llama-model.cpp 446 KB
Newer Older
1
2
3
#include "llama-model.h"

#include "llama-impl.h"
4
#include "llama-mmap.h"
5
#include "llama-cparams.h"
6
#include "llama-model-loader.h"
7

Daniel Hiltgen's avatar
Daniel Hiltgen committed
8
9
#include "llama-kv-cache.h"
#include "llama-kv-cache-iswa.h"
10
11
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
12

13
#include "ggml-cpp.h"
14

Daniel Hiltgen's avatar
Daniel Hiltgen committed
15
16
#include "models/models.h"

17
18
#include <algorithm>
#include <cassert>
19
#include <cfloat>
20
#include <cstring>
21
#include <cmath>
22
#include <functional>
23
#include <map>
24
#include <regex>
25
26
27
28
29
#include <sstream>
#include <stdexcept>

const char * llm_type_name(llm_type type) {
    switch (type) {
30
31
32
33
34
35
36
37
38
        case LLM_TYPE_14M:           return "14M";
        case LLM_TYPE_17M:           return "17M";
        case LLM_TYPE_22M:           return "22M";
        case LLM_TYPE_33M:           return "33M";
        case LLM_TYPE_60M:           return "60M";
        case LLM_TYPE_70M:           return "70M";
        case LLM_TYPE_80M:           return "80M";
        case LLM_TYPE_109M:          return "109M";
        case LLM_TYPE_137M:          return "137M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
39
        case LLM_TYPE_140M:          return "140M";
40
        case LLM_TYPE_160M:          return "160M";
41
        case LLM_TYPE_190M:          return "190M";
42
43
        case LLM_TYPE_220M:          return "220M";
        case LLM_TYPE_250M:          return "250M";
44
        case LLM_TYPE_256M:          return "256M";
45
46
        case LLM_TYPE_270M:          return "270M";
        case LLM_TYPE_335M:          return "335M";
47
        case LLM_TYPE_350M:          return "350M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
48
        case LLM_TYPE_360M:          return "360M";
49
50
        case LLM_TYPE_410M:          return "410M";
        case LLM_TYPE_450M:          return "450M";
51
        case LLM_TYPE_475M:          return "475M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
52
        case LLM_TYPE_558M:          return "558M";
53
        case LLM_TYPE_700M:          return "700M";
54
55
        case LLM_TYPE_770M:          return "770M";
        case LLM_TYPE_780M:          return "780M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
56
        case LLM_TYPE_950M:          return "950M";
57
        case LLM_TYPE_0_3B:          return "0.3B";
58
        case LLM_TYPE_0_5B:          return "0.5B";
59
        case LLM_TYPE_0_6B:          return "0.6B";
60
        case LLM_TYPE_1B:            return "1B";
61
        case LLM_TYPE_1_2B:          return "1.2B";
62
63
64
65
        case LLM_TYPE_1_3B:          return "1.3B";
        case LLM_TYPE_1_4B:          return "1.4B";
        case LLM_TYPE_1_5B:          return "1.5B";
        case LLM_TYPE_1_6B:          return "1.6B";
66
        case LLM_TYPE_1_7B:          return "1.7B";
67
        case LLM_TYPE_1_8B:          return "1.8B";
68
        case LLM_TYPE_2B:            return "2B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
69
        case LLM_TYPE_2_6B:          return "2.6B";
70
        case LLM_TYPE_2_8B:          return "2.8B";
71
        case LLM_TYPE_2_9B:          return "2.9B";
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        case LLM_TYPE_3B:            return "3B";
        case LLM_TYPE_4B:            return "4B";
        case LLM_TYPE_6B:            return "6B";
        case LLM_TYPE_6_9B:          return "6.9B";
        case LLM_TYPE_7B:            return "7B";
        case LLM_TYPE_8B:            return "8B";
        case LLM_TYPE_9B:            return "9B";
        case LLM_TYPE_11B:           return "11B";
        case LLM_TYPE_12B:           return "12B";
        case LLM_TYPE_13B:           return "13B";
        case LLM_TYPE_14B:           return "14B";
        case LLM_TYPE_15B:           return "15B";
        case LLM_TYPE_16B:           return "16B";
        case LLM_TYPE_20B:           return "20B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
86
        case LLM_TYPE_26B:           return "26B";
87
        case LLM_TYPE_27B:           return "27B";
88
89
90
91
        case LLM_TYPE_30B:           return "30B";
        case LLM_TYPE_32B:           return "32B";
        case LLM_TYPE_34B:           return "34B";
        case LLM_TYPE_35B:           return "35B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
92
        case LLM_TYPE_36B:           return "36B";
93
94
95
        case LLM_TYPE_40B:           return "40B";
        case LLM_TYPE_65B:           return "65B";
        case LLM_TYPE_70B:           return "70B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
96
        case LLM_TYPE_120B:          return "120B";
97
        case LLM_TYPE_142B:          return "142B";
98
        case LLM_TYPE_236B:          return "236B";
99
        case LLM_TYPE_290B:          return "290B";
100
        case LLM_TYPE_314B:          return "314B";
101
        case LLM_TYPE_405B:          return "405B";
102
103
104
105
106
107
108
109
110
111
112
113
114
        case LLM_TYPE_671B:          return "671B";
        case LLM_TYPE_SMALL:         return "0.1B";
        case LLM_TYPE_MEDIUM:        return "0.4B";
        case LLM_TYPE_LARGE:         return "0.8B";
        case LLM_TYPE_XL:            return "1.5B";
        case LLM_TYPE_A1_7B:         return "A1.7B";
        case LLM_TYPE_A2_7B:         return "A2.7B";
        case LLM_TYPE_8x7B:          return "8x7B";
        case LLM_TYPE_8x22B:         return "8x22B";
        case LLM_TYPE_16x12B:        return "16x12B";
        case LLM_TYPE_16x3_8B:       return "16x3.8B";
        case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
        case LLM_TYPE_57B_A14B:      return "57B.A14B";
115
116
        case LLM_TYPE_17B_16E:       return "17Bx16E (Scout)";
        case LLM_TYPE_17B_128E:      return "17Bx128E (Maverick)";
117
        case LLM_TYPE_A13B:          return "A13B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
118
        case LLM_TYPE_7B_A1B:        return "7B.A1B";
119
        case LLM_TYPE_8B_A1B:        return "8B.A1B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
120
        case LLM_TYPE_16B_A1B:       return "16B.A1B";
121
        case LLM_TYPE_21B_A3B:       return "21B.A3B";
122
        case LLM_TYPE_30B_A3B:       return "30B.A3B";
123
124
        case LLM_TYPE_31B_A3_5B:     return "31B.A3.5B";
        case LLM_TYPE_80B_A3B:       return "80B.A3B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
125
        case LLM_TYPE_100B_A6B:      return "100B.A6B";
126
        case LLM_TYPE_106B_A12B:     return "106B.A12B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
127
        case LLM_TYPE_230B_A10B:     return "230B.A10B";
128
        case LLM_TYPE_235B_A22B:     return "235B.A22B";
129
130
131
132
        case LLM_TYPE_300B_A47B:     return "300B.A47B";
        case LLM_TYPE_355B_A32B:     return "355B.A32B";
        case LLM_TYPE_E2B:           return "E2B";
        case LLM_TYPE_E4B:           return "E4B";
133
        default:                     return "?B";
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    }
}

static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
    switch (type) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
        default:                                    return "unknown";
    }
}

static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
    { LLAMA_ROPE_SCALING_TYPE_NONE,       "none"       },
    { LLAMA_ROPE_SCALING_TYPE_LINEAR,     "linear"     },
    { LLAMA_ROPE_SCALING_TYPE_YARN,       "yarn"       },
    { LLAMA_ROPE_SCALING_TYPE_LONGROPE,   "longrope"   },
};

152
153
154
155
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
    return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
}

156
157
158
159
160
161
162
163
164
165
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
    for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
        if (kv.second == name) {
            return (llama_rope_scaling_type) kv.first;
        }
    }

    return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
}

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// checks if the weight tensor can be used with the specified buffer type and device
static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
    GGML_ASSERT(w != nullptr);

    if (op == GGML_OP_NONE) {
        return true;
    }

    ggml_init_params params = {
        /*.mem_size   =*/ ggml_tensor_overhead()*8,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ true,
    };
    ggml_context_ptr ctx_ptr { ggml_init(params) };
    if (!ctx_ptr) {
        throw std::runtime_error(format("failed to create ggml context"));
    }
    ggml_context * ctx = ctx_ptr.get();

    ggml_tensor * op_tensor = nullptr;

    switch (op) {
        case GGML_OP_GET_ROWS:
            {
                ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
                op_tensor = ggml_get_rows(ctx, w, b);
            } break;
        case GGML_OP_MUL_MAT:
            {
                ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
                op_tensor = ggml_mul_mat(ctx, w, b);
            } break;
        case GGML_OP_MUL_MAT_ID:
            {
                int n_expert_used = hparams.n_expert_used;
                ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
                ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
                op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
            } break;
        case GGML_OP_ADD:
            {
                ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
                op_tensor = ggml_add(ctx, a, w);
            } break;
210
211
212
213
214
215
216
        case GGML_OP_ADD_ID:
            {
                int n_expert_used = hparams.n_expert_used;
                ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
                ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
                op_tensor = ggml_add_id(ctx, a, w, c);
            } break;
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        case GGML_OP_MUL:
            {
                ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
                op_tensor = ggml_mul(ctx, a, w);
            } break;
        case GGML_OP_DIV:
            {
                ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
                op_tensor = ggml_div(ctx, a, w);
            } break;
        case GGML_OP_ROPE:
            {
                int n_embd_head = hparams.n_embd_head_v;
                int n_head = hparams.n_head();
                ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
                ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
                op_tensor = ggml_rope_ext(
                    ctx, a, b, w,
                    0, 0, 0, 0, 0,
                    0, 0, 0, 0
                );

            } break;
        case GGML_OP_SSM_CONV:
            {
242
243
244
                const int64_t n_seq_tokens = 512;
                const int64_t n_seqs       = 3;
                ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
245
246
247
248
                op_tensor = ggml_ssm_conv(ctx, conv_x, w);
            } break;
        case GGML_OP_SSM_SCAN:
            {
249
250
251
252
253
                // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
                const int64_t d_state      = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
                const int64_t n_head       = w->ne[1];
                const int64_t head_dim     = hparams.ssm_d_inner / n_head;
                const int64_t n_group      = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
254
                const int64_t n_seq_tokens = 512;
255
256
257
258
259
260
261
262
                const int64_t n_seqs       = 3;
                ggml_tensor * s   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
                ggml_tensor * x   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
                ggml_tensor * dt  = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
                ggml_tensor * B   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
                ggml_tensor * C   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
                ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
                op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            } break;
        case GGML_OP_RWKV_WKV6:
            {
                // FIXME
                const int64_t S = 123;
                const int64_t H = 123;
                const int64_t n_tokens = 123;
                const int64_t n_seqs = 123;
                ggml_tensor  * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * tf = w;
                ggml_tensor  * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
                op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
            } break;
        case GGML_OP_IM2COL:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
281
282
                const int n_embd_inp = hparams.n_embd_inp();
                ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1);
283
284
                op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
            } break;
285
286
287
288
        case GGML_OP_SCALE:
            {
                op_tensor = ggml_scale(ctx, w, 1.0f);
            } break;
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        default:
            GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
    }

    // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
    GGML_ASSERT(w->buffer == nullptr);
    w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
    bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
    ggml_backend_buffer_free(w->buffer);
    w->buffer = nullptr;

    return op_supported;
}

// lists of buffer types used for each layer
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;

// find the first buffer type in the list that can use the tensor
static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
    GGML_ASSERT(!buft_list.empty());
    for (const auto & cur : buft_list) {
        ggml_backend_dev_t cur_dev = cur.first;
        ggml_backend_buffer_type_t cur_buft = cur.second;
        if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
            return cur_buft;
        }
    }
316

317
318
319
    return nullptr;
}

320
// CPU: ACCEL -> GPU host -> CPU extra -> CPU
321
static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts, bool no_host) {
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    buft_list_t buft_list;

    // add ACCEL buffer types
    for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
        ggml_backend_dev_t dev = ggml_backend_dev_get(i);
        if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
            auto * buft = ggml_backend_dev_buffer_type(dev);
            // skip
            if (buft != ggml_backend_cpu_buffer_type()) {
                buft_list.emplace_back(dev, buft);
            }
        }
    }

    // add a host buffer type
    // storing the tensors in a host buffer is useful when the processing of large batches
    // is offloaded to a GPU device, since it reduces the time spent on data transfers
    // generally, this will be done using the first device in the list
    // a better approach would be to handle this on a weight-by-weight basis using the offload_op
    // function of the device to determine if it would benefit from being stored in a host buffer
342
343
344
345
346
347
348
    if (!no_host) {
        for (auto * dev : devices) {
            ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
            if (buft) {
                buft_list.emplace_back(dev, buft);
                break;
            }
349
350
351
        }
    }

352
353
354
355
356
357
    // add extra buffer types
    if (use_extra_bufts) {
        auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
        if (cpu_dev == nullptr) {
            throw std::runtime_error(format("%s: no CPU backend found", __func__));
        }
358

359
360
361
362
363
364
365
366
367
        auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
        auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
            ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
        if (ggml_backend_dev_get_extra_bufts_fn) {
            ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
            while (extra_bufts && *extra_bufts) {
                buft_list.emplace_back(cpu_dev, *extra_bufts);
                ++extra_bufts;
            }
368
369
370
        }
    }

371
372
373
374
375
376
    // add the CPU buffer type
    for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
        ggml_backend_dev_t dev = ggml_backend_dev_get(i);
        if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
            buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
        }
377
    }
378
379
380
381
382

    return buft_list;
}

// GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
383
static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    buft_list_t buft_list;

    // add the device split buffer type if requested and available
    if (split_mode == LLAMA_SPLIT_MODE_ROW) {
        ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
        auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
            ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
        if (ggml_backend_split_buffer_type_fn) {
            size_t dev_index = [&]() {
                auto * reg = ggml_backend_dev_backend_reg(dev);
                for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
                    if (ggml_backend_reg_dev_get(reg, i) == dev) {
                        return i;
                    }
                }
                throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
            }();
            auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
            if (buft != nullptr) {
                buft_list.emplace_back(dev, buft);
            }
        }
406
407
    }

408
409
410
    // add the device default buffer type
    buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));

Daniel Hiltgen's avatar
Daniel Hiltgen committed
411
412
413
414
415
416
417
418
419
420
421
422
423
    // add the device extra buffer type (if any)
    ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
    auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
        ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");

    if (ggml_backend_dev_get_extra_bufts_fn) {
        ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
        while (extra_bufts && *extra_bufts) {
            buft_list.emplace_back(dev, *extra_bufts);
            ++extra_bufts;
        }
    }

424
425
426
427
    return buft_list;
}

struct llama_model::impl {
428
429
    impl() = default;
    ~impl() = default;
430
431
432
433
434
435
436
437
438
439
440
441
442
443

    uint64_t n_elements = 0;

    size_t n_bytes = 0;

    std::string desc_str;

    // model memory mapped files
    llama_mmaps mappings;

    // objects representing data potentially being locked in memory
    llama_mlocks mlock_bufs;
    llama_mlocks mlock_mmaps;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
444
    // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
445
    std::vector<std::pair<ggml_context_ptr, std::vector<ggml_backend_buffer_ptr>>> ctxs_bufs;
446
447
448
449
450
451
452
453
454
455
456
457

    buft_list_t cpu_buft_list;
    std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;

    struct layer_dev {
        ggml_backend_dev_t dev;
        buft_list_t * buft_list;
    };

    layer_dev dev_input = {};
    layer_dev dev_output = {};
    std::vector<layer_dev> dev_layer;
458
459

    bool has_tensor_overrides;
460
461
};

462
463
llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
    pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
464
465
}

466
llama_model::~llama_model() = default;
467
468
469
470

void llama_model::load_stats(llama_model_loader & ml) {
    pimpl->n_elements = ml.n_elements;
    pimpl->n_bytes = ml.n_bytes;
471
472
}

473
474
475
void llama_model::load_arch(llama_model_loader & ml) {
    arch = ml.get_arch();
    if (arch == LLM_ARCH_UNKNOWN) {
476
477
478
479
        throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
    }
}

480
void llama_model::load_hparams(llama_model_loader & ml) {
481
482
483
484
    const gguf_context * ctx = ml.meta.get();

    // get metadata as string
    for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
485
        gguf_type type = gguf_get_kv_type(ctx, i);
486
487
488
489
490
        if (type == GGUF_TYPE_ARRAY) {
            continue;
        }
        const char * name = gguf_get_key(ctx, i);
        const std::string value = gguf_kv_to_str(ctx, i);
491
        gguf_kv.emplace(name, value);
492
493
494
    }

    // get general kv
495
    ml.get_key(LLM_KV_GENERAL_NAME, name, false);
496
497

    // everything past this point is not vocab-related
Daniel Hiltgen's avatar
Daniel Hiltgen committed
498
499
    // for CLIP models, we only need to load tensors, no hparams
    if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
500
501
502
        return;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
503
504
505
506
507
508
509
    ml.get_key(LLM_KV_CONTEXT_LENGTH,          hparams.n_ctx_train);
    ml.get_key(LLM_KV_EMBEDDING_LENGTH,        hparams.n_embd);
    ml.get_key(LLM_KV_BLOCK_COUNT,             hparams.n_layer);
    ml.get_key(LLM_KV_EXPERT_COUNT,            hparams.n_expert,        false);
    ml.get_key(LLM_KV_EXPERT_USED_COUNT,       hparams.n_expert_used,   false);
    ml.get_key(LLM_KV_EXPERT_GROUP_COUNT,      hparams.n_expert_groups, false);
    ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used,    false);
510

511
    if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
512
513
514
515
516
517
518
519
520
521
522
523
524
        ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);

        ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
        ml.get_key(LLM_KV_POSNET_BLOCK_COUNT,      hparams.posnet.n_layer);

        ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
        ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT,      hparams.convnext.n_layer);
    }

    GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
    GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
    if (hparams.n_expert > 0) {
        GGML_ASSERT(hparams.n_expert_used > 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
525
526
527
528
529
530
        GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
        if (hparams.n_expert_groups > 1) {
            GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
            GGML_ASSERT(hparams.n_group_used > 0);
            GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
        }
531
532
    } else {
        GGML_ASSERT(hparams.n_expert_used == 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
533
        GGML_ASSERT(hparams.n_expert_groups == 0);
534
535
536
537
538
    }

    std::fill(hparams.n_head_arr.begin(),    hparams.n_head_arr.end(),    0);
    std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
    std::fill(hparams.n_ff_arr.begin(),      hparams.n_ff_arr.end(),      0);
539
540
541
542
543
544
545
    std::fill(
        hparams.recurrent_layer_arr.begin(),
        hparams.recurrent_layer_arr.end(),
        llm_arch_is_recurrent(ml.get_arch()));

    std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
    std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
546

547
548
549
550
551
    std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f);
    std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
    std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
    std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);

552
553
    ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH,  hparams.n_ff_arr,   hparams.n_layer, false);
    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

    // n_head_kv is optional, default to n_head
    hparams.n_head_kv_arr = hparams.n_head_arr;

    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);

    bool rope_finetuned = false;
    ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
    hparams.rope_finetuned = rope_finetuned;

    hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
    ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);

    // rope_freq_base (optional)
    hparams.rope_freq_base_train = 10000.0f;
    ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);

    std::string rope_scaling("linear");
    ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
    hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
    GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);

    // rope_freq_scale (inverse of the kv) is optional
    float ropescale = 0.0f;
    if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
        // try the old key name
        ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
    }
    hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;

584
585
586
587
    // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
    hparams.rope_freq_base_train_swa  = hparams.rope_freq_base_train;
    hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);

    // non-transformer models do not have attention heads
    if (hparams.n_head() > 0) {
        // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
        // gpt-j n_rot = rotary_dim

        hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
        ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);

        hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
        ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);

        // sanity check for n_rot (optional)
        hparams.n_rot = hparams.n_embd_head_k;

        ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);

606
        if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
607
608
609
610
611
612
613
614
615
616
            if (hparams.n_rot != hparams.n_embd_head_k) {
                throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
            }
        }
    } else {
        hparams.n_rot = 0;
        hparams.n_embd_head_k = 0;
        hparams.n_embd_head_v = 0;
    }

617
618
619
    // for differentiating model types
    uint32_t n_vocab = 0;
    ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
620

621
622
623
624
625
626
    // for classifier models
    ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
    if (!classifier_labels.empty()) {
        hparams.n_cls_out = classifier_labels.size();
    }

