0; i < imgs.size(); ++i) {
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
                }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4394

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4395
4396
4397
                res_imgs->grid_x = inst.grid_size.width;
                res_imgs->grid_y = inst.grid_size.height;
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4398

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            {
                GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
                const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
                    original_size,
                    params.patch_size * params.n_merge,
                    params.image_min_pixels,
                    params.image_max_pixels);
                const std::array<uint8_t, 3> pad_color = {122, 116, 104};

                clip_image_u8 resized_img;
                img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
                clip_image_f32_ptr res(clip_image_f32_init());
                normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(res));
            } break;
4416

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4417
4418
4419
4420
4421
4422
4423
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
            {
                // TODO @ngxson : refactor the code below to avoid duplicated logic
4424

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4425
4426
                // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
                // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
4427

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4428
                clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
4429

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4430
4431
4432
4433
4434
4435
4436
4437
                // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
                if (params.image_res_candidates.empty()) { // pad_to_square
                    // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
                    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
                    const int longer_side = std::max(img->nx, img->ny);
                    temp->nx = longer_side;
                    temp->ny = longer_side;
                    temp->buf.resize(3 * longer_side * longer_side);
4438

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4439
4440
                    // background color in RGB from LLaVA (this is the mean rgb color * 255)
                    const std::array<uint8_t, 3> pad_color = {122, 116, 104};
4441

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4442
4443
                    // resize the image to the target_size
                    img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
4444

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4445
4446
4447
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
4448

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
                } else {
                    // "spatial_unpad" with "anyres" processing for llava-1.6
                    auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
                    std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

                    for (size_t i = 0; i < imgs.size(); ++i) {
                        // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
                        clip_image_f32_ptr res(clip_image_f32_init());
                        normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                        res_imgs->entries.push_back(std::move(res));
                    }
                }
            } break;
4462

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4463
4464
4465
        default:
            LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
            return false;
4466
    }
4467

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4468
    return true;
4469
4470
4471
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
4472
    return ctx->model.image_newline;
4473
4474
4475
}

void clip_free(clip_ctx * ctx) {
4476
4477
4478
    if (ctx == nullptr) {
        return;
    }
4479
4480
4481
    delete ctx;
}

4482
// deprecated
4483
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
4484
4485
    const int32_t nx = ctx->model.hparams.image_size;
    const int32_t ny = ctx->model.hparams.image_size;
4486
    return clip_embd_nbytes_by_img(ctx, nx, ny);
4487
4488
}

4489
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
4490
4491
4492
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
4493
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
4494
4495
}

4496
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
4497
    return ctx->model.hparams.image_size;
4498
4499
}

4500
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
4501
    return ctx->model.hparams.patch_size;
4502
4503
}

4504
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
4505
    return ctx->model.hparams.n_embd;
4506
4507
4508
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
4509
    return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
4510
4511
4512
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
4513
    const auto & params = ctx->model.hparams;
4514
    const int n_total = clip_n_output_tokens(ctx, img);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4515
4516
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
        return img->nx / (params.patch_size * 2);
4517
4518
4519
4520
4521
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
4522
    const auto & params = ctx->model.hparams;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4523
4524
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
        return img->ny / (params.patch_size * 2);
4525
4526
4527
4528
4529
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
4530
    const auto & params = ctx->model.hparams;
4531

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4532
4533
4534
    // for models with fixed size image, the input image is already pre-processed and resized to square
    int patch_size = params.patch_size;
    int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
4535

4536
4537
4538
4539
4540
    projector_type proj = ctx->proj_type();

