model.go 5.81 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
package llama

import (
4
	"cmp"
5
	"fmt"
Michael Yang's avatar
Michael Yang committed
6
7
	"math"

8
	"github.com/ollama/ollama/fs"
Jesse Gross's avatar
Jesse Gross committed
9
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
10
11
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
12
13
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
Michael Yang's avatar
Michael Yang committed
14
	"github.com/ollama/ollama/model"
15
	"github.com/ollama/ollama/model/input"
Michael Yang's avatar
Michael Yang committed
16
17
18
)

type Options struct {
19
20
21
	hiddenSize, numHeads, numKVHeads int
	headDim, ropeDim                 int
	eps, ropeBase, ropeScale         float32
Michael Yang's avatar
Michael Yang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

36
func New(c fs.Config) (model.Model, error) {
37
38
39
40
41
42
43
44
	// This model currently only supports the gpt2 tokenizer
	if c.String("tokenizer.ggml.model") == "llama" {
		return nil, fmt.Errorf("unsupported tokenizer: llama")
	}
	// Best effort detection of library/deepseek-coder model(s) which are incompatible
	if c.String("general.name") == "deepseek-ai" {
		return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
	}
Jesse Gross's avatar
Jesse Gross committed
45
	m := Model{
Michael Yang's avatar
Michael Yang committed
46
47
48
49
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
Michael Yang's avatar
Michael Yang committed
50
				Types:  c.Ints("tokenizer.ggml.token_type"),
Michael Yang's avatar
Michael Yang committed
51
				Merges: c.Strings("tokenizer.ggml.merges"),
52
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
53
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
54
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
55
56
57
58
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
Michael Yang's avatar
Michael Yang committed
59
60
61
62
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
63
64
65
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
66
			headDim:    int(c.Uint("attention.key_length")),
67
			ropeDim:    int(c.Uint("rope.dimension_count")),
Michael Yang's avatar
Michael Yang committed
68
69
70
71
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
		},
Jesse Gross's avatar
Jesse Gross committed
72
73
74
75
76
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)

	return &m, nil
Michael Yang's avatar
Michael Yang committed
77
78
79
}

type SelfAttention struct {
80
81
82
83
84
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_freqs.weight"`
Michael Yang's avatar
Michael Yang committed
85
86
}

Michael Yang's avatar
Michael Yang committed
87
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
88
	batchSize := hiddenState.Dim(1)
89
	headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
Michael Yang's avatar
Michael Yang committed
90
	ropeDim := cmp.Or(opts.ropeDim, headDim)
Michael Yang's avatar
Michael Yang committed
91

Michael Yang's avatar
Michael Yang committed
92
93
	query := sa.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
Michael Yang's avatar
Michael Yang committed
94

Michael Yang's avatar
Michael Yang committed
95
96
	key := sa.Key.Forward(ctx, hiddenState)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
Michael Yang's avatar
Michael Yang committed
97

Michael Yang's avatar
Michael Yang committed
98
99
	value := sa.Value.Forward(ctx, hiddenState)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
Michael Yang's avatar
Michael Yang committed
100

Michael Yang's avatar
Michael Yang committed
101
102
	query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
	key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
Michael Yang's avatar
Michael Yang committed
103

Michael Yang's avatar
Michael Yang committed
104
105
106
	attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
	attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
	return sa.Output.Forward(ctx, attention)
Michael Yang's avatar
Michael Yang committed
107
108
}

Jesse Gross's avatar
Jesse Gross committed
109
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
110
111
	ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
	return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
Jesse Gross's avatar
Jesse Gross committed
112
113
}

Michael Yang's avatar
Michael Yang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

Michael Yang's avatar
Michael Yang committed
132
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
133
134
135
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
Michael Yang's avatar
Michael Yang committed
136
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts)
137
138
139
140
141
142
143
144

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
145
146
147
148
149
150
151
152
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

Jesse Gross's avatar
Jesse Gross committed
153
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
154
	positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
Michael Yang's avatar
Michael Yang committed
155

156
	hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
Michael Yang's avatar
Michael Yang committed
157
158

	for i, layer := range m.Layers {
Jesse Gross's avatar
Jesse Gross committed
159
		m.Cache.SetLayer(i)
Michael Yang's avatar
Michael Yang committed
160

Michael Yang's avatar
Michael Yang committed
161
		var outputs ml.Tensor
162
		if i == len(m.Layers)-1 {
163
			outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
164
		}
Michael Yang's avatar
Michael Yang committed
165

Michael Yang's avatar
Michael Yang committed
166
		hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
Michael Yang's avatar
Michael Yang committed
167
168
	}

169
170
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState), nil
Michael Yang's avatar
Michael Yang committed
171
172
173
174
175
}

func init() {
	model.Register("llama", New)
}