627
    // arch-specific KVs
628
    switch (arch) {
629
630
631
632
633
634
        case LLM_ARCH_LLAMA:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                if (hparams.n_expert == 8) {
                    switch (hparams.n_layer) {
635
636
637
                        case 32: type = LLM_TYPE_8x7B; break;
                        case 56: type = LLM_TYPE_8x22B; break;
                        default: type = LLM_TYPE_UNKNOWN;
638
639
640
                    }
                } else {
                    switch (hparams.n_layer) {
641
642
643
644
                        case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
                        case 22: type = LLM_TYPE_1B; break;
                        case 26: type = LLM_TYPE_3B; break;
                        case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
645
                        case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
646
                        // granite uses a vocab with len 49152
647
648
649
650
651
652
653
                        case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
                        case 36: type = LLM_TYPE_8B; break; // granite
                        case 40: type = LLM_TYPE_13B; break;
                        case 48: type = LLM_TYPE_34B; break;
                        case 60: type = LLM_TYPE_30B; break;
                        case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
                        default: type = LLM_TYPE_UNKNOWN;
654
655
656
                    }
                }
            } break;
657
658
659
660
661
        case LLM_ARCH_LLAMA4:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP,   hparams.n_moe_layer_step);
662

Daniel Hiltgen's avatar
Daniel Hiltgen committed
663
664
665
666
667
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
                if (found_swa && hparams.n_swa == 0) {
                    hparams.swa_type             = LLAMA_SWA_TYPE_NONE;
                    hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
                } else {
668
669
670
671
                    hparams.swa_type                = LLAMA_SWA_TYPE_CHUNKED;
                    hparams.n_swa                   = 8192;
                    hparams.n_attn_temp_floor_scale = 8192;
                    hparams.f_attn_temp_scale       = 0.1f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
672
673
                    hparams.set_swa_pattern(4);   // pattern: 3 chunked - 1 full
                }
674
675

                switch (hparams.n_expert) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
676
677
678
679
680
681
682
683
684
                    case 0: {
                        // MobileLLM (no MoE)
                        switch (hparams.n_embd) {
                            case 2048: type = LLM_TYPE_140M; break;
                            case 4096: type = LLM_TYPE_360M; break;
                            case 6144: type = LLM_TYPE_950M; break;
                            default:   type = LLM_TYPE_UNKNOWN;
                        }
                    } break;
685
686
687
688
689
                    case 16:  type = LLM_TYPE_17B_16E; break;
                    case 128: type = LLM_TYPE_17B_128E; break;
                    default:  type = LLM_TYPE_UNKNOWN;
                }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
690
                hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
691
            } break;
692
693
694
695
696
697
698
699
700
701
        case LLM_ARCH_ARCEE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                // Arcee uses the same structure as Llama
                switch (hparams.n_layer) {
                    case 36: type = LLM_TYPE_4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
        case LLM_ARCH_AFMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);

                // Set up interleaved sliding window attention (ISWA)
                // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
                if (hparams.n_swa > 0) {
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.set_swa_pattern(4);
                } else {
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
                }

                // Default to sigmoid if not set
                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
                    hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
                }

                switch (hparams.n_layer) {
                    case 56: type = LLM_TYPE_6B; break;
                    case 32: type = LLM_TYPE_26B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
733
734
735
736
        case LLM_ARCH_DECI:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
737
738
                    case 32: type = LLM_TYPE_7B; break;
                    case 80: type = LLM_TYPE_70B; break;
739
                    case 162: type = LLM_TYPE_405B; break;
740
                    default: type = LLM_TYPE_UNKNOWN;
741
742
743
744
                }
            } break;
        case LLM_ARCH_MINICPM:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
745
746
747
748
749
                // Backward-compatible defaults for older MiniCPM GGUFs
                hparams.f_embedding_scale = 12.0f;
                hparams.f_residual_scale  = 1.4f / sqrtf(float(hparams.n_layer));
                hparams.f_logit_scale     = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f;

750
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
751
752
753
754
755

                // Optional KV reads, override defaults if present in newer GGUF exports
                ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false);
                ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false);
                ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false);
756

757
758
759
                // MiniCPM uses rope by default, unlike Granite which uses it as a switch
                hparams.rope_finetuned = true;

760
                switch (hparams.n_layer) {
761
762
763
                    case 52: type = LLM_TYPE_1B; break;
                    case 40: type = LLM_TYPE_2B; break;
                    default: type = LLM_TYPE_UNKNOWN;
764
765
766
767
768
                }
            } break;
        case LLM_ARCH_MINICPM3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
769
770
                ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK,       hparams.n_lora_q);
                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK,      hparams.n_lora_kv);
771
772

                switch (hparams.n_layer) {
773
774
                    case 62: type = LLM_TYPE_4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
775
776
777
778
                }
            } break;
        case LLM_ARCH_GROK:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
                // defaults for old GGUFs
                hparams.yarn_beta_fast = 8.0f;
                hparams.f_logit_scale = 0.5773502691896257f;
                hparams.f_embedding_scale = 78.38367176906169f;
                hparams.f_attn_out_scale = 0.08838834764831845f;
                hparams.f_attn_logit_softcapping = 30.0f;
                hparams.f_router_logit_softcapping = 30.0f;
                // no final_logit_softcapping in grok-1
                hparams.f_final_logit_softcapping = 0.0f;

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,  hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,   hparams.n_ff_exp, false);
                ml.get_key(LLM_KV_LOGIT_SCALE,                  hparams.f_logit_scale, false);
                ml.get_key(LLM_KV_EMBEDDING_SCALE,              hparams.f_embedding_scale, false);
                ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE,       hparams.f_attn_out_scale, false);
                ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING,       hparams.f_attn_logit_softcapping, false);
                ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING,     hparams.f_router_logit_softcapping, false);
                ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING,      hparams.f_final_logit_softcapping, false);

                ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH,  hparams.attn_temp_length, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR,  hparams.yarn_ext_factor, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST,   hparams.yarn_beta_fast, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW,   hparams.yarn_beta_slow, false);
803
804

                switch (hparams.n_layer) {
805
806
                    case 64: type = LLM_TYPE_314B; break;
                    default: type = LLM_TYPE_UNKNOWN;
807
808
809
810
811
812
813
                }
            } break;
        case LLM_ARCH_FALCON:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
814
815
816
                    case 32: type = LLM_TYPE_7B; break;
                    case 60: type = LLM_TYPE_40B; break;
                    default: type = LLM_TYPE_UNKNOWN;
817
818
819
820
821
822
                }
            } break;
        case LLM_ARCH_BAICHUAN:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
823
824
825
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
826
827
                }

828
                if (type == LLM_TYPE_13B) {
829
830
831
832
833
834
835
836
                    // TODO: become GGUF KV parameter
                    hparams.f_max_alibi_bias = 8.0f;
                }
            } break;
        case LLM_ARCH_STARCODER:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
837
838
839
840
841
                    case 24: type = LLM_TYPE_1B; break;
                    case 36: type = LLM_TYPE_3B; break;
                    case 42: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_15B; break;
                    default: type = LLM_TYPE_UNKNOWN;
842
843
844
845
846
847
                }
            } break;
        case LLM_ARCH_REFACT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
848
849
                    case 32: type = LLM_TYPE_1B; break;
                    default: type = LLM_TYPE_UNKNOWN;
850
851
852
853
854
855
856
857
858
859
860
861
862
                }

                // TODO: become GGUF KV parameter
                hparams.f_max_alibi_bias = 8.0f;
            } break;
        case LLM_ARCH_BERT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);

                switch (hparams.n_layer) {
                    case 3:
863
                        type = LLM_TYPE_17M; break; // bge-micro
864
                    case 6:
865
                        type = LLM_TYPE_22M; break; // MiniLM-L6
866
867
                    case 12:
                        switch (hparams.n_embd) {
868
869
870
                            case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
                            case 768: type = LLM_TYPE_109M; break; // bge-base
                            default: type = LLM_TYPE_UNKNOWN;
871
872
                        } break;
                    case 24:
873
874
                        type = LLM_TYPE_335M; break; // bge-large
                    default: type = LLM_TYPE_UNKNOWN;
875
876
877
878
879
880
881
882
883
884
                }
            } break;
        case LLM_ARCH_JINA_BERT_V2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);
                hparams.f_max_alibi_bias = 8.0f;

                switch (hparams.n_layer) {
885
886
887
                    case 4:  type = LLM_TYPE_33M;  break; // jina-embeddings-small
                    case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
                    default: type = LLM_TYPE_UNKNOWN;
888
889
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
890
891
892
893
894
895
896
897
898
899
900
901
        case LLM_ARCH_JINA_BERT_V3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);

                switch (hparams.n_layer) {
                    case 24:
                        type = LLM_TYPE_558M; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
902
        case LLM_ARCH_NOMIC_BERT:
903
        case LLM_ARCH_NOMIC_BERT_MOE:
904
905
906
907
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type);
908
                ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS,         hparams.moe_every_n_layers, 0);
909
910

                if (hparams.n_layer == 12 && hparams.n_embd == 768) {
911
912
913
914
915
                    if (arch == LLM_ARCH_NOMIC_BERT) {
                        type = LLM_TYPE_137M;
                    } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
                        type = LLM_TYPE_475M;
                    }
916
917
                }
            } break;
918
919
920
921
922
923
924
925
926
927
        case LLM_ARCH_NEO_BERT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,            hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,                hparams.pooling_type);

                if (hparams.n_layer == 28) {
                    type = LLM_TYPE_250M;
                }
            } break;
928
929
930
931
932
        case LLM_ARCH_BLOOM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
933
                    case 24: type = LLM_TYPE_1B; break;
934
935
                    case 30:
                        switch (hparams.n_embd) {
936
937
938
                            case 2560: type = LLM_TYPE_3B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
939
                        } break;
940
                    default: type = LLM_TYPE_UNKNOWN;
941
942
943
944
945
946
947
948
949
950
951
952
                }

                // TODO: become GGUF KV parameter
                hparams.f_max_alibi_bias = 8.0f;
            } break;
        case LLM_ARCH_MPT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,  hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,      hparams.f_clamp_kqv, false);
                ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);

                switch (hparams.n_layer) {
953
954
955
                    case 32: type = LLM_TYPE_7B; break;
                    case 48: type = LLM_TYPE_30B; break;
                    default: type = LLM_TYPE_UNKNOWN;
956
957
958
959
960
961
962
                }
            } break;
        case LLM_ARCH_STABLELM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
963
964
965
966
                    case 24: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_3B; break;
                    case 40: type = LLM_TYPE_12B; break;
                    default: type = LLM_TYPE_UNKNOWN;
967
968
969
970
971
972
973
               }
            } break;
        case LLM_ARCH_QWEN:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
974
975
976
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
977
978
979
980
981
982
983
984
985
                }
            } break;
        case LLM_ARCH_QWEN2VL:
            {
                ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
            }
            // fall through
        case LLM_ARCH_QWEN2:
            {
986
                ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
987
988
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
989
990
991
992
993
994
995
996
997
                    case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
                    case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 36: type = LLM_TYPE_3B; break;
                    case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
                    case 48: type = LLM_TYPE_14B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    case 80: type = LLM_TYPE_70B; break;
                    default: type = LLM_TYPE_UNKNOWN;
998
999
                }
            } break;
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
        case LLM_ARCH_DREAM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                // Dream models are primarily 7B with 28 layers
                switch (hparams.n_layer) {
                    case 28:
                        type = LLM_TYPE_7B;
                        break;
                    default:
                        type = LLM_TYPE_UNKNOWN;
                }
                // Set non-causal attention for diffusion models
                hparams.causal_attn = false;
            }
            break;
        case LLM_ARCH_LLADA:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
                switch (hparams.n_layer) {
                    case 32:
                        type = LLM_TYPE_8B;
                        break;
                    default:
                        type = LLM_TYPE_UNKNOWN;
                }
                // Set non-causal attention for diffusion models
                hparams.causal_attn = false;
            }
            break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        case LLM_ARCH_LLADA_MOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                // diffusion language model uses non-causal attention
                hparams.causal_attn = false;
                switch (hparams.n_layer) {
                    case 16: type = LLM_TYPE_A1_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        case LLM_ARCH_RND1:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
                // Set non-causal attention for diffusion models
                hparams.causal_attn = false;
            } break;
1054
1055
        case LLM_ARCH_QWEN2MOE:
            {
1056
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);
1057
1058
1059
1060
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1061
1062
1063
                    case 24: type = LLM_TYPE_A2_7B; break;
                    case 28: type = LLM_TYPE_57B_A14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1064
1065
                }
            } break;
1066
1067
        case LLM_ARCH_QWEN3:
            {
1068
                ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
1069
1070
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1071
1072
1073
1074
                    case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
                    case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
                    case 40: type = LLM_TYPE_14B; break;
                    case 64: type = LLM_TYPE_32B; break;
1075
1076
1077
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        case LLM_ARCH_QWEN3VL:
            {
                ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
                ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 28: type = LLM_TYPE_1_7B; break;
                    case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1090
1091
1092
1093
        case LLM_ARCH_QWEN3MOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    case 94: type = LLM_TYPE_235B_A22B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_QWEN3VLMOE:
            {
                ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
                ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
1106
1107
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1108
1109
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    case 94: type = LLM_TYPE_235B_A22B; break;
1110
1111
1112
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1113
1114
1115
1116
1117
        case LLM_ARCH_PHI2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
1118
1119
1120
                    case 24: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1121
1122
1123
1124
1125
1126
1127
                }
            } break;
        case LLM_ARCH_PHI3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1128
1129
1130
1131
                    case 24: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_3B; break;
                    case 40: type = LLM_TYPE_14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1132
1133
                }

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);

                if (found_swa && hparams.n_swa > 0) {
                    LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
                            __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");

                    // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;

                    hparams.n_swa         = 0;
                    hparams.set_swa_pattern(1);
1145
1146
                }
            } break;
1147
1148
1149
1150
1151
1152
1153
1154
1155
        case LLM_ARCH_PHIMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_16x3_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1156
1157
1158
1159
1160
        case LLM_ARCH_PLAMO:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1161
1162
                    case 40: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1163
1164
               }
            } break;
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        case LLM_ARCH_PLAMO2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                // Load Mamba SSM parameters
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
                }

                switch (hparams.n_layer) {
                    case 16: type = LLM_TYPE_1B; break;
                    case 32:
                        if (hparams.n_embd == 2048) {
                            type = LLM_TYPE_2B;
                        } else if (hparams.n_embd == 4096) {
                            type = LLM_TYPE_8B;
                        }
                        break;
                    default: type = LLM_TYPE_UNKNOWN;
1190
1191
1192
1193
1194
                }

                // Load attention parameters
                ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH,   hparams.n_embd_head_k, false);
                ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
1195
            } break;
1196
1197
1198
1199
        case LLM_ARCH_GPT2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1200
1201
1202
1203
1204
                    case 12: type = LLM_TYPE_SMALL; break;
                    case 24: type = LLM_TYPE_MEDIUM; break;
                    case 36: type = LLM_TYPE_LARGE; break;
                    case 48: type = LLM_TYPE_XL; break;
                    default: type = LLM_TYPE_UNKNOWN;
1205
1206
1207
1208
1209
1210
                }
            } break;
        case LLM_ARCH_CODESHELL:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1211
1212
                    case 42: type = LLM_TYPE_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1213
1214
1215
1216
1217
1218
1219
                }
            } break;
        case LLM_ARCH_ORION:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
1220
1221
                    case 40: type = LLM_TYPE_14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1222
1223
1224
1225
1226
1227
                }
            } break;
        case LLM_ARCH_INTERNLM2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1228
1229
1230
                    case 32: type = LLM_TYPE_7B; break;
                    case 48: type = LLM_TYPE_20B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1231
1232
1233
1234
1235
1236
1237
                }
            } break;
        case LLM_ARCH_GEMMA:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1238
1239
1240
                    case 18: type = LLM_TYPE_2B; break;
                    case 28: type = LLM_TYPE_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1241
1242
1243
1244
               }
            } break;
        case LLM_ARCH_GEMMA2:
            {
1245
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
1246
                hparams.n_swa = 4096; // default value of gemma 2
1247
                hparams.set_swa_pattern(2);
1248
1249
                hparams.attn_soft_cap = true;

1250
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
1251
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1252
1253
                ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING,      hparams.f_attn_logit_softcapping, false);
                ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING,     hparams.f_final_logit_softcapping, false);
1254
1255

                switch (hparams.n_layer) {
1256
1257
1258
1259
                    case 26: type = LLM_TYPE_2B; break;
                    case 42: type = LLM_TYPE_9B; break;
                    case 46: type = LLM_TYPE_27B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1260
               }
1261
1262
1263
1264
1265

                // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
                hparams.f_attention_scale = type == LLM_TYPE_27B
                    ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
                    : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
1266
            } break;
Patrick Devine's avatar
Patrick Devine committed
1267
1268
        case LLM_ARCH_GEMMA3:
            {
1269
1270
1271
1272
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
                if (found_swa && hparams.n_swa > 0) {
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.set_swa_pattern(6);
1273

1274
1275
1276
1277
1278
                    hparams.rope_freq_base_train_swa  = 10000.0f;
                    hparams.rope_freq_scale_train_swa = 1.0f;
                } else {
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
                }
1279

1280
1281
                hparams.f_final_logit_softcapping = 0.0f;
                ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
1282
1283
1284
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1285
                    case 18: type = LLM_TYPE_270M; break;
1286
                    case 26: type = LLM_TYPE_1B; break;
1287
                    case 32: type = LLM_TYPE_8B; break; // Rnj-1
1288
1289
1290
1291
1292
1293
                    case 34: type = LLM_TYPE_4B; break;
                    case 48: type = LLM_TYPE_12B; break;
                    case 62: type = LLM_TYPE_27B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }

1294
                // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
1295
1296
1297
                hparams.f_attention_scale = type == LLM_TYPE_27B
                    ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
                    : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
Patrick Devine's avatar
Patrick Devine committed
1298
            } break;
1299
1300
1301
1302
1303
        case LLM_ARCH_GEMMA3N:
            {
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(5);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1304
                hparams.n_layer_kv_from_start     = 20;
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
                hparams.rope_freq_base_train_swa  = 10000.0f;
                hparams.rope_freq_scale_train_swa = 1.0f;
                hparams.f_attention_scale         = 1.0f;

                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 30: type = LLM_TYPE_E2B; break;
                    case 35: type = LLM_TYPE_E4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1318
1319
1320
1321
1322
1323
        case LLM_ARCH_GEMMA_EMBEDDING:
            {
                hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
                hparams.set_swa_pattern(6);

                hparams.causal_attn = false; // embeddings do not use causal attention
1324
                hparams.rope_freq_base_train_swa = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1325
1326
                hparams.rope_freq_scale_train_swa = 1.0f;

1327
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1328
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
                ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);

                //applied only if model converted with --sentence-transformers-dense-modules
                ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false);
                ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false);
                ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false);
                ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false);

                GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd");
                GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1339
1340
1341
1342
1343
1344
1345
1346

                switch (hparams.n_layer) {
                    case 24: type = LLM_TYPE_0_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
                hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));

            } break;
1347
1348
1349
1350
        case LLM_ARCH_STARCODER2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1351
1352
1353
1354
1355
1356
                    case 30: type = LLM_TYPE_3B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_15B; break;
                    case 52: type = LLM_TYPE_20B; break; // granite
                    case 88: type = LLM_TYPE_34B; break; // granite
                    default: type = LLM_TYPE_UNKNOWN;
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
                }
            } break;
        case LLM_ARCH_MAMBA:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_DT_B_C_RMS,     hparams.ssm_dt_b_c_rms, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 24:
                        switch (hparams.n_embd) {
1372
1373
                            case 768: type = LLM_TYPE_SMALL; break;
                            default: type = LLM_TYPE_UNKNOWN;
1374
1375
1376
                        } break;
                    case 48:
                        switch (hparams.n_embd) {
1377
1378
1379
1380
                            case 1024: type = LLM_TYPE_MEDIUM; break;
                            case 1536: type = LLM_TYPE_LARGE; break;
                            case 2048: type = LLM_TYPE_XL; break;
                            default:   type = LLM_TYPE_UNKNOWN;
1381
1382
1383
                        } break;
                    case 64:
                        switch (hparams.n_embd) {
1384
1385
                            case 2560: type = LLM_TYPE_3B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1386
                        } break;
1387
                    default: type = LLM_TYPE_UNKNOWN;
1388
1389
                }
            } break;
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
        case LLM_ARCH_MAMBA2:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 24:
                        switch (hparams.n_embd) {
                            case 768: type = LLM_TYPE_SMALL; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 48:
                        switch (hparams.n_embd) {
                            case 1024: type = LLM_TYPE_MEDIUM; break;
                            case 1536: type = LLM_TYPE_LARGE; break;
                            case 2048: type = LLM_TYPE_XL; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 64:
                        switch (hparams.n_embd) {
                            case 2560: type = LLM_TYPE_3B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_JAMBA:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
                }

                switch (hparams.n_layer) {
                    // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
                    case 12: // 900M  8x???M
                    case 32: // 51B  16x?B
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1442
1443
1444
1445
        case LLM_ARCH_XVERSE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1446
1447
1448
1449
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
                    case 80: type = LLM_TYPE_65B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1450
1451
1452
1453
                }
            } break;
        case LLM_ARCH_COMMAND_R:
            {
1454
                ml.get_key(LLM_KV_LOGIT_SCALE,             hparams.f_logit_scale);
1455
1456
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1457
1458
                    case 40: type = LLM_TYPE_35B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1459
1460
1461
1462
                }
            } break;
        case LLM_ARCH_COHERE2:
            {
1463
1464
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(4);
1465

