memory.go 12.9 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
package llm

import (
4
	"fmt"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5
	"log/slog"
6
	"os"
7
8
	"strconv"
	"strings"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
9
10

	"github.com/ollama/ollama/api"
11
	"github.com/ollama/ollama/discover"
12
	"github.com/ollama/ollama/envconfig"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
13
	"github.com/ollama/ollama/format"
Michael Yang's avatar
Michael Yang committed
14
	"github.com/ollama/ollama/fs/ggml"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
15
16
17
)

// This algorithm looks for a complete fit to determine if we need to unload other models
18
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
19
	// Split up the GPUs by type and try them
20
	var estimatedVRAM uint64
Daniel Hiltgen's avatar
Daniel Hiltgen committed
21
22
	for _, gpus := range allGpus.ByLibrary() {
		var layerCount int
23
		estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
24
		layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
Daniel Hiltgen's avatar
Daniel Hiltgen committed
25
		if opts.NumGPU < 0 {
Michael Yang's avatar
Michael Yang committed
26
			if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
27
28
29
30
31
32
33
34
35
36
37
				return true, estimatedVRAM
			}
		} else {
			if layerCount > 0 && layerCount >= opts.NumGPU {
				return true, estimatedVRAM
			}
		}
	}
	return false, estimatedVRAM
}

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
type MemoryEstimate struct {
	// How many layers we predict we can load
	Layers int

	// The size of the graph which occupies the main GPU
	Graph uint64

	// How much VRAM will be allocated given the number of layers we predict
	VRAMSize uint64

	// The total size of the model if loaded into VRAM.  If all layers are loaded, VRAMSize == TotalSize
	TotalSize uint64

	// For multi-GPU scenarios, this provides the tensor split parameter
	TensorSplit string

	// For multi-GPU scenarios, this is the size in bytes per GPU
	GPUSizes []uint64
56
57
58
59
60
61
62
63
64
65
66
67

	// internal fields for logging purposes
	inferenceLibrary    string
	layersRequested     int
	layersModel         int
	availableList       []string
	kv                  uint64
	allocationsList     []string
	memoryWeights       uint64
	memoryLayerOutput   uint64
	graphFullOffload    uint64
	graphPartialOffload uint64
68
69

	projectorWeights, projectorGraph uint64
70
71
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
72
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
73
// The GPUs provided must all be the same Library
74
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
75
76
77
78
79
80
81
82
83
84
	// Graph size for a partial offload, applies to all GPUs
	var graphPartialOffload uint64

	// Graph size when all layers are offloaded, applies to all GPUs
	var graphFullOffload uint64

	// Final graph offload once we know full or partial
	var graphOffload uint64

	// Projectors loaded into GPU0 only
85
86
	var projectorWeights uint64
	var projectorGraph uint64
87
88
89
90

	// Conditional output size on GPU 0
	var memoryLayerOutput uint64

Daniel Hiltgen's avatar
Daniel Hiltgen committed
91
92
	// The sizes of a layer
	var layerSize uint64
Daniel Hiltgen's avatar
Daniel Hiltgen committed
93

94
95
96
97
98
99
100
101
102
	// The sum of all the layer sizes (just for logging)
	var memoryWeights uint64

	// True if all the layers are loaded
	var fullyLoaded bool

	// Overflow that didn't fit into the GPU
	var overflow uint64

103
	overhead := envconfig.GpuOverhead()
104
105
106
107
108
	availableList := make([]string, len(gpus))
	for i, gpu := range gpus {
		availableList[i] = format.HumanBytes2(gpu.FreeMemory)
	}
	slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
109
110

	for _, projector := range projectors {
111
112
113
		weight, graph := projectorMemoryRequirements(projector)
		projectorWeights += weight
		projectorGraph += graph
Daniel Hiltgen's avatar
Daniel Hiltgen committed
114
115
116
117

		// multimodal models require at least 2048 context
		opts.NumCtx = max(opts.NumCtx, 2048)
	}
118
119
120
	if projectorWeights == 0 && projectorGraph == 0 {
		projectorWeights, projectorGraph = f.VisionGraphSize()
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
121