    switch (proj) {
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4541
        case PROJECTOR_TYPE_JANUS_PRO:
4542
4543
4544
4545
4546
4547
4548
            {
                // do nothing
            } break;
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_GLM_EDGE:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4549
                n_patches /= 4;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4550
                if (ctx->model.mm_boi) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4551
                    n_patches += 2; // for BOI and EOI token embeddings
4552
4553
4554
4555
                }
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4556
4557
4558
                // Use actual config value if available, otherwise fall back to hardcoded values
                if (params.minicpmv_query_num > 0) {
                    n_patches = params.minicpmv_query_num;
4559
                } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
                    // Fallback to hardcoded values for legacy models
                    if (params.minicpmv_version == 2) {
                        n_patches = 96;
                    } else if (params.minicpmv_version == 3) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 4) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 5) {
                        // MiniCPM-V 4.0
                        n_patches = 64;
                    } else if (params.minicpmv_version == 6) {
                        // MiniCPM-V 4.5
                        n_patches = 64;
                    } else {
                        GGML_ABORT("Unknown minicpmv version");
                    }
4576
4577
4578
4579
                }
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4580
        case PROJECTOR_TYPE_QWEN3VL:
4581
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4582
                // dynamic size (2 conv, so double patch size)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4583
4584
                int x_patch = img->nx / (params.patch_size * 2);
                int y_patch = img->ny / (params.patch_size * 2);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4585
                n_patches = x_patch * y_patch;
4586
4587
4588
4589
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_INTERNVL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4590
        case PROJECTOR_TYPE_LLAMA4:
4591
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4592
                // both X and Y are downscaled by the scale factor
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4593
                int scale_factor = ctx->model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4594
                n_patches /= (scale_factor * scale_factor);
4595
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4596
4597
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
4598
4599
            {
                // dynamic size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4600
                int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4601
4602
4603
                int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
                int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
                n_patches = x_patch * y_patch;
4604
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4605
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4606
        case PROJECTOR_TYPE_LIGHTONOCR:
4607
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4608
                // dynamic size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4609
                int n_merge = ctx->model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4610
4611
                int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
                int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4612
4613
4614
4615
4616
                if (ctx->model.token_embd_img_break) {
                    n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
                } else {
                    n_patches = n_patches_y * n_patches_x;
                }
4617
4618
4619
4620
4621
            } break;
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_QWEN2A:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4622
                n_patches = img->nx;
4623
4624
4625
4626

                const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
                if (ctx->model.audio_has_stack_frames()) {
                    GGML_ASSERT(proj_stack_factor > 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4627
4628
                    const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
                    n_patches = n_len / proj_stack_factor;
4629
4630
4631
                }

                // whisper downscales input token by half after conv1d
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4632
                n_patches /= 2;
4633
4634
4635

                if (ctx->model.audio_has_avgpool()) {
                    // divide by 2 because of nn.AvgPool1d(2, stride=2)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4636
                    n_patches /= 2;
4637
4638
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4639
4640
4641
4642
        case PROJECTOR_TYPE_COGVLM:
            {
                n_patches += 2; // for BOI and EOI token embeddings
            } break;
4643
4644
4645
4646
        default:
            GGML_ABORT("unsupported projector type");
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4647
    return n_patches;
4648
4649
4650
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
4651
4652
4653
4654
4655
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

4656
4657
4658
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

4659
4660
4661
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();
4662

4663
4664
4665
4666
    // TODO @ngxson : implement batch size > 1 as a loop
    //                we don't need true batching support because the cgraph will gonna be big anyway
    if (batch_size != 1) {
        return false; // only support batch size of 1
4667
    }
4668
4669

    // build the inference graph
4670
    ctx->debug_print_tensors.clear();
4671
    ggml_backend_sched_reset(ctx->sched.get());
4672
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
4673
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
4674
4675

    // set inputs
4676
    const auto & model   = ctx->model;
4677
4678
    const auto & hparams = model.hparams;

4679
4680
4681
    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

4682
4683
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
4684
    const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
4685
4686
    const int pos_w = image_size_width  / patch_size;
    const int pos_h = image_size_height / patch_size;
4687

4688
4689
4690
    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
4691
        ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
4716
    if (!imgs.is_audio) {
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B
4733

4734
4735
4736
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
4737
4738
4739
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
4740
4741
4742
4743
4744
4745
4746
4747
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
4748
4749
4750
4751
                    }
                }
            }
        }
4752
        set_input_f32("inp_raw", inp_raw);
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762