1466
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
1467
1468
                ml.get_key(LLM_KV_LOGIT_SCALE,              hparams.f_logit_scale);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,  hparams.f_norm_eps);
1469
                switch (hparams.n_layer) {
1470
1471
                    case 32: type = LLM_TYPE_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1472
1473
1474
1475
1476
1477
1478
1479
                }
            } break;
        case LLM_ARCH_DBRX:
        {
            ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
            ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,     hparams.f_clamp_kqv);

            switch (hparams.n_layer) {
1480
1481
                case 40: type = LLM_TYPE_16x12B; break;
                default: type = LLM_TYPE_UNKNOWN;
1482
1483
1484
1485
1486
1487
1488
1489
            }
        } break;
        case LLM_ARCH_OLMO:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,     hparams.f_clamp_kqv, false);

                switch (hparams.n_layer) {
1490
1491
1492
1493
                    case 22: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 80: type = LLM_TYPE_70B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1494
1495
1496
1497
1498
1499
                }
            } break;
        case LLM_ARCH_OLMO2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1500
1501
1502
1503
1504
1505
1506
1507
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
                if (found_swa && hparams.n_swa > 0) {
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.set_swa_pattern(4);
                } else {
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
                }

1508
                switch (hparams.n_layer) {
1509
1510
1511
                    case 16: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
1512
                    case 64: type = LLM_TYPE_32B; break;
1513
                    default: type = LLM_TYPE_UNKNOWN;
1514
1515
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1516
1517
1518
1519
1520
1521
1522
1523
        case LLM_ARCH_SEED_OSS:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 64: type = LLM_TYPE_36B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1524
1525
1526
1527
        case LLM_ARCH_OLMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1528
1529
                    case 16: type = LLM_TYPE_A1_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1530
1531
1532
1533
1534
1535
1536
                }
            } break;
        case LLM_ARCH_OPENELM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1537
1538
1539
1540
1541
                case 16: type = LLM_TYPE_270M; break;
                case 20: type = LLM_TYPE_450M; break;
                case 28: type = LLM_TYPE_1B; break;
                case 36: type = LLM_TYPE_3B; break;
                default: type = LLM_TYPE_UNKNOWN;
1542
1543
1544
1545
1546
                }
            } break;
        case LLM_ARCH_GPTNEOX:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
1547
                ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL,   hparams.use_par_res);
1548
1549
1550
                switch (hparams.n_layer) {
                    case 6:
                        switch (hparams.n_ff()) {
1551
1552
1553
                            case 512:  type = LLM_TYPE_14M; break;
                            case 2048: type = LLM_TYPE_70M; break;
                            default:   type = LLM_TYPE_UNKNOWN;
1554
1555
1556
                        } break;
                    case 12:
                        switch (hparams.n_ff()) {
1557
1558
                            case 3072: type = LLM_TYPE_160M; break;
                            default: type = LLM_TYPE_UNKNOWN;
1559
1560
1561
                        } break;
                    case 16:
                        switch (hparams.n_ff()) {
1562
1563
                            case 8192: type = LLM_TYPE_1B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1564
1565
1566
                        } break;
                    case 24:
                        switch (hparams.n_ff()) {
1567
1568
1569
                            case 4096: type = LLM_TYPE_410M; break;
                            case 8192: type = LLM_TYPE_1_4B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1570
1571
1572
                        } break;
                    case 32:
                        switch (hparams.n_ff()) {
1573
1574
1575
                            case 10240: type = LLM_TYPE_2_8B; break;
                            case 16384: type = LLM_TYPE_6_9B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1576
1577
1578
                        } break;
                    case 36:
                        switch (hparams.n_ff()) {
1579
1580
                            case 20480: type = LLM_TYPE_12B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1581
1582
1583
                        } break;
                    case 44:
                        switch (hparams.n_ff()) {
1584
1585
                            case 24576: type = LLM_TYPE_20B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1586
                        } break;
1587
                    default: type = LLM_TYPE_UNKNOWN;
1588
1589
1590
1591
1592
1593
1594
1595
                }
            } break;
        case LLM_ARCH_ARCTIC:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                if (hparams.n_expert == 128) {
                    switch (hparams.n_layer) {
1596
1597
                        case 35: type = LLM_TYPE_10B_128x3_66B; break;
                        default: type = LLM_TYPE_UNKNOWN;
1598
1599
                    }
                } else {
1600
                    type = LLM_TYPE_UNKNOWN;
1601
1602
1603
1604
1605
                }
            } break;
        case LLM_ARCH_DEEPSEEK:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1606
1607
1608
1609
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
1610

1611
1612
1613
                switch (hparams.n_ff_exp) {
                    case 1408: type = LLM_TYPE_16B; break;
                    case 1792: type = LLM_TYPE_20B; break;
1614
                    default: type = LLM_TYPE_UNKNOWN;
1615
1616
1617
1618
                }
            } break;
        case LLM_ARCH_DEEPSEEK2:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1619
1620
                // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
                bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
1621
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1622
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
1623
1624
1625
                if (!is_lite) {
                    ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
                }
1626
                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK,     hparams.n_lora_kv);
1627
1628
                ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA,   hparams.n_embd_head_k_mla, false);
                ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
1629
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
1630
1631
1632
1633
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,        hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,       hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,        hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,         hparams.expert_gating_func, false);
1634
1635
1636
1637
1638
                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
                    // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
                    // that have no expert_gating_func model parameter set
                    hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
                }
1639
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
1640

1641
1642
1643
1644
                // (optional) temperature tuning - used by mistral-large
                ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE,  hparams.f_attn_temp_scale,       false);
                ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);

1645
                switch (hparams.n_layer) {
1646
1647
1648
1649
                    case 27: type = LLM_TYPE_16B; break;
                    case 60: type = LLM_TYPE_236B; break;
                    case 61: type = LLM_TYPE_671B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1650
1651
                }
            } break;
1652
1653
1654
1655
1656
1657
1658
1659
1660
        case LLM_ARCH_PLM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_1_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1661
1662
1663
1664
        case LLM_ARCH_CHATGLM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
                    case 28: {
                        if (hparams.n_head(0) == 16) {
                            type = LLM_TYPE_1_5B;
                        } else {
                            type = LLM_TYPE_6B;
                        }
                    } break;
                    case 40: {
                        if (hparams.n_head(0) == 24) {
                            type = LLM_TYPE_4B;
                        } else {
                            type = LLM_TYPE_9B;
                        }
                    } break;
                    default: type = LLM_TYPE_UNKNOWN;
1680
1681
                }
            } break;
1682
1683
1684
1685
1686
1687
1688
1689
1690
        case LLM_ARCH_GLM4:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 40: type = LLM_TYPE_9B; break;
                    case 61: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
        case LLM_ARCH_GLM4_MOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                // MoE parameters
                ml.get_key(LLM_KV_EXPERT_COUNT,                hparams.n_expert);
                ml.get_key(LLM_KV_EXPERT_USED_COUNT,           hparams.n_expert_used);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);

                // Expert gating function (GLM-4.5 uses sigmoid)
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1707
                    hparams.expert_gating_func =  LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
1708
1709
1710
1711
1712
                }

                // NextN/MTP parameters
                ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS,        hparams.nextn_predict_layers, false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1713
1714
1715
                // TODO: when MTP is implemented, this should probably be updated if needed
                hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;

1716
1717
1718
1719
1720
1721
                switch (hparams.n_layer) {
                    case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
                    case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1722
1723
1724
1725
1726
        case LLM_ARCH_BITNET:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1727
1728
                    case 26: type = LLM_TYPE_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1729
1730
1731
1732
                }
            } break;
        case LLM_ARCH_T5:
            {
1733
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,      hparams.f_norm_rms_eps);
1734
1735
1736
1737
1738
1739
1740
                ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);

                uint32_t dec_start_token_id;
                if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
                    hparams.dec_start_token_id = dec_start_token_id;
                }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1741
1742
1743
                hparams.dec_n_layer = hparams.n_layer;
                ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);

1744
                switch (hparams.n_layer) {
1745
1746
                    case 6:  type = LLM_TYPE_60M;  break; // t5-small
                    case 8:  type = LLM_TYPE_80M;  break; // flan-t5-small
1747
1748
                    case 12:
                        switch (hparams.n_ff()) {
1749
1750
1751
                            case 3072: type = LLM_TYPE_220M; break; // t5-base
                            case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
                            default: type = LLM_TYPE_UNKNOWN;
1752
1753
1754
                        } break;
                    case 24:
                        switch (hparams.n_ff()) {
1755
1756
1757
1758
1759
1760
1761
                            case 4096:  type = LLM_TYPE_770M; break; // t5-large
                            case 2816:  type = LLM_TYPE_780M; break; // flan-t5-large
                            case 16384: type = LLM_TYPE_3B;   break; // t5-3b
                            case 5120:  type = LLM_TYPE_3B;   break; // flan-t5-xl
                            case 65536: type = LLM_TYPE_11B;  break; // t5-11b
                            case 10240: type = LLM_TYPE_11B;  break; // flan-t5-xxl
                            default: type = LLM_TYPE_UNKNOWN;
1762
                        } break;
1763
                    default: type = LLM_TYPE_UNKNOWN;
1764
1765
1766
1767
1768
1769
               }
            } break;
        case LLM_ARCH_T5ENCODER:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
1770
                type = LLM_TYPE_UNKNOWN;
1771
1772
1773
1774
1775
1776
1777
            } break;
        case LLM_ARCH_JAIS:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);

                switch (hparams.n_layer) {
1778
1779
                    case 24: type = LLM_TYPE_1_3B; break;
                    case 40: type = LLM_TYPE_13B; break;
1780
                    /* TODO: add variants */
1781
                    default: type = LLM_TYPE_UNKNOWN;
1782
1783
1784
1785
1786
1787
                }
            } break;
        case LLM_ARCH_NEMOTRON:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1788
1789
                    case 32: type = LLM_TYPE_4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1790
1791
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1792
        case LLM_ARCH_NEMOTRON_H:
1793
        case LLM_ARCH_NEMOTRON_H_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                // A layer is recurrent IFF the n_head_kv value is set to 0 and
                // the n_ff value is set to 0
                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
                }

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

1809
1810
1811
1812
1813
1814
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp,        false);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp,      false);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,               hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale, false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1815
                switch (hparams.n_layer) {
1816
                    case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1817
1818
1819
1820
                    case 56: type = LLM_TYPE_9B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1821
1822
1823
1824
1825
        case LLM_ARCH_EXAONE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1826
1827
                    case 32: type = LLM_TYPE_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1828
1829
                }
            } break;
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
        case LLM_ARCH_EXAONE4:
            {
                if (hparams.n_layer == 64) {    // 32B
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.n_swa = 4096;
                    hparams.set_swa_pattern(4);
                }

                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 30: type = LLM_TYPE_1_2B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1847
        case LLM_ARCH_RWKV6:
1848
        case LLM_ARCH_RWKV6QWEN2:
1849
            {
1850
1851
1852
1853
1854
1855
1856
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,     hparams.f_norm_eps, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
                ml.get_key(LLM_KV_WKV_HEAD_SIZE,               hparams.wkv_head_size);
                ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM,          hparams.time_mix_extra_dim);
                ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM,        hparams.time_decay_extra_dim);
                ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS,      hparams.rescale_every_n_layers, false);
                ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT,           hparams.token_shift_count, false);
1857
1858

                switch (hparams.n_layer) {
1859
                    case 24: type = LLM_TYPE_1_6B; break;
1860
1861
                    case 32:
                        switch (hparams.n_embd) {
1862
1863
1864
                            case 2560: type = LLM_TYPE_3B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1865
                        } break;
1866
1867
1868
                    case 61: type = LLM_TYPE_14B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1869
1870
                }
            } break;
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
        case LLM_ARCH_RWKV7:
        case LLM_ARCH_ARWKV7:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,                hparams.f_norm_eps, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,            hparams.f_norm_rms_eps, false);
                ml.get_key(LLM_KV_WKV_HEAD_SIZE,                          hparams.wkv_head_size);
                ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK,              hparams.n_lora_decay);
                ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK,               hparams.n_lora_iclr);
                ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
                ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK,               hparams.n_lora_gate, false);
                ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT,                      hparams.token_shift_count, false);

                switch (hparams.n_layer) {
1884
1885
1886
1887
1888
                    case 12:
                        switch (hparams.n_embd) {
                            case 768: type = LLM_TYPE_190M; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
                    case 24:
                        switch (hparams.n_embd) {
                            case 1024: type = LLM_TYPE_450M; break;
                            case 2048: type = LLM_TYPE_1_5B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 28:
                        switch (hparams.n_embd) {
                            case 1536: type = LLM_TYPE_1_5B; break;
                            case 3584: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
                    case 32:
                        switch (hparams.n_embd) {
                            case 2560: type = LLM_TYPE_2_9B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 61:
                        switch (hparams.n_embd) {
                            case 4096: type = LLM_TYPE_14B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
1912
1913
1914
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1915
1916
1917
1918
        case LLM_ARCH_GRANITE:
        case LLM_ARCH_GRANITE_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1919
1920
1921
1922
                ml.get_key(LLM_KV_LOGIT_SCALE,                 hparams.f_logit_scale);
                ml.get_key(LLM_KV_RESIDUAL_SCALE,              hparams.f_residual_scale);
                ml.get_key(LLM_KV_EMBEDDING_SCALE,             hparams.f_embedding_scale);
                ml.get_key(LLM_KV_ATTENTION_SCALE,             hparams.f_attention_scale);
1923

1924
1925
1926
1927
1928
                // Granite uses rope_finetuned as a switch for rope, so default to true
                bool rope_finetuned = true;
                ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
                hparams.rope_finetuned = rope_finetuned;

1929
                switch (hparams.n_layer) {
1930
1931
                    case 32: type = LLM_TYPE_3B; break;
                    case 40: type = LLM_TYPE_3B; break;
1932
                    // Add additional layer/vocab/etc checks here for other model sizes
1933
                    default: type = LLM_TYPE_UNKNOWN;
1934
                }
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

                // For Granite MoE Shared
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
            } break;
        case LLM_ARCH_GRANITE_HYBRID:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LOGIT_SCALE,                 hparams.f_logit_scale, /* required */ false);
                ml.get_key(LLM_KV_RESIDUAL_SCALE,              hparams.f_residual_scale, /* required */ false);
                ml.get_key(LLM_KV_EMBEDDING_SCALE,             hparams.f_embedding_scale, /* required */ false);
                ml.get_key(LLM_KV_ATTENTION_SCALE,             hparams.f_attention_scale, /* required */ false);

                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                // Granite uses rope_finetuned as a switch for rope, so default to true
                bool rope_finetuned = true;
                ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
                hparams.rope_finetuned = rope_finetuned;

                // A layer is recurrent IFF the n_head_kv value is set to 0
                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
                }

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1965
                switch (hparams.n_embd) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1966
1967
                    case 768: type = LLM_TYPE_350M; break;
                    case 1536: type = (hparams.n_embd == 2048 ? LLM_TYPE_7B_A1B : LLM_TYPE_1B); break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1968
1969
                    case 2048: case 2560: type = LLM_TYPE_3B; break;
                    case 4096: type = LLM_TYPE_32B; break;
1970
1971
1972
1973
1974
                    default: type = LLM_TYPE_UNKNOWN;
                }

                // For Granite MoE Shared
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
1975
1976
1977
1978
1979
1980
1981
1982
            } break;
        case LLM_ARCH_CHAMELEON:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                hparams.f_norm_eps = 1e-5;  // eps for qk-norm, torch default
                ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);

                switch (hparams.n_layer) {
1983
1984
1985
                    case 32: type = LLM_TYPE_7B; break;
                    case 48: type = LLM_TYPE_34B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1986
1987
1988
1989
1990
1991
1992
1993
               }
            } break;
        case LLM_ARCH_SOLAR:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
                    auto & bskcn = hparams.n_bskcn_arr[i];
                    bskcn.fill(0);
1994
                    auto kv = LLM_KV(arch);
1995
1996
1997
1998
                    ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
                }

                switch (hparams.n_layer) {
1999
2000
                    case 64: type = LLM_TYPE_22B; break;
                    default: type = LLM_TYPE_UNKNOWN;
2001
2002
2003
2004
2005
2006
2007
2008
2009
                }
            } break;
        case LLM_ARCH_WAVTOKENIZER_DEC:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS,    hparams.f_norm_group_eps);
                ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
            } break;
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
        case LLM_ARCH_BAILINGMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);

                switch (hparams.n_layer) {
                    case 28: type = LLM_TYPE_16B; break;
                    case 88: type = LLM_TYPE_290B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
        case LLM_ARCH_BAILINGMOE2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,               hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,                hparams.expert_gating_func);
                ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS,              hparams.nextn_predict_layers, false);

                // TODO: when MTP is implemented, this should probably be updated if needed
                hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;

                switch (hparams.n_layer) {
                    case 20: type = LLM_TYPE_16B_A1B; break;
                    case 21: type = LLM_TYPE_16B_A1B; break;
                    case 32: type = LLM_TYPE_100B_A6B; break;
                    case 33: type = LLM_TYPE_100B_A6B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
        case LLM_ARCH_DOTS1:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
                switch (hparams.n_layer) {
                    case 62: type = LLM_TYPE_142B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_ERNIE4_5:
        case LLM_ARCH_ERNIE4_5_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                if (arch == LLM_ARCH_ERNIE4_5_MOE) {
                    ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                    ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
                    ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP,         hparams.n_moe_layer_step);
                    ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
                }
2072

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
                switch (hparams.n_layer) {
                    case 18: type = LLM_TYPE_0_3B; break;
                    case 28: type = LLM_TYPE_21B_A3B; break;
                    case 54: type = LLM_TYPE_300B_A47B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_FALCON_H1:
            {
                // Common parameters
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
2084

2085
2086
2087
2088
2089
2090
                // SSM parameters
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);
2091

2092
                std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
2093

2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
                switch (hparams.n_layer) {
                    case 36:
                        type = LLM_TYPE_0_5B; break;
                    case 24:
                        type = LLM_TYPE_1_5B; break;
                    case 66:
                        type = LLM_TYPE_1B; break;
                    case 32:
                        type = LLM_TYPE_3B; break;
                    case 44:
                        type = LLM_TYPE_7B; break;
                    case 72:
                        type = LLM_TYPE_34B; break;
                    default:
                        type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_HUNYUAN_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
2116

2117
2118
2119
2120
2121
2122
2123
2124
                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_A13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_HUNYUAN_DENSE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
2125

2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
                switch (hparams.n_embd) {
                    case 1024: type = LLM_TYPE_0_5B; break;
                    case 2048: type = LLM_TYPE_1_8B; break;
                    case 3072: type = LLM_TYPE_4B; break;
                    case 4096: type = LLM_TYPE_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_SMOLLM3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                hparams.n_no_rope_layer_step = 4;
2138

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
                switch (hparams.n_layer) {
                    case 36: type = LLM_TYPE_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_OPENAI_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa);

                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(2);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2153
2154
2155
2156
2157
                switch (hparams.n_layer) {
                    case 24: type = LLM_TYPE_20B; break;
                    case 36: type = LLM_TYPE_120B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
2158
2159
2160
2161
2162
2163
2164
2165
            } break;
        case LLM_ARCH_LFM2:
            {
                ml.get_key(LLM_KV_SHORTCONV_L_CACHE,           hparams.n_shortconv_l_cache);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                for (uint32_t il = 0; il < hparams.n_layer; ++il) {
                    hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
                }
2166
                hparams.n_layer_dense_lead = hparams.n_layer;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2167
2168
2169
2170
2171
                switch (hparams.n_ff()) {
                    case  4608: type = LLM_TYPE_350M; break;
                    case  6912: type = LLM_TYPE_700M; break;
                    case  8192: type = LLM_TYPE_1_2B; break;
                    case 10752: type = LLM_TYPE_2_6B; break;
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
                    default:    type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_LFM2MOE:
            {
                ml.get_key(LLM_KV_SHORTCONV_L_CACHE,           hparams.n_shortconv_l_cache);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func);

                for (uint32_t il = 0; il < hparams.n_layer; ++il) {
                    hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
2185
                }
2186
2187

                type = LLM_TYPE_8B_A1B;
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
            } break;
        case LLM_ARCH_SMALLTHINKER:
            {
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);

                if (found_swa && hparams.n_swa > 0) {
                    hparams.swa_type      = LLAMA_SWA_TYPE_STANDARD;
                    hparams.n_swa         = 4096;
                    hparams.set_swa_pattern(4, true);
                } else {
                    hparams.swa_type             = LLAMA_SWA_TYPE_NONE;
                    hparams.n_no_rope_layer_step = hparams.n_layer;
                }

