model.go 4.89 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
package gemma3

import (
Michael Yang's avatar
Michael Yang committed
4
5
6
7
	"bytes"
	"encoding/binary"
	"hash/fnv"
	"image"
Michael Yang's avatar
Michael Yang committed
8
	"math"
Patrick Devine's avatar
Patrick Devine committed
9
10
11

	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
Michael Yang's avatar
Michael Yang committed
12
	"github.com/ollama/ollama/ml/nn"
Patrick Devine's avatar
Patrick Devine committed
13
14
15
16
17
18
19
20
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.SentencePieceModel

Michael Yang's avatar
Michael Yang committed
21
	*VisionModel `gguf:"v,vision"`
Patrick Devine's avatar
Patrick Devine committed
22
23
	*TextModel

Michael Yang's avatar
Michael Yang committed
24
	*MultiModalProjector `gguf:"mm"`
Patrick Devine's avatar
Patrick Devine committed
25
26
27
28

	ImageProcessor
}

Michael Yang's avatar
Michael Yang committed
29
30
31
32
33
var _ model.MultimodalProcessor = (*Model)(nil)

type MultiModalProjector struct {
	SoftEmbNorm     *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
	InputProjection *nn.Linear  `gguf:"mm_input_projection"`
Michael Yang's avatar
Michael Yang committed
34
35

	tokensPerImage int
Michael Yang's avatar
Michael Yang committed
36
37
}

Michael Yang's avatar
Michael Yang committed
38
39
40
41
42
43
44
45
46
47
48
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
	l := visionOutputs.Dim(0)

	visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
	patchesPerImage := imageSize / patchSize
	visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)

	kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
	visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
	visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
	visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
Michael Yang's avatar
Michael Yang committed
49
50
51
52
53
54
55
	visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)

	// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
	visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
	return visionOutputs
}

Patrick Devine's avatar
Patrick Devine committed
56
57
58
59
60
61
62
63
64
65
func New(c ml.Config) (model.Model, error) {
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
Michael Yang's avatar
Michael Yang committed
66
				EOS:    int32(1),
Patrick Devine's avatar
Patrick Devine committed
67
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
Michael Yang committed
68
69
				EOT:    int32(106),
				AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
Patrick Devine's avatar
Patrick Devine committed
70
71
72
			},
		),
		ImageProcessor: newImageProcessor(c),
Michael Yang's avatar
Michael Yang committed
73
74
		VisionModel:    newVisionModel(c),
		TextModel:      newTextModel(c),
Michael Yang's avatar
Michael Yang committed
75
76
77
		MultiModalProjector: &MultiModalProjector{
			tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
		},
Patrick Devine's avatar
Patrick Devine committed
78
79
	}

Michael Yang's avatar
Michael Yang committed
80
	slidingWindowLen := int32(c.Uint("attention.sliding_window"))
Patrick Devine's avatar
Patrick Devine committed
81
82
83
84
85
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))

	return &m, nil
}

Michael Yang's avatar
Michael Yang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
	image, _, err := image.Decode(bytes.NewReader(multimodalData))
	if err != nil {
		return nil, err
	}

	f32s, err := m.ImageProcessor.ProcessImage(image)
	if err != nil {
		return nil, err
	}

	pixelValues, err := ctx.Input().FromFloatSlice(f32s,
		m.ImageProcessor.imageSize,
		m.ImageProcessor.imageSize,
		m.ImageProcessor.numChannels,
	)
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
106
	visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
Michael Yang's avatar
Michael Yang committed
107
	visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
Michael Yang's avatar
Michael Yang committed
108
109
110
	return visionOutputs, nil
}

111
112
113
114
115
type imageToken struct {
	embedding ml.Tensor
	index     int
}

Michael Yang's avatar
Michael Yang committed
116
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
117
	var result []input.Input
Michael Yang's avatar
Michael Yang committed
118
119
	fnvHash := fnv.New64a()

120
121
122
	for _, inp := range inputs {
		if inp.Multimodal == nil {
			result = append(result, inp)
Michael Yang's avatar
Michael Yang committed
123
		} else {
Michael Yang's avatar
Michael Yang committed
124
			imageInputs := []input.Input{
125
126
				{Token: 108},    // "\n\n"
				{Token: 255999}, // "<start_of_image>""
Michael Yang's avatar
Michael Yang committed
127
			}
128
			result = append(result, imageInputs...)
Michael Yang's avatar
Michael Yang committed
129

130
131
132
133
134
135
136
			// add image embeddings
			inputMultimodal := inp.Multimodal.(ml.Tensor)

			for i := range inputMultimodal.Dim(1) {
				fnvHash.Reset()
				binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
				fnvHash.Write([]byte{byte(i)})
Michael Yang's avatar
Michael Yang committed
137

138
139
140
141
				imageToken := imageToken{embedding: inputMultimodal, index: i}
				result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
			}

142
143
144
145
			result = append(result,
				input.Input{Token: 256000}, // <end_of_image>
				input.Input{Token: 108},    // "\n\n"
			)
Michael Yang's avatar
Michael Yang committed
146
147
		}
	}
Michael Yang's avatar
Michael Yang committed
148

149
	return result, nil
Michael Yang's avatar
Michael Yang committed
150
151
}

Patrick Devine's avatar
Patrick Devine committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
	inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
	if err != nil {
		return nil, err
	}

	positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
	if err != nil {
		return nil, err
	}

	outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
	if err != nil {
		return nil, err
	}

168
	return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
Patrick Devine's avatar
Patrick Devine committed
169
170
171
172
173
}

func init() {
	model.Register("gemma3", New)
}