    } else {
        // audio input
        GGML_ASSERT(imgs.entries.size() == 1);
        const auto & mel_inp = imgs.entries[0];
        const int n_step = mel_inp->nx;
        const int n_mel  = mel_inp->ny;
        std::vector<float> inp_raw(n_step * n_mel);
        std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
        set_input_f32("inp_raw", inp_raw);
4763
4764
    }

4765
    // set input per projector
4766
    switch (ctx->model.proj_type) {
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
4777
                }
4778
4779
4780
4781
4782
4783
4784
4785
4786
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);
4787

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4788
4789
4790
4791
4792
4793
4794
                // inputs for resampler projector
                // set the 2D positions (using float for sinusoidal embedding)
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<float> pos_data(n_pos);
                // dimension H
                for (int i = 0; i < n_pos; i++) {
                    pos_data[i] = static_cast<float>(i / n_patches_per_col);
4795
                }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
                set_input_f32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < n_pos; i++) {
                    pos_data[i] = static_cast<float>(i % n_patches_per_col);
                }
                set_input_f32("pos_w", pos_data);
                // base frequency omega
                const float base_freq   = 10000.0f;
                const int   n_embd_proj = clip_n_mmproj_embd(ctx);
                std::vector<float> omega(n_embd_proj / 4);
                for (int i = 0; i < n_embd_proj / 4; ++i) {
                    omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
                }
                set_input_f32("omega", omega);
4810
4811
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4812
        case PROJECTOR_TYPE_QWEN3VL:
4813
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4814
                const int merge_ratio = hparams.n_merge;
4815
4816
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
4817
                std::vector<int> positions(n_pos * 4);
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4832

4833
4834
4835
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
4836
            {
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
4881
4882
                        }
                    }
4883
4884
4885
4886
4887
4888
4889
4890

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
4891
4892
                }

4893
                const int mpow = merge_ratio * merge_ratio;
4894
                std::vector<int> positions(n_pos * 4);
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4913

4914
4915
4916
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4917
        case PROJECTOR_TYPE_KIMIVL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4918
        case PROJECTOR_TYPE_LIGHTONOCR:
4919
4920
4921
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
4922
                std::vector<int> pos_data(n_pos);
4923
                // dimension H
4924
                for (int i = 0; i < n_pos; i++) {
4925
4926
4927
4928
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
4929
                for (int i = 0; i < n_pos; i++) {
4930
4931
4932
4933
4934
4935
4936
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
4937
4938
            std::vector<int32_t> positions(n_pos);
            for (int i = 0; i < n_pos; i++) {
4939
                positions[i] = i;
4940
            }
4941
4942
4943
4944
4945
4946
4947
4948
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
4949
4950
                std::vector<int32_t> positions(n_pos);
                for (int i = 0; i < n_pos; i++) {
4951
4952
4953
                    positions[i] = i;
                }
                set_input_i32("positions", positions);
4954

4955
4956
4957
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
4958
                int patch_offset = model.class_embedding ? 1 : 0;
4959
                std::vector<int32_t> patches(num_patches);
4960
                for (int i = 0; i < num_patches; i++) {
4961
                    patches[i] = i + patch_offset;
4962
                }
4963
4964
4965
4966
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
4967
        case PROJECTOR_TYPE_INTERNVL:
4968
4969
        case PROJECTOR_TYPE_QWEN2A:
        case PROJECTOR_TYPE_ULTRAVOX:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4970
        case PROJECTOR_TYPE_LFM2:
4971
        case PROJECTOR_TYPE_VOXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4972
4973
        case PROJECTOR_TYPE_JANUS_PRO:
        case PROJECTOR_TYPE_COGVLM:
4974
4975
4976
            {
                // do nothing
            } break;
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
        case PROJECTOR_TYPE_LLAMA4:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
                // last pos is always kept 0, it's for CLS
                // dimension H
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i / n_patches_per_col) + 1;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i % n_patches_per_col) + 1;
                }
                set_input_i32("pos_w", pos_data);
            } break;
4994
4995
        default:
            GGML_ABORT("Unknown projector type");
4996
4997
    }

4998
4999
5000
5001
5002
5003
5004
5005
5006
    // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
    ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
    ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
    if (reg) {
        auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
        if (ggml_backend_set_n_threads_fn) {
            ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
        }
    }
5007