                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);

                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_4B;  break;
                    case 52: type = LLM_TYPE_20B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
        case LLM_ARCH_GROVEMOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH,  hparams.n_ff_chexp);
                ml.get_key(LLM_KV_EXPERT_GROUP_SCALE,                hparams.expert_group_scale);
                ml.get_key(LLM_KV_EXPERTS_PER_GROUP,                 hparams.n_group_experts);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
        case LLM_ARCH_APERTUS:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N,        hparams.xielu_alpha_n, hparams.n_layer);
                ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P,        hparams.xielu_alpha_p, hparams.n_layer);
                ml.get_key_or_arr(LLM_KV_XIELU_BETA,           hparams.xielu_beta,    hparams.n_layer);
                ml.get_key_or_arr(LLM_KV_XIELU_EPS,            hparams.xielu_eps,     hparams.n_layer);

                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
        case LLM_ARCH_MINIMAX_M2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,  hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,   hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,           hparams.expert_gating_func, false);

                switch (hparams.n_layer) {
                    case 62: type = LLM_TYPE_230B_A10B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_COGVLM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_PANGU_EMBED:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 26: type = LLM_TYPE_1B; break; // openPangu-Embedded-1B-V1.1
                    case 34: type = LLM_TYPE_7B; break; // openPangu-Embedded-7B-V1.1
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_QWEN3NEXT:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);

                // Load linear attention (gated delta net) parameters
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                // Mark recurrent layers (linear attention layers)
                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
                }

                switch (hparams.n_layer) {
                    case 80: type = LLM_TYPE_80B_A3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
        case LLM_ARCH_MISTRAL3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);

                ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST,   hparams.yarn_beta_fast, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW,   hparams.yarn_beta_slow, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL,     hparams.rope_yarn_log_mul, false);

                // TODO: maybe add n_attn_temp_floor_scale as a separate KV?
                if (hparams.f_attn_temp_scale != 0.0f) {
                    hparams.n_attn_temp_floor_scale = hparams.n_ctx_orig_yarn;
                    if (hparams.n_attn_temp_floor_scale == 0) {
                        throw std::runtime_error("invalid n_ctx_orig_yarn for attention temperature scaling");
                    }
                }

                // TODO: this seems to be correct with the case of mscale == mscale_all_dims == 1.0f
                //       but may need further verification with other values
                if (hparams.rope_yarn_log_mul != 0.0f) {
                    float factor = 1.0f / hparams.rope_freq_scale_train;
                    float mscale = 1.0f;
                    float mscale_all_dims = hparams.rope_yarn_log_mul;
                    static auto get_mscale = [](float scale, float mscale) {
                        return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
                    };
                    hparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
                }

                switch (hparams.n_layer) {
                    case 26: type = LLM_TYPE_3B; break;
                    case 34: type = LLM_TYPE_8B; break;
                    case 40: type = LLM_TYPE_14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
        default: throw std::runtime_error("unsupported model architecture");
    }

    pimpl->n_bytes = ml.n_bytes;

    pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();

    if (hparams.f_max_alibi_bias > 0.0f) {
        hparams.use_alibi = true;
    }

    hparams.rope_type = llama_model_rope_type(this);
}

void llama_model::load_vocab(llama_model_loader & ml) {
    const auto kv = LLM_KV(arch);

    vocab.load(ml, kv);
}

bool llama_model::load_tensors(llama_model_loader & ml) {
    const auto & split_mode   = params.split_mode;
    const auto & n_gpu_layers = params.n_gpu_layers;
    const auto & use_mlock    = params.use_mlock;
    const auto & tensor_split = params.tensor_split;

    const int n_layer = hparams.n_layer;
2352

2353
    const bool use_mmap_buffer = true;
2354

2355
    LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
2356

2357
    // build a list of buffer types for the CPU and GPU devices
2358
    pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
2359
2360
2361
2362
2363
    for (auto * dev : devices) {
        buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
        // add CPU buffer types as a fallback
        buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
        pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
2364
2365
    }

2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
    // calculate the split points
    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
    std::vector<float> splits(n_devices());
    if (all_zero) {
        // default split, by free memory
        for (size_t i = 0; i < n_devices(); ++i) {
            ggml_backend_dev_t dev = devices[i];
            size_t total;
            size_t free;
            ggml_backend_dev_memory(dev, &free, &total);
            splits[i] = free;
        }
    } else {
        std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
2380
2381
    }

2382
2383
2384
2385
2386
    // sum and normalize the splits to get the split points
    float split_sum = 0.0f;
    for (size_t i = 0; i < n_devices(); ++i) {
        split_sum += splits[i];
        splits[i] = split_sum;
2387
    }
2388
2389
    for (size_t i = 0; i < n_devices(); ++i) {
        splits[i] /= split_sum;
2390
2391
    }

2392
    ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
2393
2394
2395
    if (cpu_dev == nullptr) {
        throw std::runtime_error(format("%s: no CPU backend found", __func__));
    }
2396
2397
2398
    const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
    const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
    auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
2399
        const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
2400
        if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
2401
            LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
2402
2403
2404
2405
            return {cpu_dev, &pimpl->cpu_buft_list};
        }
        const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
        auto * dev = devices.at(layer_gpu);
2406
        LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
2407
2408
        return {dev, &pimpl->gpu_buft_list.at(dev)};
    };
2409

2410
2411
2412
    // assign the input layer
    // there is very little benefit to offloading the input layer, so always keep it on the CPU
    pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
2413

2414
2415
2416
2417
2418
    // assign the repeating layers to the devices according to the splits
    pimpl->dev_layer.resize(n_layer);
    for (int il = 0; il < n_layer; ++il) {
        pimpl->dev_layer[il] = get_layer_buft_list(il);
    }
2419

2420
2421
2422
2423
2424
2425
2426
2427
2428
    // assign the output layer
    pimpl->dev_output = get_layer_buft_list(n_layer);

    // one ggml context per buffer type
    int max_n_tensors = ml.n_tensors;
    max_n_tensors += 1;         // duplicated output tensor
    max_n_tensors += n_layer*2; // duplicated rope freq tensors
    const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2429
2430
2431
    // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
    struct ggml_backend_buft_comparator {
        bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2432
            return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2433
2434
2435
2436
        }
    };
    std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;

2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
            ggml_init_params params = {
                /*.mem_size   =*/ ctx_size,
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };

            ggml_context * ctx = ggml_init(params);
            if (!ctx) {
                throw std::runtime_error(format("failed to create ggml context"));
2449
2450
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2451
            ctx_map.emplace(buft, ctx);
2452

2453
            return ctx;
2454
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2455
        return it->second.get();
2456
    };
2457

2458
2459
    const auto TENSOR_DUPLICATED   = llama_model_loader::TENSOR_DUPLICATED;
    const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
2460
    const auto TENSOR_SKIP         = llama_model_loader::TENSOR_SKIP;
2461

2462
    // create tensors for the weights
2463
    {
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
        // note: cast to int64_t since we will use these for the tensor dimensions
        const int64_t n_head        = hparams.n_head();
        const int64_t n_head_kv     = hparams.n_head_kv();
        const int64_t n_embd        = hparams.n_embd;
        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
        const int64_t n_embd_head_k = hparams.n_embd_head_k;
        const int64_t n_embd_head_v = hparams.n_embd_head_v;
        const int64_t n_ff          = hparams.n_ff();
        const int64_t n_embd_gqa    = n_embd_v_gqa;
2474
        const int64_t n_vocab       = vocab.n_tokens();
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
        const int64_t n_token_types = vocab.n_token_types();
        const int64_t n_rot         = hparams.n_rot;
        const int64_t n_expert      = hparams.n_expert;
        const int64_t n_expert_used = hparams.n_expert_used;
        const int64_t n_ctx_train   = hparams.n_ctx_train;

        if (n_expert > 0 && hparams.n_expert_used == 0) {
            throw std::runtime_error("model has expert layers but no expert layers are used");
        }

        int n_moved_tensors = 0;
        ggml_tensor * first_moved_tensor = nullptr;
        ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
        ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
2489

2490
2491
        auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
            ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
2492

2493
2494
2495
2496
2497
            if (!t_meta) {
                if (flags & TENSOR_NOT_REQUIRED) {
                    return nullptr;
                }
                throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
2498
            }
2499
2500
2501
2502
2503
2504
2505

            // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
            // the tensor is duplicated
            // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
            llm_tensor tn_tensor = tn.tensor;
            if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
                tn_tensor = LLM_TENSOR_OUTPUT;
2506
2507
            }

2508
2509
2510
2511
2512
2513
            llm_tensor_info info;
            try {
                info = llm_tensor_info_for(tn_tensor);
            } catch (const std::out_of_range & e) {
                throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
            }
2514

2515
            // skip unused tensors
2516
            if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
2517
2518
2519
2520
                const size_t nbytes = ggml_nbytes(t_meta);
                LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);

                ml.size_data -= nbytes;
2521
2522
2523
                ml.n_created++;

                return nullptr;
2524
            }
2525

2526
            // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
2527
2528
2529
            ggml_op op;
            bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
            if (bias) {
2530
2531
2532
2533
2534
                if (info.op == GGML_OP_MUL_MAT_ID) {
                    op = GGML_OP_ADD_ID;
                } else {
                    op = GGML_OP_ADD;
                }
2535
2536
            } else {
                op = info.op;
2537
2538
            }

2539
2540
2541
2542
2543
2544
2545
2546
            // sanity checks
            if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
                if (tn.bid != -1) {
                    GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
                }
            } else {
                if (tn.bid == -1) {
                    GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
2547
2548
2549
                }
            }

2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
            // select the buffer type for this tensor
            buft_list_t * buft_list;
            switch (info.layer) {
                case LLM_TENSOR_LAYER_INPUT:
                    buft_list = pimpl->dev_input.buft_list;
                    break;
                case LLM_TENSOR_LAYER_OUTPUT:
                    buft_list = pimpl->dev_output.buft_list;
                    break;
                case LLM_TENSOR_LAYER_REPEATING:
                    buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
                    break;
                default:
                    GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
2564
2565
            }

2566
2567
2568
2569
2570
2571
2572
2573
            ggml_backend_buffer_type_t buft = nullptr;

            // check overrides
            if (ml.tensor_buft_overrides) {
                std::string tensor_name = tn.str();
                for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
                    std::regex pattern(overrides->pattern);
                    if (std::regex_search(tensor_name, pattern)) {
2574
2575
2576
2577
2578
2579
2580
                        if (overrides->buft == ggml_backend_cpu_buffer_type()) {
                            // when overriding to a CPU buffer, consider the extra buffer types
                            buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
                        } else {
                            buft = overrides->buft;
                        }

2581
2582
2583
2584
                        LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
                                tensor_name.c_str(),
                                ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
                                ggml_backend_buft_name(buft));
2585
2586
2587
2588
2589
                        break;
                    }
                }
            }

2590
            if (!buft) {
2591
2592
2593
2594
                buft = select_weight_buft(hparams, t_meta, op, *buft_list);
                if (!buft) {
                    throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
                }
2595
2596
            }

2597
2598
2599
2600
            // avoid using a host buffer when using mmap
            auto * buft_dev = ggml_backend_buft_get_device(buft);
            if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
                auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
2601
2602
2603
                if (!cpu_dev) {
                    throw std::runtime_error("no CPU backend found");
                }
2604
                buft = ggml_backend_dev_buffer_type(cpu_dev);
2605
2606
            }

2607
2608
2609
2610
2611
2612
            if (buft != buft_list->front().second) {
                n_moved_tensors++;
                if (!first_moved_tensor) {
                    first_moved_tensor = t_meta;
                    first_moved_from_buft = buft_list->front().second;
                    first_moved_to_buft   = buft;
2613
2614
2615
                }
            }

2616
2617
2618
2619
2620
2621
2622
            ggml_context * ctx = ctx_for_buft(buft);

            // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
            if (flags & TENSOR_DUPLICATED) {
                ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
                if (t) {
                    return t;
2623
2624
                }
            }
2625
2626
            return ml.create_tensor(ctx, tn, ne, flags);
        };
2627

2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
        layers.resize(n_layer);

        // TODO: move to a separate function
        const auto tn = LLM_TN(arch);
        switch (arch) {
            case LLM_ARCH_LLAMA:
            case LLM_ARCH_REFACT:
            case LLM_ARCH_MINICPM:
            case LLM_ARCH_GRANITE:
            case LLM_ARCH_GRANITE_MOE:
2638
            case LLM_ARCH_MISTRAL3:
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
2649
2650
                    }

2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }
                        else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

                        if (n_expert == 0) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                            // optional MLP bias
                            layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                        } else {
                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);
2691
2692
2693
2694
2695
2696
2697

                            // For Granite MoE Shared
                            if (hparams.n_ff_shexp > 0) {
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
                            }
2698
2699
2700
                        }
                    }
                } break;
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
            case LLM_ARCH_LLADA:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output =
                            create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
                        layer.wq =
                            create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
                        // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
                        layer.wo =
                            create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
                                                         TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);

                        // optional MLP bias
                        layer.ffn_gate_b =
                            create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_b =
                            create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
                    }
                }
                break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
            case LLM_ARCH_LLADA_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                    }
                } break;
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
            case LLM_ARCH_LLAMA4:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2796
                        bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        if (is_moe_layer) {
                            int n_ff_exp = hparams.n_ff_exp;

                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff_exp, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);

                            // Shared expert
                            const int64_t n_ff_shexp = n_ff_exp;
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, n_ff_shexp}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd    }, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp}, 0);
                        } else {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
                    }
                } break;
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
            case LLM_ARCH_DECI:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
2843

2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
                        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa(i);
                        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa(i);
                        const int64_t n_embd_gqa    = hparams.n_embd_v_gqa(i);
                        const int64_t n_ff          = hparams.n_ff(i);
                        const int64_t n_head        = hparams.n_head(i);
                        const int64_t n_head_kv     = hparams.n_head_kv(i);

                        if (n_head_kv == 0 && n_head > 0) {
                            // linear attention for DeciLMCausalModel
                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        }
                        else if (n_head_kv > 0) {
                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
                        }

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

2873
2874
2875
                        if (n_ff > 0) {
                            layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        }
2876
2877
2878
2879
2880
2881
2882
2883
2884

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }
                        else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

2885
2886
2887
2888
2889
                        if (n_ff > 0) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913

                        // optional MLP bias
                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_MINICPM3:
                {
                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;

                    const int64_t q_lora_rank  = hparams.n_lora_q;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
2914

2915
2916
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
2917

2918
2919
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
2920

2921
                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
2922

2923
2924
                        layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
                        layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
2925

2926
2927
2928
                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
                        layer.wkv_b     = create_tensor(tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
                        layer.wo        = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd}, 0);
2929

2930
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2931

2932
2933
2934
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
2935

2936
2937
2938
2939
2940
2941
2942
2943
2944
                        layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                    }
                } break;
            case LLM_ARCH_GROK:
                {
                    if (n_expert == 0) {
                        throw std::runtime_error("Grok model cannot have zero experts");
                    }
2945

2946
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2947

2948
2949
2950
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
2951

2952
2953
2954
2955
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
2956

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2957
                    const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
2958
2959
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
2960

2961
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2962

2963
2964
2965
2966
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2967

2968
                        layer.attn_out_norm   = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
2969

2970
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2971

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2972
2973
2974
2975
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff,   n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);

2976
                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2977
2978
2979
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd,   n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);
2980

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2981
2982
2983
2984
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        if (!layer.ffn_post_norm) {
                            layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                        }
2985
2986
2987
2988
2989
2990
2991
                    }
                } break;
            case LLM_ARCH_DBRX:
                {
                    if (n_expert == 0) {
                        throw std::runtime_error("DBRX model cannot have zero experts");
                    }
2992

2993
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2994

2995
2996
2997
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
2998

2999
3000
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
3001

3002
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
3003

3004
3005
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
3006

3007
                        layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
3008

3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_BAICHUAN:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
                    }
3022

3023
3024
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
3025

3026
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
3027

3028
3029
3030
3031
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
3032

3033
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
3034

3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_FALCON:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    {
                        output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);

                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        if (!output) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_STARCODER:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, 0);

                    // output
                    {
                        output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                        output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        if (!output) {
                            // needs to be on GPU
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }

                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff}, 0);
                        layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_BERT:
            case LLM_ARCH_NOMIC_BERT:
3112
            case LLM_ARCH_NOMIC_BERT_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3113
            case LLM_ARCH_JINA_BERT_V3:
3114
3115
                {
                    tok_embd     = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0);
3116
                    type_embd    = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
3117
3118
3119
3120
3121
3122
3123

                    if (arch == LLM_ARCH_BERT) {
                        pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,    "weight"), {n_embd, n_ctx_train}, 0);

                        cls   = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
                        cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"),   {n_embd},         TENSOR_NOT_REQUIRED);

3124
3125
                        cls_out   = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
                        cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"),   {hparams.n_cls_out},         TENSOR_NOT_REQUIRED);
3126
3127
3128
3129
3130
3131
3132
3133
                    }

                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

3134
3135
3136
3137
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        if (!layer.wqkv) {
3138
3139
3140
3141
3142
3143
3144
3145
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd}, 0);

                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa}, 0);

                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa}, 0);
3146
3147
                        }

3148
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3149
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);
3150
3151
3152
3153

                        layer.attn_out_norm   = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd}, 0);

3154
3155
3156
3157
                        if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff,   n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff,   n_embd, n_expert}, 0);
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,   "weight", i), {n_embd, n_expert}, 0);
3158
                        } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3159
3160
3161
3162
3163
3164
                            layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                            if (arch == LLM_ARCH_NOMIC_BERT) {
3165
3166
                                layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                            }
3167
3168
3169
3170
3171
3172
                        }

                        layer.layer_out_norm   = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
                        layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd}, 0);
                    }
                } break;
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
            case LLM_ARCH_NEO_BERT:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0);

                    cls   = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
                    cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"),   {n_embd},         TENSOR_NOT_REQUIRED);

                    cls_out   = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
                    cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"),   {hparams.n_cls_out},         TENSOR_NOT_REQUIRED);

                    output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff*2}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                    }
                } break;
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
            case LLM_ARCH_JINA_BERT_V2:
                {
                    tok_embd  = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0); // word_embeddings
                    type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings

                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}, 0); //LayerNorm bias

                    cls   = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
                    cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"),   {1},         TENSOR_NOT_REQUIRED);
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i]; // JinaBertLayer

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd}, 0);

                        layer.attn_q_norm   = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias",   i), {n_embd_gqa}, 0);

                        layer.attn_k_norm   = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias",   i), {n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd}, 0); //output_dens

                        layer.attn_out_norm   = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
                        layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias",   i), {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

3236
3237
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd}, 0);

                        layer.layer_out_norm   = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
                        layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias",   i), {n_embd}, 0);
                    }
                } break;
            case LLM_ARCH_BLOOM:
                {
                    tok_embd   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, 0);
                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
3255
3256
3257
3258
3259
3260
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias",   i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias",   i), {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias",   i), {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias",   i), {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_MPT:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, TENSOR_NOT_REQUIRED);

                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    if (!output) {
                        output    = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, TENSOR_NOT_REQUIRED);

                        layer.attn_q_norm   = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.attn_k_norm   = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        // AWQ ScaleActivation layer
                        layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_STABLELM:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm =   create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors, present in Stable LM 2 1.6B
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        // optional q and k layernorms, present in StableLM 2 12B
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head},    TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);

                        // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd*3}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN2:
            case LLM_ARCH_QWEN2VL:
3393
            case LLM_ARCH_DREAM:
3394
3395
3396
3397
3398
3399
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
3400
                    output_b    = create_tensor(tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab}, TENSOR_NOT_REQUIRED);
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN2MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
3447
3448
3449
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
                        }