Michael Yang's avatar
Michael Yang committed
122
	layers := f.Tensors().GroupLayers()
Michael Yang's avatar
typo  
Michael Yang committed
123
124
	// add one layer worth of memory as a buffer
	if blk0, ok := layers["blk.0"]; ok {
Michael Yang's avatar
Michael Yang committed
125
		layerSize = blk0.Size()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
126
127
	} else {
		slog.Warn("model missing blk.0 layer size")
Michael Yang's avatar
typo  
Michael Yang committed
128
	}
Michael Yang's avatar
Michael Yang committed
129

130
	var kvct string
Michael Yang's avatar
Michael Yang committed
131
132
133
	if envconfig.FlashAttention() &&
		discover.GetGPUInfo().FlashAttentionSupported() &&
		f.SupportsFlashAttention() {
134
		requested := strings.ToLower(envconfig.KvCacheType())
Michael Yang's avatar
Michael Yang committed
135
		if requested != "" && f.SupportsKVCacheType(requested) {
136
137
138
139
			kvct = requested
		}
	}

140
	kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
141

142
143
144
145
146
147
148
149
	if len(kv) > 0 {
		layerSize += kv[0]
	}

	var kvTotal uint64
	for _, kvLayer := range kv {
		kvTotal += kvLayer
	}
150

Daniel Hiltgen's avatar
Daniel Hiltgen committed
151
	if graphPartialOffload == 0 {
152
		graphPartialOffload = f.KV().GQA() * kvTotal / 6
Daniel Hiltgen's avatar
Daniel Hiltgen committed
153
154
155
156
157
	}
	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
	}

158
159
160
	// on metal there's no partial offload overhead
	if gpus[0].Library == "metal" {
		graphPartialOffload = graphFullOffload
Daniel Hiltgen's avatar
Daniel Hiltgen committed
161
162
163
	} else if len(gpus) > 1 {
		// multigpu should always use the partial graph size
		graphFullOffload = graphPartialOffload
164
165
	}

166
	if layer, ok := layers["output_norm"]; ok {
Michael Yang's avatar
Michael Yang committed
167
		memoryLayerOutput += layer.Size()
168
169
	}
	if layer, ok := layers["output"]; ok {
Michael Yang's avatar
Michael Yang committed
170
		memoryLayerOutput += layer.Size()
171
	} else if layer, ok := layers["token_embd"]; ok {
Michael Yang's avatar
Michael Yang committed
172
		memoryLayerOutput += layer.Size()
Michael Yang's avatar
Michael Yang committed
173
174
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
175
	// Output layer handled at the end if we have space
176
	gpuZeroOverhead := projectorWeights + projectorGraph
177
178

	// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
Michael Yang's avatar
Michael Yang committed
179
	var layerCount int
180
181
182
183
	layerCounts := make([]int, len(gpus))
	gpuAllocations := make([]uint64, len(gpus))
	type gs struct {
		i int
184
		g *discover.GpuInfo
185
186
187
188
189
190
191
192
	}
	gpusWithSpace := []gs{}
	for i := range gpus {
		var gzo uint64
		if len(gpusWithSpace) == 0 {
			gzo = gpuZeroOverhead
		}
		// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
193
		if gpus[i].FreeMemory < overhead+gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
			slog.Debug("gpu has too little memory to allocate any layers",
				"id", gpus[i].ID,
				"library", gpus[i].Library,
				"variant", gpus[i].Variant,
				"compute", gpus[i].Compute,
				"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
				"name", gpus[i].Name,
				"total", format.HumanBytes2(gpus[i].TotalMemory),
				"available", format.HumanBytes2(gpus[i].FreeMemory),
				"minimum_memory", gpus[i].MinimumMemory,
				"layer_size", format.HumanBytes2(layerSize),
				"gpu_zer_overhead", format.HumanBytes2(gzo),
				"partial_offload", format.HumanBytes2(graphPartialOffload),
				"full_offload", format.HumanBytes2(graphFullOffload),
			)
209
210
211
			continue
		}
		gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
Daniel Hiltgen's avatar
Daniel Hiltgen committed
212
		gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
213
214
215
216
217
218
219
220
	}

	var gpuZeroID int
	if len(gpusWithSpace) > 0 {
		gpuZeroID = gpusWithSpace[0].i
		gpuAllocations[gpuZeroID] += gpuZeroOverhead
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
221
	// For all the layers, find where they can fit on the GPU(s)
Michael Yang's avatar
Michael Yang committed
222
	for i := range int(f.KV().BlockCount()) {
223
224
		// Some models have inconsistent layer sizes
		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
Michael Yang's avatar
Michael Yang committed
225
			layerSize = blk.Size()
226
			layerSize += kv[i]
Michael Yang's avatar
Michael Yang committed
227
			memoryWeights += blk.Size()
228
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
229

