model.go 4.61 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
package gemma3

import (
Michael Yang's avatar
Michael Yang committed
4
5
6
7
8
	"bytes"
	"encoding/binary"
	"hash/fnv"
	"image"
	"slices"
Patrick Devine's avatar
Patrick Devine committed
9
10
11

	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
Michael Yang's avatar
Michael Yang committed
12
	"github.com/ollama/ollama/ml/nn"
Patrick Devine's avatar
Patrick Devine committed
13
14
15
16
17
18
19
20
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.SentencePieceModel

Michael Yang's avatar
Michael Yang committed
21
	*VisionModel `gguf:"v,vision"`
Patrick Devine's avatar
Patrick Devine committed
22
23
	*TextModel

Michael Yang's avatar
Michael Yang committed
24
	*MultiModalProjector `gguf:"mm"`
Patrick Devine's avatar
Patrick Devine committed
25
26
27
28

	ImageProcessor
}

Michael Yang's avatar
Michael Yang committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
var _ model.MultimodalProcessor = (*Model)(nil)

type MultiModalProjector struct {
	SoftEmbNorm     *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
	InputProjection *nn.Linear  `gguf:"mm_input_projection"`
}

func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
	visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)

	// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
	visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
	return visionOutputs
}

Patrick Devine's avatar
Patrick Devine committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
func New(c ml.Config) (model.Model, error) {
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
			},
		),
		ImageProcessor: newImageProcessor(c),
Michael Yang's avatar
Michael Yang committed
59
60
		VisionModel:    newVisionModel(c),
		TextModel:      newTextModel(c),
Patrick Devine's avatar
Patrick Devine committed
61
62
63
64
65
66
67
68
	}

	slidingWindowLen := int32(c.Uint("text.attention.sliding_window"))
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))

	return &m, nil
}

Michael Yang's avatar
Michael Yang committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
	image, _, err := image.Decode(bytes.NewReader(multimodalData))
	if err != nil {
		return nil, err
	}

	f32s, err := m.ImageProcessor.ProcessImage(image)
	if err != nil {
		return nil, err
	}

	pixelValues, err := ctx.Input().FromFloatSlice(f32s,
		m.ImageProcessor.imageSize,
		m.ImageProcessor.imageSize,
		m.ImageProcessor.numChannels,
	)
	if err != nil {
		return nil, err
	}

	positionIDs, err := ctx.FromIntSlice([]int32{0}, 1)
	if err != nil {
		return nil, err
	}

	visionOutputs := m.VisionModel.Forward(ctx, pixelValues, positionIDs)

	visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
	patchesPerImage := m.ImageProcessor.imageSize / m.ImageProcessor.patchSize
	kernelSize := patchesPerImage * patchesPerImage / 256
	visionOutputs = visionOutputs.AvgPool1D(ctx, kernelSize, kernelSize, 0)

	visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
	visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.VisionModel.eps)
	return visionOutputs, nil
}

func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
	var images []input.Input
	fnvHash := fnv.New64a()

	for i := range inputs {
		if inputs[i].Multimodal == nil {
			if len(images) > 0 {
				inputs[i].Multimodal = images[0].Multimodal
				inputs[i].MultimodalHash = images[0].MultimodalHash
				for j := 1; j < len(images); j++ {
					inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
					fnvHash.Reset()
					binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
					binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
					inputs[i].MultimodalHash = fnvHash.Sum64()
				}
				images = nil
			}
		} else {
			images = append(images, inputs[i])
			inputs[i].Token = -1
		}
	}

	inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })

	return inputs, nil
}

Patrick Devine's avatar
Patrick Devine committed
135
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
136
137
138
139
140
	var embeddings ml.Tensor
	if opts.Multimodal != nil {
		embeddings = opts.Multimodal[0].Multimodal.(ml.Tensor)
	}

Patrick Devine's avatar
Patrick Devine committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
	if err != nil {
		return nil, err
	}

	positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
	if err != nil {
		return nil, err
	}

	outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
156
	return m.TextModel.Forward(ctx, inputs, positions, embeddings, outputs, m.Cache), nil
Patrick Devine's avatar
Patrick Devine committed
157
158
159
160
161
}

func init() {
	model.Register("gemma3", New)
}