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        // Shared expert branch
                        const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;

                        layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, n_ff_shexp}, 0);
                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp,     n_embd}, 0);
                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp}, 0);
                    }
                } break;
3478
            case LLM_ARCH_QWEN3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3479
            case LLM_ARCH_QWEN3VL:
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3491
3492
3493
                    // output rerank head
                    cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);

3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN3MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3514
3515
            case LLM_ARCH_QWEN3VLMOE:
            case LLM_ARCH_RND1:
3516
3517
3518
3519
3520
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
3521
3522
3523
3524
3525
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
                        }

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                    }
                } break;
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
            case LLM_ARCH_PHI2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
                    output_b      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd}, 0);

                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i),   {n_embd_gqa}, 0);

                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i),   {n_embd_gqa}, 0);
                        }

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_PHI3:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
3605
3606
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

3607
3608
3609
3610
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);

3625
3626
                        layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
                    }
                } break;
            case LLM_ARCH_PHIMOE:
                {
                    const int64_t n_embd_head = n_embd / n_head;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), { n_embd, n_vocab }, 0);
                    output_b      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "bias"),   { n_vocab }, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias",   i), { n_embd }, 0);

3647
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias",   i), {n_embd}, 0);

                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias",   i), {n_embd_gqa}, 0);

                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias",   i), {n_embd_gqa}, 0);
                        }
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), { n_embd }, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias",   i), { n_embd }, 0);

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert},         0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);

                        layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                     }
                } break;
            case LLM_ARCH_PLAMO:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
3696
3697
            case LLM_ARCH_PLAMO2:
                {
3698
                    // mamba parameters
3699
3700
3701
3702
3703
3704
                    const uint32_t d_conv             = hparams.ssm_d_conv;
                    const uint32_t d_state            = hparams.ssm_d_state;
                    const uint32_t num_heads          = hparams.ssm_dt_rank;
                    const uint32_t intermediate_size  = hparams.ssm_d_inner;
                    const int64_t dt_dim              = std::max(64, int(hparams.n_embd / 16));

3705
3706
3707
3708
                    // attention parameters
                    const uint32_t qk_dim = hparams.n_embd_head_k;
                    const uint32_t v_dim  = hparams.n_embd_head_v;

3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
                        bool is_mamba_layer = hparams.is_recurrent(i);

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (is_mamba_layer) {
                            layer.ssm_in       = create_tensor(tn(LLM_TENSOR_SSM_IN,     "weight", i), {n_embd, 2 * intermediate_size}, 0);
                            layer.ssm_conv1d   = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);

                            layer.ssm_x    = create_tensor(tn(LLM_TENSOR_SSM_X,  "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
                            layer.ssm_dt   = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);

                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);

                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);

                            layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
                            layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
                            layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
                        } else {
3742
3743
                            const int64_t num_attention_heads = hparams.n_head(i);
                            const int64_t q_num_heads         = num_attention_heads;
3744
3745
3746
3747
3748
3749
3750
3751
                            const int64_t num_key_value_heads = hparams.n_head_kv(i);
                            const int64_t k_num_heads         = num_key_value_heads;
                            const int64_t v_num_heads         = num_key_value_heads;
                            const int64_t q_proj_dim          = q_num_heads * qk_dim;
                            const int64_t k_proj_dim          = k_num_heads * qk_dim;
                            const int64_t v_proj_dim          = v_num_heads * v_dim;

                            layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
3752
3753
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
                        }

                        // All layers have post-attention norm, FFN norm, and FFN tensors
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
                    }
                } break;
3765
3766
3767
3768
3769
3770
3771
3772
            case LLM_ARCH_GPT2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
3773
3774
3775
3776
3777
3778
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_CODESHELL:
                {
3804
3805
3806
3807
3808
3809
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if tok embd is NULL, init from output
                    if (tok_embd == NULL) {
                        tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_ORION:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_INTERNLM2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_GEMMA:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                    }
                } break;
            case LLM_ARCH_GEMMA2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
Patrick Devine's avatar
Patrick Devine committed
3939
            case LLM_ARCH_GEMMA3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3940
            case LLM_ARCH_GEMMA_EMBEDDING:
3941
3942
3943
3944
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
3945
3946
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
3947
3948
3949

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
3950
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,   "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
3951
3952
                    }

3953
3954
3955
3956
3957
                    // Dense linear weights
                    dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED);
                    dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED);


3958
3959
3960
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

3961
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
3962

3963
3964
3965
3966
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
3967

3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_k_norm    = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM,    "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm    = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM,    "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
            case LLM_ARCH_GEMMA3N:
                {
                    const int64_t n_altup      = hparams.n_altup;
                    const int64_t laurel_rank  = hparams.laurel_rank;
                    const int64_t n_embd_altup = hparams.n_embd_altup;

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    tok_embd           = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,           "weight"), {n_embd, n_vocab}, 0);
                    tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);

                    altup_proj           = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ,           "weight"), {n_embd, n_embd, n_altup - 1}, 0);
                    altup_unembd_proj    = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ,    "weight"), {n_embd, n_embd, n_altup - 1}, 0);
                    per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
                    per_layer_proj_norm  = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM,  "weight"), {n_embd_altup}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_q_norm    = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM,    "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm    = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM,    "weight", i), {n_embd_head_k}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);

                        // altup & laurel
                        layer.per_layer_inp_gate   = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE,  "weight", i), {n_embd, n_embd_altup}, 0);
                        layer.per_layer_proj       = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ,      "weight", i), {n_embd_altup, n_embd}, 0);
                        layer.per_layer_post_norm  = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
                        layer.altup_correct_coef   = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF,  "weight", i), {n_altup, n_altup}, 0);
                        layer.altup_correct_scale  = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
                        layer.altup_predict_coef   = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF,  "weight", i), {n_altup, n_altup * n_altup}, 0);
                        layer.altup_router         = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER,        "weight", i), {n_embd, n_altup}, 0);
                        layer.altup_router_norm    = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM,   "weight", i), {n_embd}, 0);
                        layer.laurel_l             = create_tensor(tn(LLM_TENSOR_LAUREL_L,            "weight", i), {n_embd, laurel_rank}, 0);
                        layer.laurel_r             = create_tensor(tn(LLM_TENSOR_LAUREL_R,            "weight", i), {laurel_rank, n_embd}, 0);
                        layer.laurel_post_norm     = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM,    "weight", i), {n_embd}, 0);
                    }
                } break;
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
            case LLM_ARCH_STARCODER2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, 0);
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                        // optional bias tensors
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP ,  "bias", i), {  n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_MAMBA:
                {
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t dt_rank = hparams.ssm_dt_rank;

                    // only an expansion factor of 2 is supported for now
                    if (2 * n_embd != d_inner) {
                        throw std::runtime_error("only an expansion factor of 2 is supported for now");
                    }

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed, duplicated to allow offloading
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // norm
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);

                        layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
                        layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);

                        layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);

                        layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
                        layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);

                        // no "weight" suffix for these
                        layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
                        layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);

                        // out_proj
                        layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                    }
                } break;
4124
            case LLM_ARCH_MAMBA2:
4125
                {
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t n_head  = hparams.ssm_dt_rank;
                    const int64_t n_group = hparams.ssm_n_group;
                    const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

4136
4137
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
                    // output
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }
4148
4149
4150
4151

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

4152
                        // norm
4153
4154
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

4155
                        layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
4156

4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
                        layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
                        layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);

                        layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);

                        // no "weight" suffix for these
                        layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
                        layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);

                        layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);

                        // out_proj
                        layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
4170
4171
                    }
                } break;
4172
            case LLM_ARCH_JAMBA:
4173
                {
4174
4175
4176
4177
4178
4179
4180
4181
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t dt_rank = hparams.ssm_dt_rank;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

4182
4183
4184
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
4185
4186
4187
4188
4189
4190
4191
4192
4193
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }
4194
4195

                    for (int i = 0; i < n_layer; ++i) {
4196
4197
4198
                        const int64_t n_head_kv = hparams.n_head_kv(i);
                        const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);

4199
4200
                        auto & layer = layers[i];

4201
                        // norm
4202
4203
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

4204
4205
4206
                        if (n_head_kv == 0) {
                            // Mamba layer
                            layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
4207

4208
4209
                            layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
                            layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
4210

4211
                            layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
4212

4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
                            layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);

                            layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);

                            layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
                            layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);

                            // no "weight" suffix for these
                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);

                            // out_proj
                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                        } else {
                            // Attention layers

                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        }

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);

                        if (layer.ffn_gate_inp) {
                            // MoE
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff, n_expert}, 0);
                        } else {
                            // FFN (no MoE)
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_GRANITE_HYBRID:
                {
                    // mamba2 Mixer SSM params
                    // NOTE: int64_t for tensor dimensions
                    const int64_t d_conv     = hparams.ssm_d_conv;
                    const int64_t d_inner    = hparams.ssm_d_inner;
                    const int64_t d_state    = hparams.ssm_d_state;
                    const int64_t n_ssm_head = hparams.ssm_dt_rank;
                    const int64_t n_group    = hparams.ssm_n_group;
                    const int64_t d_in_proj  = 2*d_inner + 2*n_group*d_state + n_ssm_head;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

                    // embeddings
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // norm
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.is_recurrent(i)) {
                            // ssm layers
                            layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);

                            layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
                            layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);

                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);

                            // no "weight" suffix for these
                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);

                            layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);

                            // out_proj
                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                        } else {
                            // attention layers (with optional bias)
                            const int64_t n_head_i = hparams.n_head(i);
                            const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
                            const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},         TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},         TENSOR_NOT_REQUIRED);
                        }

                        // feed forward (w/ optional biases)
                        if (n_expert > 0) {
                            // MoE FFN
                            layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);

                            // For Granite MoE Shared
                            if (hparams.n_ff_shexp > 0) {
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
                            }
                        } else {
                            layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                        }
                    }
                } break;
            case LLM_ARCH_XVERSE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_COMMAND_R:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    // init output from the input tok embed
                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (n_layer >= 64){
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
                        }

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_COHERE2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    // init output from the input tok embed
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
                    output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
                                                      TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
                    }
                }
                break;
            case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_OLMO2:
                {
4450
4451
                    const int64_t n_embd_head = n_embd / n_head;

4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
4466
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
4467
4468
4469
4470
4471
4472
4473
4474
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
            case LLM_ARCH_SEED_OSS:
                {
                    const uint32_t head_dim             = hparams.n_embd_head_k;
                    const int64_t n_qo_dim              = n_head * head_dim;
                    const int64_t n_kv_dim              = n_head_kv * head_dim;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_qo_dim}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_kv_dim}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_kv_dim}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);

                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_qo_dim},   TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_kv_dim},   TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_kv_dim},   TENSOR_NOT_REQUIRED);

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                    }
                } break;

4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
            case LLM_ARCH_OLMOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0");
                        }

                        // MoE branch
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_OPENELM:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    // init output from the input tok embed
                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        const int64_t n_head      =   hparams.n_head(i);
                        const int64_t n_head_qkv  = 2*hparams.n_head_kv(i) + n_head;
                        const int64_t n_ff        =   hparams.n_ff(i);

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_GPTNEOX:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_ARCTIC:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, false);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_DEEPSEEK:
                {

                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        } else {
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                            if (n_expert == 0) {
                                throw std::runtime_error("n_expert must be > 0");
                            }
                            if (n_expert_used == 0) {
                                throw std::runtime_error("n_expert_used must be > 0");
                            }

                            // MoE branch
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                            // Shared expert branch
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_DEEPSEEK2:
                {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4696
4697
                    // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
                    const bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
4698

4699
4700
4701
4702
4703
4704
                    const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);

                    // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
                    const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
                    const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;

4705
                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
4706
                    const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731

                    const int64_t q_lora_rank  = hparams.n_lora_q;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;

                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        if (!is_lite) {
                            layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
                        }

                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);

                        if (!is_lite) {
                            layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
4732
                            layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
4733
                        } else {
4734
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
4735
4736
                        }

4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);

                        // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
                        if (is_mla) {
                            layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
                            layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
                        } else {
                            layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
                        }

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        } else {
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);

                            if (n_expert == 0) {
                                throw std::runtime_error("n_expert must be > 0");
                            }
                            if (n_expert_used == 0) {
                                throw std::runtime_error("n_expert_used must be > 0");
                            }

                            // MoE branch
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                            // Shared expert branch
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        }
                    }
                } break;
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
            case LLM_ARCH_PLM:
                {
                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    // output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq        = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
                        layer.wkv_b     = create_tensor(tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
                        layer.wo        = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
            case LLM_ARCH_BITNET:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm     = create_tensor(tn(LLM_TENSOR_ATTN_NORM,     "weight", i), {n_embd}, 0);
                        layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);

                        layer.wq       = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.wk       = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.wv       = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.wo       = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale",  i), {1}, TENSOR_NOT_REQUIRED);

                        layer.ffn_norm     = create_tensor(tn(LLM_TENSOR_FFN_NORM,     "weight", i), {n_embd}, 0);
                        layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);

                        layer.ffn_gate       = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down       = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up         = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_scale   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_T5:
                {
                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm     = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4856
4857
4858
4859
4860
4861
4862
4863
                    // n_layer:     number of encoder_layers
                    // dec_n_layer: number of decoder_layers
                    const int dec_n_layer = hparams.dec_n_layer;
                    if (dec_n_layer > n_layer) {
                        layers.resize(dec_n_layer);
                    }

                    // load encoder layers
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm_enc  = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up_enc   = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4879
4880
4881
4882
4883
                    }

                    // load decoder layers
                    for (int i = 0; i < dec_n_layer; ++i) {
                        auto & layer = layers[i];
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978

                        layer.attn_norm  = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.attn_norm_cross  = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        // this tensor seems to be unused in HF transformers implementation
                        layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd,   n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_T5ENCODER:
                {
                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm_enc  = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up_enc   = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_JAIS:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_gate   = create_tensor(tn(LLM_TENSOR_FFN_GATE,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE,   "bias", i),   {n_ff}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_CHATGLM:
                {
                    tok_embd   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
4979
4980
4981
4982
4983
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
4984
4985
4986
4987
4988

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4989
4990
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
4991
4992
4993
4994
4995

                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
4996
4997
4998
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
                        }

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                    }
                } break;
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
            case LLM_ARCH_GLM4:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        }

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);

                        layer.ffn_post_norm  = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
            case LLM_ARCH_GLM4_MOE:
                {
                    const int64_t n_expert        = hparams.n_expert;
                    const int64_t n_expert_used   = hparams.n_expert_used;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
                    GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
                    }

                    // Load ALL tensors including NextN layer to satisfy total tensor count
                    // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
                    for (int i = 0; i < n_layer; ++i) {
                        int flags = 0;
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            // skip all tensors in the NextN layers
                            flags |= TENSOR_SKIP;
                        }

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);

                        // GLM-style attention with bias terms
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);

                        // K/Q norm tensors (optional for GLM-4.5 355B variant)
                        layer.attn_q_norm = create_tensor(
                            tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
                        layer.attn_k_norm = create_tensor(
                            tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);

                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);

                        // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
                        // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
                        const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);

                        if (use_moe) {
                            // MoE layers
                            layer.ffn_gate_inp =
                                create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);

                            // MoE branch
                            const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                            layer.ffn_gate_exps = create_tensor(
                                tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
                            layer.ffn_down_exps = create_tensor(
                                tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
                            layer.ffn_up_exps = create_tensor(
                                tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);

                            // Shared expert
                            if (n_expert_shared > 0) {
                                const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
                                layer.ffn_gate_shexp = create_tensor(
                                    tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
                                layer.ffn_down_shexp = create_tensor(
                                    tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
                                layer.ffn_up_shexp = create_tensor(
                                    tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
                            }
                        } else {
                            // Dense layers (first k layers) - GLM uses separate gate/up projections
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), { n_embd, n_ff }, flags);
                        }

                        // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            layer.nextn.eh_proj          = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
                            layer.nextn.enorm            = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
                            layer.nextn.hnorm            = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
5141
5142
5143
5144
5145

                            // Optional tensors
                            layer.nextn.embed_tokens     = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
                            layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
                            layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
5146
5147
5148
5149
                        }
                    }
                }
                break;
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
            case LLM_ARCH_NEMOTRON:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                        // optional MLP bias
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5187
            case LLM_ARCH_NEMOTRON_H:
5188
            case LLM_ARCH_NEMOTRON_H_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
                {
                    // mamba2 Mixer SSM params
                    // NOTE: int64_t for tensor dimensions
                    const int64_t d_conv     = hparams.ssm_d_conv;
                    const int64_t d_inner    = hparams.ssm_d_inner;
                    const int64_t d_state    = hparams.ssm_d_state;
                    const int64_t n_ssm_head = hparams.ssm_dt_rank;
                    const int64_t n_group    = hparams.ssm_n_group;
                    const int64_t d_in_proj  = 2*d_inner + 2*n_group*d_state + n_ssm_head;

5199
5200
5201
                    const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
                    const int64_t n_ff_shexp = hparams.n_ff_shexp;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
                    // embeddings
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // all blocks use the attn norm
                        layer.attn_norm  = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.is_recurrent(i)) {
                            // ssm layers
                            layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);

                            layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
                            layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);

                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);

                            // no "weight" suffix for these
                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);

                            layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);

                            // out_proj
                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                        } else if (hparams.n_ff(i) == 0) {
                            // attention layers (with optional bias)
                            const int64_t n_head_i = hparams.n_head(i);
                            const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
                            const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias",   i), {n_embd},         TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias",   i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias",   i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd},         TENSOR_NOT_REQUIRED);
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
                        }  else {
                            if (n_expert != 0) {
                                layer.ffn_gate_inp    = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), { n_embd, n_expert}, 0);
                                layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert         }, 0);

                                // MoE branch
                                layer.ffn_down_exps   = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                                layer.ffn_up_exps     = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                                // Shared expert branch
                                layer.ffn_down_shexp  = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
                                layer.ffn_up_shexp    = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, 0);

                            } else {
                                // mlp layers
                                layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  hparams.n_ff(i), n_embd}, 0);
                                layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   hparams.n_ff(i)}, 0);
                                layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);
                                layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias",   i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
                            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5271
5272
5273
                        }
                    }
                } break;
5274
5275
5276
5277
5278
5279
            case LLM_ARCH_EXAONE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
5280
5281
5282
5283
5284
5285
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM,   "weight", i), {n_embd}, 0);
                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.ffn_gate   = create_tensor(tn(LLM_TENSOR_FFN_GATE,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN,   "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,     "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
            case LLM_ARCH_EXAONE4:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_post_norm  = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
            case LLM_ARCH_RWKV6:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // Block 0, LN0
                    tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int time_mix_extra_dim = hparams.time_mix_extra_dim;
                    const int time_decay_extra_dim = hparams.time_decay_extra_dim;
                    const int head_size = hparams.wkv_head_size;
                    const int attn_hidden_size = n_embd;
                    const int ffn_size = hparams.n_ff_arr[0];

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, 0);

                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);

                        layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
5369
5370
5371
5372
5373
5374
                        layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
                        GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));

                        layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
                        layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
                        layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
                        layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);

                        layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
                        layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
                        layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);

                        layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
                        layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
                        layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
                    }

                } break;
            case LLM_ARCH_RWKV6QWEN2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
5404
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int time_mix_extra_dim = hparams.time_mix_extra_dim;
                    const int time_decay_extra_dim = hparams.time_decay_extra_dim;
                    const int head_size = hparams.wkv_head_size;
                    const int attn_hidden_size = n_embd;
                    const int n_head_kv = hparams.n_head_kv();
                    int attn_key_value_size;
                    if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
                        attn_key_value_size = attn_hidden_size;
                    } else {
                        attn_key_value_size = n_head_kv * head_size;
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);

                        layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
                        layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);

5430
                        layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
5431
5432
5433
5434
5435
5436
5437
5438
                        layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
                        layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
                        layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        // optional bias tensors
5439
5440
5441
                        layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451

                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
5452
            case LLM_ARCH_SOLAR:
5453
5454
5455
5456
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
5457
5458
5459
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
5460
5461
5462
5463
5464
5465
5466
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

5467
5468
5469
5470
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
5471
5472
5473

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

5474
                        layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
5475
5476
5477
5478
5479
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
5480
            case LLM_ARCH_RWKV7:
5481
5482
5483
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

5484
5485
5486
5487
                    // Block 0, LN0
                    tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);