230
231
232
233
234
235
236
237
238
		if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
			// Stop allocating on GPU(s) once we hit the users target NumGPU
			continue
		}

		// distribute the layers across the GPU(s) that have space
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[i%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
239
			if g.g.FreeMemory > overhead+used+layerSize {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
240
				gpuAllocations[g.i] += layerSize
241
				layerCounts[g.i]++
Michael Yang's avatar
typo  
Michael Yang committed
242
				layerCount++
243
244
245
				break
			} else {
				gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
Michael Yang's avatar
typo  
Michael Yang committed
246
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
247
		}
248
	}
Michael Yang's avatar
Michael Yang committed
249
	if layerCount >= int(f.KV().BlockCount()) {
250
251
		fullyLoaded = true
	} else {
Michael Yang's avatar
Michael Yang committed
252
		for i := layerCount; i < int(f.KV().BlockCount()); i++ {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
253
			overflow += layerSize
254
255
		}
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
256
257

	// Determine if we need to consider output then find where it fits
258
	if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
259
260
261
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[layerCount%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
262
			if g.g.FreeMemory > overhead+used+memoryLayerOutput {
263
264
265
266
267
268
				gpuAllocations[g.i] += memoryLayerOutput
				layerCounts[g.i]++
				layerCount++
				break
			}
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
269

Michael Yang's avatar
Michael Yang committed
270
		if layerCount < int(f.KV().BlockCount())+1 {
271
272
273
			fullyLoaded = false
			overflow += memoryLayerOutput
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
274
275
	}

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
	// Add the applicable (full or partial) graph allocations
	for i := range gpus {
		if layerCounts[i] <= 0 {
			continue
		}
		if fullyLoaded {
			gpuAllocations[i] += graphFullOffload
		} else {
			gpuAllocations[i] += graphPartialOffload
		}
	}
	if fullyLoaded {
		graphOffload = graphFullOffload
	} else {
		graphOffload = graphPartialOffload
Daniel Hiltgen's avatar
Daniel Hiltgen committed
291
292
	}

293
294
295
296
	// Summaries for the log
	var memoryRequiredPartial, memoryRequiredTotal uint64
	for i := range gpuAllocations {
		memoryRequiredPartial += gpuAllocations[i]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
297
	}
298
	memoryRequiredTotal = memoryRequiredPartial + overflow
Daniel Hiltgen's avatar
Daniel Hiltgen committed
299

300
301
302
303
304
305
306
307
308
309
310
311
	tensorSplit := ""
	if len(gpus) > 1 {
		splits := make([]string, len(gpus))
		for i, count := range layerCounts {
			splits[i] = strconv.Itoa(count)
		}
		tensorSplit = strings.Join(splits, ",")
	}
	allocationsList := []string{}
	for _, a := range gpuAllocations {
		allocationsList = append(allocationsList, format.HumanBytes2(a))
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
312

313
314
315
316
317
318
319
320
321
	estimate := MemoryEstimate{
		TotalSize: memoryRequiredTotal,
		Layers:    0,
		Graph:     0,
		VRAMSize:  0,
		GPUSizes:  []uint64{},

		inferenceLibrary:    gpus[0].Library,
		layersRequested:     opts.NumGPU,
Michael Yang's avatar
Michael Yang committed
322
		layersModel:         int(f.KV().BlockCount()) + 1,
323
		availableList:       availableList,
324
		kv:                  kvTotal,
325
326
327
328
329
		allocationsList:     allocationsList,
		memoryWeights:       memoryWeights,
		memoryLayerOutput:   memoryLayerOutput,
		graphFullOffload:    graphFullOffload,
		graphPartialOffload: graphPartialOffload,
330
331
		projectorWeights:    projectorWeights,
		projectorGraph:      projectorGraph,
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
	}

	if gpus[0].Library == "cpu" {
		return estimate
	}
	if layerCount == 0 {
		slog.Debug("insufficient VRAM to load any model layers")
		return estimate
	}
	estimate.Layers = layerCount
	estimate.Graph = graphOffload
	estimate.VRAMSize = memoryRequiredPartial
	estimate.TotalSize = memoryRequiredTotal
	estimate.TensorSplit = tensorSplit
	estimate.GPUSizes = gpuAllocations
	return estimate
}