5008
5009
5010
5011
5012
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
5013

5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
    // print debug nodes
    if (ctx->debug_graph) {
        LOG_INF("\n\n---\n\n");
        LOG_INF("\n\nDebug graph:\n\n");
        for (ggml_tensor * t : ctx->debug_print_tensors) {
            std::vector<uint8_t> data(ggml_nbytes(t));
            ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
            print_tensor_shape(t);
            print_tensor_data(t, data.data(), 3);
        }
    }

5026
    // the last node is the embedding tensor
5027
5028
5029
5030
5031
5032
    ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // sanity check (only support batch size of 1 for now)
    const int n_tokens_out = embeddings->ne[1];
    const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
    if (n_tokens_out != expected_n_tokens_out) {
5033
        LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
5034
5035
        GGML_ABORT("Invalid number of output tokens");
    }
5036
5037
5038
5039
5040
5041
5042
5043

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
5044
    switch (ctx->model.proj_type) {
5045
        case PROJECTOR_TYPE_LDP:
5046
            return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
5047
        case PROJECTOR_TYPE_LDPV2:
5048
            return ctx->model.mm_model_peg_0_b->ne[0];
5049
5050
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5051
        case PROJECTOR_TYPE_LIGHTONOCR:
5052
            return ctx->model.mm_2_w->ne[1];
5053
        case PROJECTOR_TYPE_MLP_NORM:
5054
            return ctx->model.mm_3_b->ne[0];
5055
        case PROJECTOR_TYPE_MINICPMV:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5056
            return ctx->model.mm_model_proj->ne[0];
5057
        case PROJECTOR_TYPE_GLM_EDGE:
5058
            return ctx->model.mm_model_mlp_3_w->ne[1];
5059
5060
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5061
        case PROJECTOR_TYPE_JANUS_PRO:
5062
            return ctx->model.mm_1_b->ne[0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5063
5064
5065
        case PROJECTOR_TYPE_QWEN3VL:
            // main path + deepstack paths
            return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
5066
        case PROJECTOR_TYPE_GEMMA3:
5067
            return ctx->model.mm_input_proj_w->ne[0];
5068
        case PROJECTOR_TYPE_IDEFICS3:
5069
5070
5071
5072
            return ctx->model.projection->ne[1];
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
            return ctx->model.mm_2_w->ne[1];
5073
        case PROJECTOR_TYPE_INTERNVL:
5074
5075
5076
5077
5078
            return ctx->model.mm_3_w->ne[1];
        case PROJECTOR_TYPE_LLAMA4:
            return ctx->model.mm_model_proj->ne[1];
        case PROJECTOR_TYPE_QWEN2A:
            return ctx->model.mm_fc_w->ne[1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5079
5080
5081
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            return ctx->model.mm_2_w->ne[1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5082
5083
        case PROJECTOR_TYPE_COGVLM:
            return ctx->model.mm_4h_to_h_w->ne[1];
5084
5085
        default:
            GGML_ABORT("Unknown projector type");
5086
    }
5087
5088
5089
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
5090
5091
    if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
        return ctx->model.hparams.minicpmv_version;
5092
5093
5094
    }
    return 0;
}
5095

5096
bool clip_is_glm(const struct clip_ctx * ctx) {
5097
    return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
5098
}
5099

5100
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
5101
    return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5102
5103
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
5104
5105
}

5106
bool clip_is_llava(const struct clip_ctx * ctx) {
5107
    return ctx->model.hparams.has_llava_projector;
5108
5109
5110
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
    return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
}

bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_VISION;
}

bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_AUDIO;
}

bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
        || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
5126
5127
}

5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
5140
5141
5142
5143
5144
5145

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
    return ctx->proj_type();
}

void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
    clip_image_f32 * audio = new clip_image_f32;
    audio->nx = n_frames;
    audio->ny = n_mel;
    audio->buf.resize(n_frames * n_mel);
    std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));

    batch->entries.push_back(clip_image_f32_ptr(audio));
    batch->is_audio = true;
5158
}