5488
                    // output
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int n_lora_decay = hparams.n_lora_decay;
                    const int n_lora_iclr = hparams.n_lora_iclr;
                    const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
                    const int n_lora_gate = hparams.n_lora_gate;
                    const int attn_hidden_size = n_embd;
                    const int ffn_size = hparams.n_ff_arr[0];

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, 0);

                        layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);

                        layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
                        layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
                        layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);

                        if (i == 0) {
                            // actually not used
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
                        } else {
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
                        }

                        layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
                        layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);

                        layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);

                        layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);

                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);

                        layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
                        layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);

                        layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
                        layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
                    }

                } break;
            case LLM_ARCH_ARWKV7:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int n_lora_decay = hparams.n_lora_decay;
                    const int n_lora_iclr = hparams.n_lora_iclr;
                    const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
                    const int n_lora_gate = hparams.n_lora_gate;
                    const int attn_hidden_size = n_embd;

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);

                        layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
                        layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
                        layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);

                        if (i == 0) {
                            // actually not used
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
                        } else {
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
                        }

                        layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);

                        try {
                            layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
                        } catch(std::runtime_error & e) {
                            // ARWKV models may not have gate tensors
                            layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
                        }

                        layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);

                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);

                        layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }

                } break;
            case LLM_ARCH_CHAMELEON:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
5630
5631
5632
5633
5634
5635
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
5636
5637
5638
5639
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i),  {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i),  {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
5640

5641
5642
5643
5644
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_WAVTOKENIZER_DEC:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);

                    conv1d   = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
                    conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"),   {1, hparams.posnet.n_embd}, 0);

                    // posnet
                    {
                        const int64_t n_embd = hparams.posnet.n_embd;

                        for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
                            auto & layer = layers[i].posnet;

                            // posnet:
                            //
                            //  - resnet
                            //  - resnet
                            //  - attn
                            //  - resnet
                            //  - resnet
                            //  - norm
                            //
                            switch (i) {
                                case 0:
                                case 1:
                                case 3:
                                case 4:
                                    {
                                        layer.norm1   = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
                                        layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias",   i), {1, n_embd}, 0);

                                        layer.conv1   = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
                                        layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias",   i), {1, n_embd}, 0);

                                        layer.norm2   = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
                                        layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias",   i), {1, n_embd}, 0);

                                        layer.conv2   = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
                                        layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias",   i), {1, n_embd}, 0);
                                    } break;
                                case 2:
                                    {
                                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
                                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias",   i), {1, n_embd}, 0);

                                        layer.attn_q      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q,    "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_q_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q,    "bias",   i), {1, n_embd}, 0);

                                        layer.attn_k      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K,    "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_k_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K,    "bias",   i), {1, n_embd}, 0);

                                        layer.attn_v      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V,    "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_v_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V,    "bias",   i), {1, n_embd}, 0);

                                        layer.attn_o      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT,  "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_o_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT,  "bias",   i), {1, n_embd}, 0);
                                    } break;
                                case 5:
                                    {
                                        layer.norm   = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
                                        layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias",   i), {1, n_embd}, 0);
                                    } break;
                                default: GGML_ABORT("unknown posnet layer");
                            };
                        }
                    }

                    GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);

                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {hparams.posnet.n_embd}, 0);

                    // convnext
                    {
                        const int64_t n_embd = hparams.convnext.n_embd;

                        for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
                            auto & layer = layers[i].convnext;

                            layer.dw     = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW,    "weight", i), {7, 1, n_embd}, 0);
                            layer.dw_b   = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW,    "bias",   i), {1, n_embd}, 0);

                            layer.norm   = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM,  "weight", i), {n_embd}, 0);
                            layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM,  "bias",   i), {n_embd}, 0);

                            layer.pw1    = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1,   "weight", i), {n_embd, n_ff}, 0);
                            layer.pw1_b  = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1,   "bias",   i), {n_ff}, 0);

                            layer.pw2    = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2,   "weight", i), {n_ff, n_embd}, 0);
                            layer.pw2_b  = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2,   "bias",   i), {n_embd}, 0);

                            layer.gamma  = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
                        }

                        // output
                        output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    }

                    output   = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
                    output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"),   {n_embd}, 0);
                } break;
5756
5757
5758
5759
            case LLM_ARCH_BAILINGMOE:
                {
                    const int64_t n_ff_exp            = hparams.n_ff_exp;
                    const int64_t n_expert_shared     = hparams.n_expert_shared;
5760

5761
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
5762

5763
5764
5765
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
5766

5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_head * n_rot}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0");
                        }

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
            case LLM_ARCH_BAILINGMOE2:
                {
                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");

                    for (int i = 0; i < n_layer; ++i) {
                        int flags = 0;
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            // skip all tensors in the NextN layers
                            flags |= TENSOR_SKIP;
                        }

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);

                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);

                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
                            const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;

                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);

                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, flags);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);

                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, flags);
                        } else { // Dense layers
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, flags);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, flags);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, flags);
                        }

                        // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            layer.nextn.eh_proj          = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
                            layer.nextn.embed_tokens     = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
                            layer.nextn.enorm            = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
                            layer.nextn.hnorm            = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
                            layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
                            layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
                            layer.layer_out_norm         = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
                        }
                    }
                } break;
5860
5861
5862
5863
            case LLM_ARCH_DOTS1:
                {
                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;
5864

5865
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
5866

5867
5868
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
5869

5870
5871
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
5872

5873
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
5874

5875
5876
5877
5878
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
5879

5880
5881
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
5882

5883
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
5884

5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        } else {
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);

                            if (n_expert == 0) {
                                throw std::runtime_error("n_expert must be > 0");
                            }
                            if (n_expert_used == 0) {
                                throw std::runtime_error("n_expert_used must be > 0");
                            }

                            // MoE branch
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                            // Shared expert branch
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_ARCEE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
            case LLM_ARCH_AFMOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    const int64_t n_ff_exp = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // dual attention normalization
                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), {n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        // attention projections
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // Q/K normalization
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);

                        // attention gating
                        layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);

                        // dual ffn normalization
                        layer.ffn_norm      = create_tensor(tn(LLM_TENSOR_FFN_NORM,      "weight", i), {n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);

                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
                            // MoE layers
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);

                            // grouped expert weights
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff_exp, n_expert}, 0);

                            // shared expert
                            if (n_expert_shared > 0) {
                                const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, 0);
                            }
                        } else {
                            // Dense layers
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        }
                    }
                } break;
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
            case LLM_ARCH_ERNIE4_5:
            case LLM_ARCH_ERNIE4_5_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
                            int n_ff_exp = hparams.n_ff_exp;

                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff_exp, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);

                            // Shared expert (if present)
                            if (hparams.n_ff_shexp > 0) {
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd    }, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, hparams.n_ff_shexp}, 0);
                            }
                        } else { // Dense layers
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_FALCON_H1:
                {
                    // Common
                    const int64_t hidden_size = hparams.n_embd; // hidden_size

                    // mamba2 Mixer SSM params
                    const int64_t ssm_conv_kernel_size  = hparams.ssm_d_conv; // ssm_conv_kernel_size
                    const int64_t ssm_n_groups          = hparams.ssm_n_group; // ssm_n_groups
                    const int64_t ssm_state_size        = hparams.ssm_d_state; // ssm_state_size
                    const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
                    const int64_t ssm_num_heads         = hparams.ssm_dt_rank; // ssm_num_heads
                    const int64_t ssm_conv_dim          = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
                    const int64_t ssm_projection_size   = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;

                    // attn params
                    const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
                    const int64_t attn_num_key_value_head = hparams.n_head_kv(0);

                    // ffn params
                    const int64_t ffn_intermediate_size = hparams.n_ff(0);

                    // embeddings
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);

                    // output
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        /*SSM LAYERS*/
                        // ssm in
                        layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
                        // ssm 1d conv
                        layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
                        layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
                        // ssm_dt
                        layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
                        // no "weight" suffix for these
                        layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
                        layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
                        // ssm_norm
                        layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
                        // out_proj
                        layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);

                        /*ATTENTION LAYERS*/
                        // attention layers (with optional bias)
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);


                        // feed forward (w/ optional biases)
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size,   ffn_intermediate_size}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  ffn_intermediate_size, hidden_size}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {hidden_size,   ffn_intermediate_size}, 0);

                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_HUNYUAN_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);

                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
                    }
                } break;
            case LLM_ARCH_HUNYUAN_DENSE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                    }
                } break;
            case LLM_ARCH_SMOLLM3:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_OPENAI_MOE:
                {
                    const int64_t n_ff_exp = hparams.n_ff_exp;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), {n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_head * n_rot}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);

                        layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {  n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        // bias
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_head * n_rot}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_head_kv * n_rot}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_head_kv * n_rot}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

                        layer.ffn_gate_inp_b  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "bias", i), {n_expert}, 0);
                        layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), {  n_embd, n_expert}, 0);
                        layer.ffn_up_exps_b   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "bias", i), {n_ff_exp, n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_LFM2:
6278
            case LLM_ARCH_LFM2MOE:
6279
                {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6280
6281
6282
6283
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6284
6285
6286
6287

                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
6288
6289
6290

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
6291
6292
6293
6294

                        const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);

                        // ffn/moe is same for transformer and conv layers
6295
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
                        if (is_moe_layer) {
                            GGML_ASSERT(n_expert && n_expert_used);
                            layer.ffn_gate_inp    = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i),  {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps   = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps   = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps     = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i),   {n_embd, hparams.n_ff_exp, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
                        } else {  // dense
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364

                        // for operator_norm
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (!hparams.is_recurrent(i)) {
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                            GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);

                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);

                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        } else {
                            layer.shortconv.conv     = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV,    "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
                            layer.shortconv.in_proj  = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ,  "weight", i), {n_embd, 3 * n_embd}, 0);
                            layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_SMALLTHINKER:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);

                        GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
                        GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp;
                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6365
6366
6367
            case LLM_ARCH_GROVEMOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
6368

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6369
6370
6371
6372
6373
6374
6375
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
6376

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6377
6378
6379
                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE");
                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE");
                    GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE");
6380

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6381
6382
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
6383

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
                        const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k;
                        const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), {  n_embd, n_ff_chexp, n_chunk_expert}, 0);
                        layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp,   n_embd, n_chunk_expert}, 0);
                        layer.ffn_up_chexps   = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS,   "weight", i), {  n_embd, n_ff_chexp, n_chunk_expert}, 0);
                    }
                } break;
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
            case LLM_ARCH_APERTUS:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), { n_embd, n_vocab }, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        } else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), { n_embd },     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd },     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);

                        // Q and K layernorms for Apertus
                        layer.attn_q_norm   = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm   = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6454
6455
6456
            case LLM_ARCH_MINIMAX_M2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6457

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6458
6459
6460
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6461

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6462
6463
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6464

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6465
6466
6467
6468
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6469

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6470
6471
6472
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6473

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6474
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
6475

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_COGVLM:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
6486

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6487
6488
6489
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
6490

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6491
6492
6493
6494
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
6495

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6496
6497
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
6498

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6499
6500
6501
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
6502

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6503
6504
                        layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
                        layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
6505

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6506
                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
6507

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                        layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.visexp_ffn_up   = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_PANGU_EMBED:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        // weight tensors
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd_head_k * n_head}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        } else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN3NEXT:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
                    }

                    const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                    // Calculate dimensions from hyperparameters
                    const int64_t head_k_dim = hparams.ssm_d_state;
                    const int64_t head_v_dim = hparams.ssm_d_state;
                    const int64_t n_k_heads  = hparams.ssm_n_group;
                    const int64_t n_v_heads  = hparams.ssm_dt_rank;
                    const int64_t key_dim    = head_k_dim * n_k_heads;
                    const int64_t value_dim  = head_v_dim * n_v_heads;
                    const int64_t conv_dim   = key_dim * 2 + value_dim;

                    // Calculate projection sizes
                    const int64_t qkvz_dim = key_dim * 2 + value_dim * 2;
                    const int64_t ba_dim   = n_v_heads * 2;

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), { n_embd }, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);

                        if (!hparams.is_recurrent(i)) {
                            // Attention layers
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), { n_embd, n_embd_k_gqa }, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), { n_embd, n_embd_v_gqa }, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);

                            // Q/K normalization for attention layers
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
                        } else {
                            // Linear attention (gated delta net) specific tensors
                            // Create tensors with calculated dimensions
                            layer.ssm_in         = create_tensor(tn(LLM_TENSOR_SSM_IN,         "weight", i), { n_embd, qkvz_dim }, 0);
                            layer.ssm_conv1d     = create_tensor(tn(LLM_TENSOR_SSM_CONV1D,     "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
                            layer.ssm_dt         = create_tensor(tn(LLM_TENSOR_SSM_DT,         "bias",   i), { hparams.ssm_dt_rank }, 0);
6612
                            layer.ssm_a          = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN,             i), { hparams.ssm_dt_rank }, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
                            layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
                            layer.ssm_norm       = create_tensor(tn(LLM_TENSOR_SSM_NORM,       "weight", i), { head_v_dim }, 0);
                            layer.ssm_out        = create_tensor(tn(LLM_TENSOR_SSM_OUT,        "weight", i), { value_dim, n_embd }, 0);
                        }

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), { n_embd, n_expert }, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), { n_embd, n_ff_exp, n_expert }, 0);

                        // Shared experts
                        layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
                        layer.ffn_gate_shexp     = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP,     "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
                        layer.ffn_up_shexp       = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,       "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
                        layer.ffn_down_shexp     = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP,     "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
                    }
                } break;
            default:
                throw std::runtime_error("unknown architecture");
        }

        if (n_moved_tensors > 0) {
            LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
                __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
                ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
        }
    }

    ml.done_getting_tensors();

    ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
    pimpl->mappings.reserve(ml.mappings.size());

    // create the backend buffers
    std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
    ctx_buf_maps.reserve(ctx_map.size());

    // Ensure we have enough capacity for the maximum backend buffer we will potentially create
    const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
    pimpl->ctxs_bufs.reserve(n_max_backend_buffer);

    for (auto & [buft, ctx_ptr] : ctx_map) {
        ggml_context * ctx = ctx_ptr.get();

        // skip contexts without tensors
        if (ggml_get_first_tensor(ctx) == nullptr) {
            continue;
        }

        llama_buf_map buf_map;
        buf_map.reserve(n_max_backend_buffer);

        // check if it is possible to use buffer_from_host_ptr with this buffer type
        ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
        if (!dev) {
            // FIXME: workaround for CPU backend buft having a NULL device
            dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
            if (!dev) {
                throw std::runtime_error(format("%s: no CPU backend found", __func__));
            }
        }
        ggml_backend_dev_props props;
        ggml_backend_dev_get_props(dev, &props);
        bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
        bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);

        std::vector<ggml_backend_buffer_ptr> bufs;
        if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                // only the mmap region containing the tensors in the model is mapped to the backend buffer
                // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
                // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
                void * addr = nullptr;
                size_t first, last; // NOLINT
                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
                if (first >= last) {
                    continue;
                }
                const size_t max_size = ggml_get_max_tensor_size(ctx);
                ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
                if (buf == nullptr) {
                    throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
                }
                bufs.emplace_back(buf);
                buf_map.emplace(idx, buf);
            }
        }
        else {
            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
            if (buf == nullptr) {
                throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
            }
            if (use_mlock && ggml_backend_buffer_is_host(buf)) {
                pimpl->mlock_bufs.emplace_back(new llama_mlock);
                auto & mlock_buf = pimpl->mlock_bufs.back();
                mlock_buf->init   (ggml_backend_buffer_get_base(buf));
                mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
            }
            bufs.emplace_back(buf);
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                buf_map.emplace(idx, buf);
            }
        }
        pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), std::move(bufs));

        for (auto & buf : buf_map) {
            // indicate that this buffer contains weights
            // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
            ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
        }

        ctx_buf_maps.emplace_back(ctx, buf_map);
    }

    if (llama_supports_gpu_offload()) {
        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741

        LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
        if (n_gpu_layers > (int) hparams.n_layer) {
            LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
        }

        const int max_backend_supported_layers = hparams.n_layer + 1;
        const int max_offloadable_layers       = hparams.n_layer + 1;

        LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
    }

    // print memory requirements per buffer type
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6742
6743
6744
6745
6746
    for (auto & [_, bufs] : pimpl->ctxs_bufs) {
        for (auto & buf: bufs) {
            LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n",
                __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
        }
6747
6748
6749
    }

    // populate tensors_by_name
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6750
    for (auto & [ctx, _] : pimpl->ctxs_bufs) {
6751
6752
6753
6754
6755
6756
        for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
            tensors_by_name.emplace_back(ggml_get_name(cur), cur);
        }
    }

    // load tensor data
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6757
6758
    for (auto & [ctx, buf_map] : ctx_buf_maps) {
        if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
            return false;
        }
    }

    if (use_mmap_buffer) {
        for (auto & mapping : ml.mappings) {
            pimpl->mappings.emplace_back(std::move(mapping));
        }
    }

    return true;
}

std::string llama_model::arch_name() const {
    return llm_arch_name(arch);
}

std::string llama_model::type_name() const {
    return llm_type_name(type);
}

std::string llama_model::desc() const {
    return pimpl->desc_str;
}

size_t llama_model::size() const {
    return pimpl->n_bytes;
}

size_t llama_model::n_tensors() const {
    return tensors_by_name.size();
}

size_t llama_model::n_devices() const {
    return devices.size();
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6796
6797
std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
    std::map<ggml_backend_buffer_type_t, size_t> ret;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6798
6799
6800
6801
    for (const auto & [_, bufs] : pimpl->ctxs_bufs) {
        for (const auto & buf : bufs) {
            ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6802
6803
6804
6805
    }
    return ret;
}

6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
uint64_t llama_model::n_elements() const {
    return pimpl->n_elements;
}

void llama_model::print_info() const {
    const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);

    auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
        bool is_var = false;

        std::vector<uint32_t> v;
        for (uint32_t i = 0; i < n; ++i) {
            v.push_back(f(i));
            if (v[i] != v[0]) {
                is_var = true;
            }
        }

        std::stringstream ss;

        if (is_var) {
            ss << "[";
            for (uint32_t i = 0; i < n; ++i) {
                ss << v[i];
                if (i < n - 1) {
                    ss << ", ";
                }
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6834
6835
6836
            ss << "]";
        } else {
            ss << v[0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6837
6838
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6839
6840
        return ss.str();
    };
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6841

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6842
6843
6844
    // hparams
    LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, arch_name().c_str());
    LLAMA_LOG_INFO("%s: vocab_only       = %d\n",     __func__, hparams.vocab_only);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6845

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
    if (!hparams.vocab_only) {
        LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
        LLAMA_LOG_INFO("%s: n_embd           = %u\n",     __func__, hparams.n_embd);
        LLAMA_LOG_INFO("%s: n_embd_inp       = %u\n",     __func__, hparams.n_embd_inp());
        LLAMA_LOG_INFO("%s: n_layer          = %u\n",     __func__, hparams.n_layer);
        LLAMA_LOG_INFO("%s: n_head           = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head(il);    }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_head_kv        = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_rot            = %u\n",     __func__, hparams.n_rot);
        LLAMA_LOG_INFO("%s: n_swa            = %u\n",     __func__, hparams.n_swa);
        LLAMA_LOG_INFO("%s: is_swa_any       = %u\n",     __func__, hparams.is_swa_any());
        LLAMA_LOG_INFO("%s: n_embd_head_k    = %u\n",     __func__, hparams.n_embd_head_k);
        LLAMA_LOG_INFO("%s: n_embd_head_v    = %u\n",     __func__, hparams.n_embd_head_v);
        LLAMA_LOG_INFO("%s: n_gqa            = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il);        }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_embd_k_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_embd_v_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps);
        LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
        LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
        LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
        LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
        LLAMA_LOG_INFO("%s: f_attn_scale     = %.1e\n",   __func__, hparams.f_attention_scale);
        LLAMA_LOG_INFO("%s: n_ff             = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
        LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
        LLAMA_LOG_INFO("%s: n_expert_groups  = %d\n",     __func__, hparams.n_expert_groups);
        LLAMA_LOG_INFO("%s: n_group_used     = %d\n",     __func__, hparams.n_group_used);
        LLAMA_LOG_INFO("%s: causal attn      = %d\n",     __func__, hparams.causal_attn);
        LLAMA_LOG_INFO("%s: pooling type     = %d\n",     __func__, hparams.pooling_type);
        LLAMA_LOG_INFO("%s: rope type        = %d\n",     __func__, hparams.rope_type);
        LLAMA_LOG_INFO("%s: rope scaling     = %s\n",     __func__, rope_scaling_type.c_str());
        LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train);
        LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train);
        LLAMA_LOG_INFO("%s: n_ctx_orig_yarn  = %u\n",     __func__, hparams.n_ctx_orig_yarn);
        LLAMA_LOG_INFO("%s: rope_finetuned   = %s\n",     __func__, hparams.rope_finetuned ? "yes" : "unknown");
        // MRoPE (Multi-axis Rotary Position Embedding) sections
        if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) {
            LLAMA_LOG_INFO("%s: mrope sections   = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]);
        }
        if (!classifier_labels.empty()) {
            LLAMA_LOG_INFO("%s: n_cls_out        = %u\n", __func__, hparams.n_cls_out);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6886

