".github/vscode:/vscode.git/clone" did not exist on "5925d3d7196cca3df8e39d1d13d54981619d4d7e"
model.go 5.37 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
package llama

import (
4
	"cmp"
Michael Yang's avatar
Michael Yang committed
5
6
	"math"

7
	"github.com/ollama/ollama/fs"
Jesse Gross's avatar
Jesse Gross committed
8
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
9
10
11
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
12
	"github.com/ollama/ollama/model/input"
Michael Yang's avatar
Michael Yang committed
13
14
15
)

type Options struct {
16
17
18
	hiddenSize, numHeads, numKVHeads, headDim int
	eps, ropeBase, ropeScale                  float32
	ropeDim                                   uint32
Michael Yang's avatar
Michael Yang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

33
func New(c fs.Config) (model.Model, error) {
Jesse Gross's avatar
Jesse Gross committed
34
	m := Model{
Michael Yang's avatar
Michael Yang committed
35
36
37
38
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
Michael Yang's avatar
Michael Yang committed
39
				Types:  c.Ints("tokenizer.ggml.token_type"),
Michael Yang's avatar
Michael Yang committed
40
				Merges: c.Strings("tokenizer.ggml.merges"),
41
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
42
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
43
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
44
45
46
47
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
Michael Yang's avatar
Michael Yang committed
48
49
50
51
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
52
53
54
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
55
			headDim:    int(c.Uint("attention.key_length")),
Michael Yang's avatar
Michael Yang committed
56
57
58
59
60
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
Jesse Gross's avatar
Jesse Gross committed
61
62
63
64
65
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)

	return &m, nil
Michael Yang's avatar
Michael Yang committed
66
67
68
}

type SelfAttention struct {
69
70
71
72
73
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_freqs.weight"`
Michael Yang's avatar
Michael Yang committed
74
75
}

Jesse Gross's avatar
Jesse Gross committed
76
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
77
	batchSize := hiddenState.Dim(1)
78
	headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
Patrick Devine's avatar
Patrick Devine committed
79
	ropeType := uint32(0)
Michael Yang's avatar
Michael Yang committed
80
81
82

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
Patrick Devine's avatar
Patrick Devine committed
83
	q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
84
85
86

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
Patrick Devine's avatar
Patrick Devine committed
87
	k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
88
89
90
91

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

92
	scaleFactor := 1.0 / math.Sqrt(float64(headDim))
93
	kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
94
	kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
Michael Yang's avatar
Michael Yang committed
95
96
97
98

	return sa.Output.Forward(ctx, kqv)
}

Jesse Gross's avatar
Jesse Gross committed
99
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
Patrick Devine's avatar
Patrick Devine committed
100
	return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
Jesse Gross's avatar
Jesse Gross committed
101
102
}

Michael Yang's avatar
Michael Yang committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

121
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
122
123
124
125
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
126
127
128
129
130
131
132
133

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
134
135
136
137
138
139
140
141
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

Jesse Gross's avatar
Jesse Gross committed
142
143
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
Michael Yang's avatar
Michael Yang committed
144
145
146
147
	if err != nil {
		return nil, err
	}

Jesse Gross's avatar
Jesse Gross committed
148
	outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
149
150
151
152
	if err != nil {
		return nil, err
	}

153
	hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
Michael Yang's avatar
Michael Yang committed
154
155

	for i, layer := range m.Layers {
Jesse Gross's avatar
Jesse Gross committed
156
		m.Cache.SetLayer(i)
Michael Yang's avatar
Michael Yang committed
157

158
159
160
161
		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}
Michael Yang's avatar
Michael Yang committed
162

163
		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Michael Yang's avatar
Michael Yang committed
164
165
	}

166
167
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState), nil
Michael Yang's avatar
Michael Yang committed
168
169
170
171
172
}

func init() {
	model.Register("llama", New)
}