Michael Yang's avatar
Michael Yang committed
350
351
352
func (m MemoryEstimate) LogValue() slog.Value {
	attrs := []slog.Attr{
		slog.String("library", m.inferenceLibrary),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
353
354
		slog.Group(
			"layers",
Michael Yang's avatar
Michael Yang committed
355
			// requested number of layers to offload
356
			"requested", m.layersRequested,
357
			// The number of layers the model has (including output)
358
			"model", m.layersModel,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
359
			// estimated number of layers that can be offloaded
360
361
362
			"offload", m.Layers,
			// multi-gpu split for tensors
			"split", m.TensorSplit,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
363
364
365
		),
		slog.Group(
			"memory",
366
			// memory available by GPU for offloading
367
			"available", m.availableList,
Michael Yang's avatar
Michael Yang committed
368
			"gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
369
370
371
			slog.Group(
				"required",
				// memory required for full offloading
372
				"full", format.HumanBytes2(m.TotalSize),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
373
				// memory required to offload layers.estimate layers
374
				"partial", format.HumanBytes2(m.VRAMSize),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
375
				// memory of KV cache
376
				"kv", format.HumanBytes2(m.kv),
377
				// Allocations across the GPUs
378
				"allocations", m.allocationsList,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
379
380
381
382
			),
			slog.Group(
				"weights",
				// memory of the weights
383
				"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
384
				// memory of repeating layers
Michael Yang's avatar
Michael Yang committed
385
				"repeating", format.HumanBytes2(m.memoryWeights),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
386
				// memory of non-repeating layers
387
				"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
388
389
390
391
			),
			slog.Group(
				"graph",
				// memory of graph when fully offloaded
392
				"full", format.HumanBytes2(m.graphFullOffload),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
393
				// memory of graph when not fully offloaded
394
				"partial", format.HumanBytes2(m.graphPartialOffload),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
395
396
			),
		),
Michael Yang's avatar
Michael Yang committed
397
398
399
400
401
402
403
404
405
406
407
	}

	if m.projectorWeights > 0 {
		attrs = append(attrs, slog.Group(
			"projector",
			"weights", format.HumanBytes2(m.projectorWeights),
			"graph", format.HumanBytes2(m.projectorGraph),
		))
	}

	return slog.GroupValue(attrs...)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
408
}
409
410
411
412
413
414
415
416

func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
	file, err := os.Open(filename)
	if err != nil {
		return 0, 0
	}
	defer file.Close()

417
	ggml, _, err := ggml.Decode(file, 1024)
418
419
420
421
	if err != nil {
		return 0, 0
	}

Michael Yang's avatar
Michael Yang committed
422
423
	for _, layer := range ggml.Tensors().GroupLayers() {
		weights += layer.Size()
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
	}

	switch arch := ggml.KV().Architecture(); arch {
	case "mllama":
		kv := func(n string) uint64 {
			if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
				return uint64(v)
			}

			return 0
		}

		imageSize := kv("image_size")

		maxNumTiles := kv("max_num_tiles")
		embeddingLength := kv("embedding_length")
		headCount := kv("attention.head_count")

		numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
Michael Yang's avatar
Michael Yang committed
443
		if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
444
445
446
447
448
449
450
451
452
453
454
455
456
457
			numPatches++
		}

		numPaddedPatches := numPatches + 8 - (numPatches%8)%8

		graphSize = 4 * (8 +
			imageSize*imageSize*kv("num_channels")*maxNumTiles +
			embeddingLength*numPatches*maxNumTiles +
			9*embeddingLength*numPaddedPatches*maxNumTiles +
			numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
	}

	return weights, graphSize
}