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6887
6888
6889
6890
6891
            size_t i = 0;
            for (auto label : classifier_labels) {
                LLAMA_LOG_INFO("%s: cls_label[%2zu]    = %s\n", __func__, i++, label.c_str());
            }
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6892
    }
6893

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6894
6895
6896
6897
6898
6899
6900
    if (arch == LLM_ARCH_MAMBA ||
        arch == LLM_ARCH_MAMBA2 ||
        arch == LLM_ARCH_JAMBA ||
        arch == LLM_ARCH_FALCON_H1 ||
        arch == LLM_ARCH_PLAMO2 ||
        arch == LLM_ARCH_GRANITE_HYBRID ||
        arch == LLM_ARCH_QWEN3NEXT ||
6901
6902
        arch == LLM_ARCH_NEMOTRON_H ||
        arch == LLM_ARCH_NEMOTRON_H_MOE) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6903
6904
6905
6906
6907
6908
6909
        LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
        LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
        LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
        LLAMA_LOG_INFO("%s: ssm_dt_rank      = %u\n",     __func__, hparams.ssm_dt_rank);
        LLAMA_LOG_INFO("%s: ssm_n_group      = %u\n",     __func__, hparams.ssm_n_group);
        LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms   = %d\n",     __func__, hparams.ssm_dt_b_c_rms);
    }
6910

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
    LLAMA_LOG_INFO("%s: model type       = %s\n",     __func__, type_name().c_str());
    if (pimpl->n_elements >= 1e12) {
        LLAMA_LOG_INFO("%s: model params     = %.2f T\n", __func__, pimpl->n_elements*1e-12);
    } else if (pimpl->n_elements >= 1e9) {
        LLAMA_LOG_INFO("%s: model params     = %.2f B\n", __func__, pimpl->n_elements*1e-9);
    } else if (pimpl->n_elements >= 1e6) {
        LLAMA_LOG_INFO("%s: model params     = %.2f M\n", __func__, pimpl->n_elements*1e-6);
    } else {
        LLAMA_LOG_INFO("%s: model params     = %.2f K\n", __func__, pimpl->n_elements*1e-3);
    }
6921

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6922
6923
    // general kv
    LLAMA_LOG_INFO("%s: general.name     = %s\n",    __func__, name.c_str());
6924

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6925
6926
6927
6928
6929
6930
    if (arch == LLM_ARCH_DEEPSEEK) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
    }
6931

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
    if (arch == LLM_ARCH_DEEPSEEK2) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_lora_q             = %d\n",     __func__, hparams.n_lora_q);
        LLAMA_LOG_INFO("%s: n_lora_kv            = %d\n",     __func__, hparams.n_lora_kv);
        LLAMA_LOG_INFO("%s: n_embd_head_k_mla    = %d\n",     __func__, hparams.n_embd_head_k_mla);
        LLAMA_LOG_INFO("%s: n_embd_head_v_mla    = %d\n",     __func__, hparams.n_embd_head_v_mla);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
        LLAMA_LOG_INFO("%s: rope_yarn_log_mul    = %.4f\n",   __func__, hparams.rope_yarn_log_mul);
    }
6945

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6946
6947
6948
6949
    if (arch == LLM_ARCH_QWEN2MOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_shexp       = %d\n",     __func__, hparams.n_ff_shexp);
    }
6950

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6951
6952
6953
    if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
    }
6954

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6955
6956
6957
    if (arch == LLM_ARCH_MINICPM ||
        arch == LLM_ARCH_GRANITE ||
        arch == LLM_ARCH_GRANITE_MOE ||
6958
6959
        arch == LLM_ARCH_GRANITE_HYBRID ||
        arch == LLM_ARCH_NEMOTRON_H_MOE) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6960
6961
6962
6963
6964
        LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
        LLAMA_LOG_INFO("%s: f_residual_scale  = %f\n", __func__, hparams.f_residual_scale);
        LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
        LLAMA_LOG_INFO("%s: n_ff_shexp        = %d\n", __func__, hparams.n_ff_shexp);
    }
6965

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6966
6967
6968
6969
6970
6971
6972
    if (arch == LLM_ARCH_BAILINGMOE) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
    }
6973

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
    if (arch == LLM_ARCH_BAILINGMOE2) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_shexp           = %d\n",     __func__, hparams.n_ff_shexp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
        LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n",     __func__, hparams.nextn_predict_layers);
    }
6984

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6985
6986
6987
6988
    if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
    }
6989

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6990
6991
6992
6993
6994
6995
    if (arch == LLM_ARCH_GROVEMOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_chexp           = %d\n",     __func__, hparams.n_ff_chexp);
        LLAMA_LOG_INFO("%s: n_group_experts      = %d\n",     __func__, hparams.n_group_experts);
        LLAMA_LOG_INFO("%s: expert_group_scale   = %.2f\n",   __func__, hparams.expert_group_scale);
    }
6996

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6997
6998
    vocab.print_info();
}
6999

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7000
7001
7002
ggml_backend_dev_t llama_model::dev_layer(int il) const {
    return pimpl->dev_layer.at(il).dev;
}
7003

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7004
7005
7006
ggml_backend_dev_t llama_model::dev_output() const {
    return pimpl->dev_output.dev;
}
7007

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7008
7009
7010
7011
7012
7013
7014
template<typename F>
static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
    ggml_init_params params = {
        /*.mem_size   =*/ ggml_tensor_overhead()*8,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ true,
    };
7015

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7016
7017
7018
7019
    ggml_context_ptr ctx { ggml_init(params) };
    if (!ctx) {
        throw std::runtime_error(format("failed to create ggml context"));
    }
7020

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7021
7022
7023
7024
7025
7026
7027
7028
    ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
    ggml_tensor * op_tensor = fn(ctx.get());
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        if (op_tensor->src[i] != nullptr) {
            assert(op_tensor->src[i]->buffer == nullptr);
            op_tensor->src[i]->buffer = buf.get();
        }
    }
7029

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7030
    bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
7031

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7032
7033
    return op_supported;
}
7034

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7035
7036
7037
7038
7039
7040
7041
7042
7043
template<typename F>
static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
    for (const auto & cur : buft_list) {
        ggml_backend_dev_t cur_dev = cur.first;
        ggml_backend_buffer_type_t cur_buft = cur.second;
        if (buft_supported(cur_buft, cur_dev, fn)) {
            return cur_buft;
        }
    }
7044

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7045
7046
    throw std::runtime_error(format("no suitable buffer type found"));
}
7047

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7048
7049
7050
7051
7052
7053
7054
7055
7056
ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
    return ::select_buft(
            *pimpl->dev_layer.at(il).buft_list,
            [&](ggml_context * ctx) {
                ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
                ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
                return ggml_add(ctx, cur, layer_dir);
            });
}
7057

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7058
7059
7060
bool llama_model::has_tensor_overrides() const {
    return pimpl->has_tensor_overrides;
}
7061

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7062
7063
7064
7065
7066
7067
7068
7069
const ggml_tensor * llama_model::get_tensor(const char * name) const {
    auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
            [name](const std::pair<std::string, ggml_tensor *> & it) {
                return it.first == name;
            });
    if (it == tensors_by_name.end()) {
        return nullptr;
    }
7070

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7071
7072
    return it->second;
}
7073

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7074
7075
7076
float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
    return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
}
7077

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7078
7079
7080
float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
    return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
}
7081

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7082
7083
ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
    const uint32_t n_ctx_seq = cparams.n_ctx_seq;
7084

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7085
7086
7087
7088
    // choose long/short freq factors based on the context size
    if (layers[il].rope_freqs != nullptr) {
        return layers[il].rope_freqs;
    }
7089

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7090
7091
    if (n_ctx_seq > hparams.n_ctx_orig_yarn) {
        return layers[il].rope_long;
7092
7093
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7094
7095
7096
7097
    return layers[il].rope_short;
}

llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
7098
7099
7100
    llama_memory_i * res;

    switch (arch) {
7101
7102
        // Models that need specific instantiation should be handled in the
        // switch statement
7103
7104
        case LLM_ARCH_BERT:
        case LLM_ARCH_JINA_BERT_V2:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7105
        case LLM_ARCH_JINA_BERT_V3:
7106
7107
        case LLM_ARCH_NOMIC_BERT:
        case LLM_ARCH_NOMIC_BERT_MOE:
7108
7109
        case LLM_ARCH_NEO_BERT:
        case LLM_ARCH_WAVTOKENIZER_DEC:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7110
        case LLM_ARCH_GEMMA_EMBEDDING:
7111
7112
        case LLM_ARCH_DREAM:
        case LLM_ARCH_LLADA:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7113
        case LLM_ARCH_LLADA_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7114
        case LLM_ARCH_RND1:
7115
7116
7117
            {
                res = nullptr;
            } break;
7118
7119
        // Models that need standard caching should rely on recurrent/hybrid
        // checks
7120
7121
        default:
            {
7122
7123
7124
7125
7126
7127
7128
                if (llm_arch_is_recurrent(arch)) {
                    res = new llama_memory_recurrent(
                            *this,
                            GGML_TYPE_F32,
                            GGML_TYPE_F32,
                            cparams.offload_kqv,
                            std::max((uint32_t) 1, cparams.n_seq_max),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7129
7130
                            cparams.n_seq_max,
                            nullptr);
7131
                } else if (llm_arch_is_hybrid(arch)) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7132
7133
7134
7135
7136
7137
7138
7139

                    // The main difference between hybrid architectures is the
                    // layer filters, so pick the right one here
                    llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
                    llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
                    if (arch == LLM_ARCH_FALCON_H1) {
                        filter_attn = [&](int32_t) { return true; };
                        filter_recr = [&](int32_t) { return true; };
7140
                    } else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7141
7142
7143
7144
7145
7146
7147
7148
                        filter_attn = [&](int32_t il) {
                            return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
                        };
                        filter_recr = [&](int32_t il) {
                            return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
                        };
                    }

7149
7150
7151
7152
7153
7154
                    res = new llama_memory_hybrid(
                        /* model             */ *this,
                        /* attn_type_k       */ params.type_k,
                        /* attn_type_v       */ params.type_v,
                        /* attn_v_trans      */ !cparams.flash_attn,
                        /* attn_kv_size      */ cparams.n_ctx,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7155
                        /* attn_n_pad        */ 1,
7156
7157
7158
7159
7160
7161
7162
7163
                        /* attn_n_swa        */ hparams.n_swa,
                        /* attn_swa_type     */ hparams.swa_type,
                        /* recurrent_type_k  */ GGML_TYPE_F32,
                        /* recurrent_type_v  */ GGML_TYPE_F32,
                        /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
                        /* n_seq_max         */ cparams.n_seq_max,
                        /* offload           */ cparams.offload_kqv,
                        /* unified           */ cparams.kv_unified,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7164
7165
                        /* filter_attn       */ std::move(filter_attn),
                        /* filter_recr       */ std::move(filter_recr));
7166
                } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
                    llama_memory_i::layer_reuse_cb reuse = nullptr;

                    if (arch == LLM_ARCH_GEMMA3N) {
                        reuse = [&](int32_t il) {
                            if (il >= (int32_t) hparams.n_layer_kv_from_start) {
                                return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
                            }

                            return -1;
                        };
                    }

7179
7180
7181
                    if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
                        GGML_ASSERT(hparams.is_swa_any());

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7182
                        res = new llama_kv_cache_iswa(
7183
7184
7185
7186
7187
7188
7189
                                *this,
                                params.type_k,
                                params.type_v,
                                !cparams.flash_attn,
                                cparams.offload_kqv,
                                params.swa_full,
                                cparams.kv_unified,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7190
                                cparams.n_ctx_seq,
7191
7192
                                cparams.n_seq_max,
                                cparams.n_ubatch,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7193
                                1,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7194
7195
                                nullptr,
                                reuse);
7196
7197
7198
                    } else {
                        GGML_ASSERT(!hparams.is_swa_any());

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7199
                        res = new llama_kv_cache(
7200
7201
7202
7203
7204
7205
                                *this,
                                params.type_k,
                                params.type_v,
                                !cparams.flash_attn,
                                cparams.offload_kqv,
                                cparams.kv_unified,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7206
                                cparams.n_ctx_seq,
7207
                                cparams.n_seq_max,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7208
                                1,
7209
                                hparams.n_swa,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7210
7211
7212
                                hparams.swa_type,
                                nullptr,
                                nullptr);
7213
7214
                    }
                }
7215
7216
7217
7218
7219
7220
            }
    }

    return res;
}

7221
ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
7222
7223
7224
7225
    std::unique_ptr<llm_graph_context> llm;

    switch (arch) {
        case LLM_ARCH_LLAMA:
7226
7227
7228
            {
                llm = std::make_unique<llm_build_llama>(*this, params);
            } break;
7229
7230
        case LLM_ARCH_LLAMA4:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7231
7232
7233
7234
7235
                if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
                    llm = std::make_unique<llm_build_llama>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_llama_iswa>(*this, params);
                }
7236
7237
7238
            } break;
        case LLM_ARCH_DECI:
            {
7239
                llm = std::make_unique<llm_build_deci>(*this, params);
7240
7241
7242
            } break;
        case LLM_ARCH_BAICHUAN:
            {
7243
                llm = std::make_unique<llm_build_baichuan>(*this, params);
7244
7245
7246
            } break;
        case LLM_ARCH_FALCON:
            {
7247
                llm = std::make_unique<llm_build_falcon>(*this, params);
7248
7249
7250
            } break;
        case LLM_ARCH_GROK:
            {
7251
                llm = std::make_unique<llm_build_grok>(*this, params);
7252
7253
7254
            } break;
        case LLM_ARCH_STARCODER:
            {
7255
                llm = std::make_unique<llm_build_starcoder>(*this, params);
7256
7257
7258
            } break;
        case LLM_ARCH_REFACT:
            {
7259
                llm = std::make_unique<llm_build_refact>(*this, params);
7260
7261
7262
            } break;
        case LLM_ARCH_BERT:
        case LLM_ARCH_JINA_BERT_V2:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7263
        case LLM_ARCH_JINA_BERT_V3:
7264
        case LLM_ARCH_NOMIC_BERT:
7265
        case LLM_ARCH_NOMIC_BERT_MOE:
7266
            {
7267
7268
7269
7270
7271
                llm = std::make_unique<llm_build_bert>(*this, params);
            } break;
        case LLM_ARCH_NEO_BERT:
            {
                llm = std::make_unique<llm_build_neo_bert>(*this, params);
7272
7273
7274
            } break;
        case LLM_ARCH_BLOOM:
            {
7275
                llm = std::make_unique<llm_build_bloom>(*this, params);
7276
7277
7278
            } break;
        case LLM_ARCH_MPT:
            {
7279
                llm = std::make_unique<llm_build_mpt>(*this, params);
7280
7281
7282
            } break;
        case LLM_ARCH_STABLELM:
            {
7283
                llm = std::make_unique<llm_build_stablelm>(*this, params);
7284
7285
7286
            } break;
        case LLM_ARCH_QWEN:
            {
7287
                llm = std::make_unique<llm_build_qwen>(*this, params);
7288
7289
7290
            } break;
        case LLM_ARCH_QWEN2:
            {
7291
                llm = std::make_unique<llm_build_qwen2>(*this, params);
7292
            } break;
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
        case LLM_ARCH_DREAM:
            {
                llm = std::make_unique<llm_build_dream>(*this, params);
            }
            break;
        case LLM_ARCH_LLADA:
            {
                llm = std::make_unique<llm_build_llada>(*this, params);
            }
            break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7303
7304
7305
7306
7307
        case LLM_ARCH_LLADA_MOE:
            {
                llm = std::make_unique<llm_build_llada_moe>(*this, params);
            }
            break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7308
7309
7310
7311
7312
        case LLM_ARCH_RND1:
            {
                llm = std::make_unique<llm_build_rnd1>(*this, params);
            }
            break;
7313
7314
        case LLM_ARCH_QWEN2VL:
            {
7315
                llm = std::make_unique<llm_build_qwen2vl>(*this, params);
7316
7317
7318
            } break;
        case LLM_ARCH_QWEN2MOE:
            {
7319
                llm = std::make_unique<llm_build_qwen2moe>(*this, params);
7320
7321
7322
            } break;
        case LLM_ARCH_QWEN3:
            {
7323
                llm = std::make_unique<llm_build_qwen3>(*this, params);
7324
7325
7326
            } break;
        case LLM_ARCH_QWEN3MOE:
            {
7327
                llm = std::make_unique<llm_build_qwen3moe>(*this, params);
7328
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7329
7330
7331
7332
7333
7334
7335
7336
        case LLM_ARCH_QWEN3VL:
            {
                llm = std::make_unique<llm_build_qwen3vl>(*this, params);
            } break;
        case LLM_ARCH_QWEN3VLMOE:
            {
                llm = std::make_unique<llm_build_qwen3vlmoe>(*this, params);
            } break;
7337
7338
        case LLM_ARCH_PHI2:
            {
7339
                llm = std::make_unique<llm_build_phi2>(*this, params);
7340
7341
7342
7343
            } break;
        case LLM_ARCH_PHI3:
        case LLM_ARCH_PHIMOE:
            {
7344
7345
7346
7347
7348
                if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
                    llm = std::make_unique<llm_build_phi3<true>> (*this, params);
                } else {
                    llm = std::make_unique<llm_build_phi3<false>>(*this, params);
                }
7349
7350
7351
            } break;
        case LLM_ARCH_PLAMO:
            {
7352
7353
7354
7355
7356
                llm = std::make_unique<llm_build_plamo>(*this, params);
            } break;
        case LLM_ARCH_PLAMO2:
            {
                llm = std::make_unique<llm_build_plamo2>(*this, params);
7357
7358
7359
            } break;
        case LLM_ARCH_GPT2:
            {
7360
                llm = std::make_unique<llm_build_gpt2>(*this, params);
7361
7362
7363
            } break;
        case LLM_ARCH_CODESHELL:
            {
7364
                llm = std::make_unique<llm_build_codeshell>(*this, params);
7365
7366
7367
            } break;
        case LLM_ARCH_ORION:
            {
7368
                llm = std::make_unique<llm_build_orion>(*this, params);
7369
7370
7371
            } break;
        case LLM_ARCH_INTERNLM2:
            {
7372
                llm = std::make_unique<llm_build_internlm2>(*this, params);
7373
7374
7375
            } break;
        case LLM_ARCH_MINICPM3:
            {
7376
                llm = std::make_unique<llm_build_minicpm3>(*this, params);
7377
7378
7379
            } break;
        case LLM_ARCH_GEMMA:
            {
7380
                llm = std::make_unique<llm_build_gemma>(*this, params);
7381
7382
7383
            } break;
        case LLM_ARCH_GEMMA2:
            {
7384
                llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
7385
7386
7387
            } break;
        case LLM_ARCH_GEMMA3:
            {
7388
7389
7390
7391
7392
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_gemma3<true>>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_gemma3<false>>(*this, params);
                }
7393
7394
7395
7396
            } break;
        case LLM_ARCH_GEMMA3N:
            {
                llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
7397
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7398
7399
        case LLM_ARCH_GEMMA_EMBEDDING:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7400
                llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7401
            } break;
7402
7403
        case LLM_ARCH_STARCODER2:
            {
7404
                llm = std::make_unique<llm_build_starcoder2>(*this, params);
7405
7406
            } break;
        case LLM_ARCH_MAMBA:
7407
        case LLM_ARCH_MAMBA2:
7408
            {
7409
7410
7411
7412
7413
                llm = std::make_unique<llm_build_mamba>(*this, params);
            } break;
        case LLM_ARCH_JAMBA:
            {
                llm = std::make_unique<llm_build_jamba>(*this, params);
7414
7415
7416
            } break;
        case LLM_ARCH_XVERSE:
            {
7417
                llm = std::make_unique<llm_build_xverse>(*this, params);
7418
7419
7420
            } break;
        case LLM_ARCH_COMMAND_R:
            {
7421
                llm = std::make_unique<llm_build_command_r>(*this, params);
7422
7423
7424
            } break;
        case LLM_ARCH_COHERE2:
            {
7425
                llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
7426
7427
7428
            } break;
        case LLM_ARCH_DBRX:
            {
7429
                llm = std::make_unique<llm_build_dbrx>(*this, params);
7430
7431
7432
            } break;
        case LLM_ARCH_OLMO:
            {
7433
                llm = std::make_unique<llm_build_olmo>(*this, params);
7434
7435
7436
            } break;
        case LLM_ARCH_OLMO2:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7437
7438
7439
7440
7441
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
                }
7442
7443
7444
            } break;
        case LLM_ARCH_OLMOE:
            {
7445
                llm = std::make_unique<llm_build_olmoe>(*this, params);
7446
7447
7448
            } break;
        case LLM_ARCH_OPENELM:
            {
7449
                llm = std::make_unique<llm_build_openelm>(*this, params);
7450
7451
7452
            } break;
        case LLM_ARCH_GPTNEOX:
            {
7453
                llm = std::make_unique<llm_build_gptneox>(*this, params);
7454
7455
7456
            } break;
        case LLM_ARCH_ARCTIC:
            {
7457
                llm = std::make_unique<llm_build_arctic>(*this, params);
7458
7459
7460
            } break;
        case LLM_ARCH_DEEPSEEK:
            {
7461
                llm = std::make_unique<llm_build_deepseek>(*this, params);
7462
7463
7464
            } break;
        case LLM_ARCH_DEEPSEEK2:
            {
7465
                llm = std::make_unique<llm_build_deepseek2>(*this, params);
7466
7467
7468
            } break;
        case LLM_ARCH_CHATGLM:
            {
7469
                llm = std::make_unique<llm_build_chatglm>(*this, params);
7470
7471
7472
            } break;
        case LLM_ARCH_GLM4:
            {
7473
7474
7475
7476
7477
                llm = std::make_unique<llm_build_glm4>(*this, params);
            } break;
        case LLM_ARCH_GLM4_MOE:
            {
                llm = std::make_unique<llm_build_glm4_moe>(*this, params);
7478
7479
7480
            } break;
        case LLM_ARCH_BITNET:
            {
7481
                llm = std::make_unique<llm_build_bitnet>(*this, params);
7482
7483
7484
            } break;
        case LLM_ARCH_T5:
            {
7485
                switch (params.gtype) {
7486
                    case LLM_GRAPH_TYPE_ENCODER:
7487
                        llm = std::make_unique<llm_build_t5_enc>(*this, params);
7488
7489
7490
                        break;
                    case LLM_GRAPH_TYPE_DEFAULT:
                    case LLM_GRAPH_TYPE_DECODER:
7491
                        llm = std::make_unique<llm_build_t5_dec>(*this, params);
7492
7493
7494
7495
7496
7497
7498
                        break;
                    default:
                        GGML_ABORT("invalid graph type");
                };
            } break;
        case LLM_ARCH_T5ENCODER:
            {
7499
                llm = std::make_unique<llm_build_t5_enc>(*this, params);
7500
7501
7502
7503
            }
            break;
        case LLM_ARCH_JAIS:
            {
7504
                llm = std::make_unique<llm_build_jais>(*this, params);
7505
7506
7507
            } break;
        case LLM_ARCH_NEMOTRON:
            {
7508
                llm = std::make_unique<llm_build_nemotron>(*this, params);
7509
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7510
        case LLM_ARCH_NEMOTRON_H:
7511
        case LLM_ARCH_NEMOTRON_H_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7512
7513
7514
            {
                llm = std::make_unique<llm_build_nemotron_h>(*this, params);
            } break;
7515
7516
        case LLM_ARCH_EXAONE:
            {
7517
7518
7519
7520
7521
7522
7523
7524
7525
                llm = std::make_unique<llm_build_exaone>(*this, params);
            } break;
        case LLM_ARCH_EXAONE4:
            {
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
                }
7526
7527
7528
            } break;
        case LLM_ARCH_RWKV6:
            {
7529
                llm = std::make_unique<llm_build_rwkv6>(*this, params);
7530
7531
7532
            } break;
        case LLM_ARCH_RWKV6QWEN2:
            {
7533
                llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
7534
7535
7536
            } break;
        case LLM_ARCH_RWKV7:
            {
7537
                llm = std::make_unique<llm_build_rwkv7>(*this, params);
7538
7539
7540
            } break;
        case LLM_ARCH_ARWKV7:
            {
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
                llm = std::make_unique<llm_build_arwkv7>(*this, params);
            } break;
        case LLM_ARCH_GRANITE:
        case LLM_ARCH_GRANITE_MOE:
        case LLM_ARCH_MINICPM:
            {
                llm = std::make_unique<llm_build_granite>(*this, params);
            } break;
        case LLM_ARCH_GRANITE_HYBRID:
            {
                llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
7552
7553
7554
            } break;
        case LLM_ARCH_CHAMELEON:
            {
7555
                llm = std::make_unique<llm_build_chameleon>(*this, params);
7556
7557
7558
            } break;
        case LLM_ARCH_SOLAR:
            {
7559
                llm = std::make_unique<llm_build_solar>(*this, params);
7560
7561
7562
            } break;
        case LLM_ARCH_WAVTOKENIZER_DEC:
            {
7563
                llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
7564
7565
7566
            } break;
        case LLM_ARCH_PLM:
            {
7567
                llm = std::make_unique<llm_build_plm>(*this, params);
7568
7569
7570
            } break;
        case LLM_ARCH_BAILINGMOE:
            {
7571
7572
                llm = std::make_unique<llm_build_bailingmoe>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7573
7574
7575
7576
        case LLM_ARCH_BAILINGMOE2:
            {
                llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7577
7578
7579
7580
        case LLM_ARCH_SEED_OSS:
            {
                llm = std::make_unique<llm_build_seed_oss>(*this, params);
            } break;
7581
7582
7583
7584
7585
7586
7587
7588
        case LLM_ARCH_DOTS1:
            {
                llm = std::make_unique<llm_build_dots1>(*this, params);
            } break;
        case LLM_ARCH_ARCEE:
            {
                llm = std::make_unique<llm_build_arcee>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7589
7590
7591
7592
        case LLM_ARCH_AFMOE:
            {
                llm = std::make_unique<llm_build_afmoe>(*this, params);
            } break;
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
        case LLM_ARCH_ERNIE4_5:
            {
                llm = std::make_unique<llm_build_ernie4_5>(*this, params);
            } break;
        case LLM_ARCH_ERNIE4_5_MOE:
            {
                llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
            } break;
        case LLM_ARCH_HUNYUAN_MOE:
            {
                llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
            } break;
        case LLM_ARCH_HUNYUAN_DENSE:
            {
                llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
            } break;
        case LLM_ARCH_SMOLLM3:
            {
                llm = std::make_unique<llm_build_smollm3>(*this, params);
            } break;
        case LLM_ARCH_OPENAI_MOE:
            {
                llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
            } break;
        case LLM_ARCH_FALCON_H1:
            {
                llm = std::make_unique<llm_build_falcon_h1>(*this, params);
            } break;
        case LLM_ARCH_LFM2:
7622
        case LLM_ARCH_LFM2MOE:
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
            {
                llm = std::make_unique<llm_build_lfm2>(*this, params);
            } break;
        case LLM_ARCH_SMALLTHINKER:
            {
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
                } else {
                    llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
                }
7633
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7634
7635
7636
7637
        case LLM_ARCH_GROVEMOE:
            {
                llm = std::make_unique<llm_build_grovemoe>(*this, params);
            } break;
7638
7639
7640
7641
        case LLM_ARCH_APERTUS:
            {
                llm = std::make_unique<llm_build_apertus>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
        case LLM_ARCH_MINIMAX_M2:
            {
                llm = std::make_unique<llm_build_minimax_m2>(*this, params);
            } break;
        case LLM_ARCH_COGVLM:
            {
                llm = std::make_unique<llm_build_cogvlm>(*this, params);
            } break;
        case LLM_ARCH_PANGU_EMBED:
            {
                llm = std::make_unique<llm_build_pangu_embedded>(*this, params);
            } break;
        case LLM_ARCH_QWEN3NEXT:
            {
                llm = std::make_unique<llm_build_qwen3next>(*this, params);
            } break;
7658
7659
7660
7661
        case LLM_ARCH_MISTRAL3:
            {
                llm = std::make_unique<llm_build_mistral3>(*this, params);
            } break;
7662
7663
7664
7665
7666
        default:
            GGML_ABORT("fatal error");
    }

    // add on pooling layer
7667
    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
7668

7669
7670
7671
7672
7673
7674
    // if the gguf model was converted with --sentence-transformers-dense-modules
    // there will be two additional dense projection layers
    // dense linear projections are applied after pooling
    // TODO: move reranking logic here and generalize
    llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);

7675
    return llm->res->get_gf();
7676
7677
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7678

7679
7680
7681
7682
7683
7684
7685
7686
//
// interface implementation
//

llama_model_params llama_model_default_params() {
    llama_model_params result = {
        /*.devices                     =*/ nullptr,
        /*.tensor_buft_overrides       =*/ nullptr,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7687
        /*.n_gpu_layers                =*/ 999,
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
        /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
        /*.main_gpu                    =*/ 0,
        /*.tensor_split                =*/ nullptr,
        /*.progress_callback           =*/ nullptr,
        /*.progress_callback_user_data =*/ nullptr,
        /*.kv_overrides                =*/ nullptr,
        /*.vocab_only                  =*/ false,
        /*.use_mmap                    =*/ true,
        /*.use_mlock                   =*/ false,
        /*.check_tensors               =*/ false,
7698
        /*.use_extra_bufts             =*/ true,
7699
        /*.no_host                     =*/ false,
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
    };

    return result;
}

const llama_vocab * llama_model_get_vocab(const llama_model * model) {
    return &model->vocab;
}

void llama_free_model(llama_model * model) {
    llama_model_free(model);
}

void llama_model_free(llama_model * model) {
    delete model;
}

int32_t llama_model_n_ctx_train(const llama_model * model) {
    return model->hparams.n_ctx_train;
}

int32_t llama_model_n_embd(const llama_model * model) {
    return model->hparams.n_embd;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7725
7726
7727
7728
int32_t llama_model_n_embd_inp(const llama_model * model) {
    return model->hparams.n_embd_inp();
}

7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
int32_t llama_model_n_layer(const llama_model * model) {
    return model->hparams.n_layer;
}

int32_t llama_model_n_head(const llama_model * model) {
    return model->hparams.n_head();
}

int32_t llama_model_n_head_kv(const llama_model * model) {
    return model->hparams.n_head_kv();
}

7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
int32_t llama_model_n_swa(const llama_model * model) {
    return model->hparams.n_swa;
}

uint32_t llama_model_n_cls_out(const struct llama_model * model) {
    return model->hparams.n_cls_out;
}

const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
    if (i < model->classifier_labels.size()) {
        return model->classifier_labels[i].c_str();
    }

    return nullptr;
}

7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
// deprecated
int32_t llama_n_ctx_train(const llama_model * model) {
    return llama_model_n_ctx_train(model);
}

// deprecated
int32_t llama_n_embd(const llama_model * model) {
    return llama_model_n_embd(model);
}

// deprecated
int32_t llama_n_layer(const llama_model * model) {
    return llama_model_n_layer(model);
}

// deprecated
int32_t llama_n_head(const llama_model * model) {
    return llama_model_n_head(model);
}

llama_rope_type llama_model_rope_type(const llama_model * model) {
    switch (model->arch) {
        // these models do not use RoPE
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7780
        case LLM_ARCH_CLIP:
7781
7782
7783
7784
7785
7786
        case LLM_ARCH_GPT2:
        case LLM_ARCH_GPTJ:
        case LLM_ARCH_MPT:
        case LLM_ARCH_REFACT:
        case LLM_ARCH_BLOOM:
        case LLM_ARCH_MAMBA:
7787
7788
        case LLM_ARCH_MAMBA2:
        case LLM_ARCH_JAMBA:
7789
7790
7791
7792
7793
7794
7795
7796
7797
        case LLM_ARCH_JINA_BERT_V2:
        case LLM_ARCH_T5:
        case LLM_ARCH_T5ENCODER:
        case LLM_ARCH_JAIS:
        case LLM_ARCH_RWKV6:
        case LLM_ARCH_RWKV6QWEN2:
        case LLM_ARCH_RWKV7:
        case LLM_ARCH_ARWKV7:
        case LLM_ARCH_WAVTOKENIZER_DEC:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7798
        case LLM_ARCH_NEMOTRON_H:
7799
        case LLM_ARCH_NEMOTRON_H_MOE:
7800
7801
7802
7803
            return LLAMA_ROPE_TYPE_NONE;

        // use what we call a normal RoPE, operating on pairs of consecutive head values
        case LLM_ARCH_LLAMA:
7804
        case LLM_ARCH_LLADA:
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
        case LLM_ARCH_LLAMA4:
        case LLM_ARCH_DECI:
        case LLM_ARCH_BAICHUAN:
        case LLM_ARCH_STARCODER:
        case LLM_ARCH_INTERNLM2:
        case LLM_ARCH_MINICPM:
        case LLM_ARCH_XVERSE:
        case LLM_ARCH_COMMAND_R:
        case LLM_ARCH_COHERE2:
        case LLM_ARCH_OLMO:
        case LLM_ARCH_ARCTIC:
        case LLM_ARCH_DEEPSEEK:
        case LLM_ARCH_DEEPSEEK2:
        case LLM_ARCH_PLM:
        case LLM_ARCH_CHATGLM:
        case LLM_ARCH_GLM4:
        case LLM_ARCH_GRANITE:
        case LLM_ARCH_GRANITE_MOE:
7823
        case LLM_ARCH_GRANITE_HYBRID:
7824
7825
7826
        case LLM_ARCH_CHAMELEON:
        case LLM_ARCH_SOLAR:
        case LLM_ARCH_BAILINGMOE:
7827
7828
7829
7830
7831
        case LLM_ARCH_NEO_BERT:
        case LLM_ARCH_SMOLLM3:
        case LLM_ARCH_ARCEE:
        case LLM_ARCH_ERNIE4_5:
        case LLM_ARCH_ERNIE4_5_MOE:
7832
        case LLM_ARCH_MISTRAL3:
7833
7834
7835
7836
            return LLAMA_ROPE_TYPE_NORM;

        // the pairs of head values are offset by n_rot/2
        case LLM_ARCH_FALCON:
7837
        case LLM_ARCH_FALCON_H1:
7838
7839
7840
        case LLM_ARCH_GROK:
        case LLM_ARCH_DBRX:
        case LLM_ARCH_BERT:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7841
        case LLM_ARCH_JINA_BERT_V3:
7842
        case LLM_ARCH_NOMIC_BERT:
7843
        case LLM_ARCH_NOMIC_BERT_MOE:
7844
7845
7846
7847
        case LLM_ARCH_STABLELM:
        case LLM_ARCH_BITNET:
        case LLM_ARCH_QWEN:
        case LLM_ARCH_QWEN2:
7848
        case LLM_ARCH_DREAM:
7849
7850
7851
        case LLM_ARCH_QWEN2MOE:
        case LLM_ARCH_QWEN3:
        case LLM_ARCH_QWEN3MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7852
        case LLM_ARCH_LLADA_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7853
        case LLM_ARCH_RND1:
7854
7855
7856
7857
7858
        case LLM_ARCH_OLMO2:
        case LLM_ARCH_OLMOE:
        case LLM_ARCH_PHI2:
        case LLM_ARCH_PHI3:
        case LLM_ARCH_PHIMOE:
7859
        case LLM_ARCH_PLAMO:
7860
        case LLM_ARCH_PLAMO2:
7861
7862
7863
        case LLM_ARCH_GEMMA:
        case LLM_ARCH_GEMMA2:
        case LLM_ARCH_GEMMA3:
7864
        case LLM_ARCH_GEMMA3N:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7865
        case LLM_ARCH_GEMMA_EMBEDDING:
7866
7867
7868
7869
        case LLM_ARCH_STARCODER2:
        case LLM_ARCH_OPENELM:
        case LLM_ARCH_GPTNEOX:
        case LLM_ARCH_CODESHELL:
7870
        case LLM_ARCH_ORION:
7871
7872
        case LLM_ARCH_NEMOTRON:
        case LLM_ARCH_EXAONE:
7873
        case LLM_ARCH_EXAONE4:
7874
        case LLM_ARCH_MINICPM3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7875
        case LLM_ARCH_BAILINGMOE2:
7876
7877
7878
7879
7880
        case LLM_ARCH_DOTS1:
        case LLM_ARCH_HUNYUAN_MOE:
        case LLM_ARCH_OPENAI_MOE:
        case LLM_ARCH_HUNYUAN_DENSE:
        case LLM_ARCH_LFM2:
7881
        case LLM_ARCH_LFM2MOE:
7882
7883
        case LLM_ARCH_SMALLTHINKER:
        case LLM_ARCH_GLM4_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7884
7885
        case LLM_ARCH_SEED_OSS:
        case LLM_ARCH_GROVEMOE:
7886
        case LLM_ARCH_APERTUS:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7887
7888
7889
7890
7891
        case LLM_ARCH_MINIMAX_M2:
        case LLM_ARCH_COGVLM:
        case LLM_ARCH_PANGU_EMBED:
        case LLM_ARCH_AFMOE:
        case LLM_ARCH_QWEN3NEXT:
7892
7893
7894
7895
            return LLAMA_ROPE_TYPE_NEOX;

        case LLM_ARCH_QWEN2VL:
            return LLAMA_ROPE_TYPE_MROPE;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7896
7897
7898
        case LLM_ARCH_QWEN3VL:
        case LLM_ARCH_QWEN3VLMOE:
            return LLAMA_ROPE_TYPE_IMROPE;
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926

        // all model arches should be listed explicitly here
        case LLM_ARCH_UNKNOWN:
            GGML_ABORT("unknown architecture");
    }

    return LLAMA_ROPE_TYPE_NONE;
}

float llama_model_rope_freq_scale_train(const llama_model * model) {
    return model->hparams.rope_freq_scale_train;
}

int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
    const auto & it = model->gguf_kv.find(key);
    if (it == model->gguf_kv.end()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_meta_count(const llama_model * model) {
    return (int)model->gguf_kv.size();
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
const char * llama_model_meta_key_str(llama_model_meta_key key) {
    switch (key) {
        case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE:        return "general.sampling.sequence";
        case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K:           return "general.sampling.top_k";
        case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P:           return "general.sampling.top_p";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P:           return "general.sampling.min_p";
        case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
        case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD:   return "general.sampling.xtc_threshold";
        case LLAMA_MODEL_META_KEY_SAMPLING_TEMP:            return "general.sampling.temp";
        case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N:  return "general.sampling.penalty_last_n";
        case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT:  return "general.sampling.penalty_repeat";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT:        return "general.sampling.mirostat";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU:    return "general.sampling.mirostat_tau";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA:    return "general.sampling.mirostat_eta";
        default:                                            return nullptr;
    }
}

7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->first.c_str());
}

int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
    return snprintf(buf, buf_size, "%s", model->desc().c_str());
}

uint64_t llama_model_size(const llama_model * model) {
    return model->size();
}

const char * llama_model_chat_template(const llama_model * model, const char * name) {
7978
    const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
7979
7980
7981
        : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
    const auto & it = model->gguf_kv.find(key);
    if (it == model->gguf_kv.end()) {
7982
7983
7984
7985
        // one-off fix for very popular models (so we are not flooded with issues)
        // do not extend this list unless absolutely necessary
        // Mistral-Small-2503 does not have built-in chat template
        llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
7986
        if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
7987
7988
7989
            return "mistral-v7-tekken";
        }

7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
        return nullptr;
    }

    return it->second.c_str();
}

uint64_t llama_model_n_params(const llama_model * model) {
    return model->n_elements();
}

bool llama_model_has_encoder(const llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_T5:        return true;
        case LLM_ARCH_T5ENCODER: return true;
        default:                 return false;
    }
}

bool llama_model_has_decoder(const llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_T5ENCODER: return false;
        default:                 return true;
    }
}

llama_token llama_model_decoder_start_token(const llama_model * model) {
    return model->hparams.dec_start_token_id;
}

bool llama_model_is_recurrent(const llama_model * model) {
8020
8021
8022
    return llm_arch_is_recurrent(model->arch);
}

8023
8024
8025
8026
bool llama_model_is_hybrid(const llama_model * model) {
    return llm_arch_is_hybrid(model->arch);
}

8027
8028
bool llama_model_is_diffusion(const llama_model * model) {
    return llm_arch_is_diffusion(model->arch);
8029
8030
8031
8032
}

const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
    return model->tensors_by_name;
8033
}