llama-model.cpp 441 KB
Newer Older
1
2
3
#include "llama-model.h"

#include "llama-impl.h"
4
#include "llama-mmap.h"
5
#include "llama-cparams.h"
6
#include "llama-model-loader.h"
7

Daniel Hiltgen's avatar
Daniel Hiltgen committed
8
9
#include "llama-kv-cache.h"
#include "llama-kv-cache-iswa.h"
10
11
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
12

13
#include "ggml-cpp.h"
14

Daniel Hiltgen's avatar
Daniel Hiltgen committed
15
16
#include "models/models.h"

17
18
#include <algorithm>
#include <cassert>
19
#include <cfloat>
20
#include <cstring>
21
#include <cmath>
22
#include <functional>
23
#include <map>
24
#include <regex>
25
26
27
28
29
#include <sstream>
#include <stdexcept>

const char * llm_type_name(llm_type type) {
    switch (type) {
30
31
32
33
34
35
36
37
38
        case LLM_TYPE_14M:           return "14M";
        case LLM_TYPE_17M:           return "17M";
        case LLM_TYPE_22M:           return "22M";
        case LLM_TYPE_33M:           return "33M";
        case LLM_TYPE_60M:           return "60M";
        case LLM_TYPE_70M:           return "70M";
        case LLM_TYPE_80M:           return "80M";
        case LLM_TYPE_109M:          return "109M";
        case LLM_TYPE_137M:          return "137M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
39
        case LLM_TYPE_140M:          return "140M";
40
        case LLM_TYPE_160M:          return "160M";
41
        case LLM_TYPE_190M:          return "190M";
42
43
        case LLM_TYPE_220M:          return "220M";
        case LLM_TYPE_250M:          return "250M";
44
        case LLM_TYPE_256M:          return "256M";
45
46
        case LLM_TYPE_270M:          return "270M";
        case LLM_TYPE_335M:          return "335M";
47
        case LLM_TYPE_350M:          return "350M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
48
        case LLM_TYPE_360M:          return "360M";
49
50
        case LLM_TYPE_410M:          return "410M";
        case LLM_TYPE_450M:          return "450M";
51
        case LLM_TYPE_475M:          return "475M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
52
        case LLM_TYPE_558M:          return "558M";
53
        case LLM_TYPE_700M:          return "700M";
54
55
        case LLM_TYPE_770M:          return "770M";
        case LLM_TYPE_780M:          return "780M";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
56
        case LLM_TYPE_950M:          return "950M";
57
        case LLM_TYPE_0_3B:          return "0.3B";
58
        case LLM_TYPE_0_5B:          return "0.5B";
59
        case LLM_TYPE_0_6B:          return "0.6B";
60
        case LLM_TYPE_1B:            return "1B";
61
        case LLM_TYPE_1_2B:          return "1.2B";
62
63
64
65
        case LLM_TYPE_1_3B:          return "1.3B";
        case LLM_TYPE_1_4B:          return "1.4B";
        case LLM_TYPE_1_5B:          return "1.5B";
        case LLM_TYPE_1_6B:          return "1.6B";
66
        case LLM_TYPE_1_7B:          return "1.7B";
67
        case LLM_TYPE_1_8B:          return "1.8B";
68
        case LLM_TYPE_2B:            return "2B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
69
        case LLM_TYPE_2_6B:          return "2.6B";
70
        case LLM_TYPE_2_8B:          return "2.8B";
71
        case LLM_TYPE_2_9B:          return "2.9B";
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        case LLM_TYPE_3B:            return "3B";
        case LLM_TYPE_4B:            return "4B";
        case LLM_TYPE_6B:            return "6B";
        case LLM_TYPE_6_9B:          return "6.9B";
        case LLM_TYPE_7B:            return "7B";
        case LLM_TYPE_8B:            return "8B";
        case LLM_TYPE_9B:            return "9B";
        case LLM_TYPE_11B:           return "11B";
        case LLM_TYPE_12B:           return "12B";
        case LLM_TYPE_13B:           return "13B";
        case LLM_TYPE_14B:           return "14B";
        case LLM_TYPE_15B:           return "15B";
        case LLM_TYPE_16B:           return "16B";
        case LLM_TYPE_20B:           return "20B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
86
        case LLM_TYPE_26B:           return "26B";
87
        case LLM_TYPE_27B:           return "27B";
88
89
90
91
        case LLM_TYPE_30B:           return "30B";
        case LLM_TYPE_32B:           return "32B";
        case LLM_TYPE_34B:           return "34B";
        case LLM_TYPE_35B:           return "35B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
92
        case LLM_TYPE_36B:           return "36B";
93
94
95
        case LLM_TYPE_40B:           return "40B";
        case LLM_TYPE_65B:           return "65B";
        case LLM_TYPE_70B:           return "70B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
96
        case LLM_TYPE_120B:          return "120B";
97
        case LLM_TYPE_142B:          return "142B";
98
        case LLM_TYPE_236B:          return "236B";
99
        case LLM_TYPE_290B:          return "290B";
100
        case LLM_TYPE_314B:          return "314B";
101
        case LLM_TYPE_405B:          return "405B";
102
103
104
105
106
107
108
109
110
111
112
113
114
        case LLM_TYPE_671B:          return "671B";
        case LLM_TYPE_SMALL:         return "0.1B";
        case LLM_TYPE_MEDIUM:        return "0.4B";
        case LLM_TYPE_LARGE:         return "0.8B";
        case LLM_TYPE_XL:            return "1.5B";
        case LLM_TYPE_A1_7B:         return "A1.7B";
        case LLM_TYPE_A2_7B:         return "A2.7B";
        case LLM_TYPE_8x7B:          return "8x7B";
        case LLM_TYPE_8x22B:         return "8x22B";
        case LLM_TYPE_16x12B:        return "16x12B";
        case LLM_TYPE_16x3_8B:       return "16x3.8B";
        case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
        case LLM_TYPE_57B_A14B:      return "57B.A14B";
115
116
        case LLM_TYPE_17B_16E:       return "17Bx16E (Scout)";
        case LLM_TYPE_17B_128E:      return "17Bx128E (Maverick)";
117
        case LLM_TYPE_A13B:          return "A13B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
118
        case LLM_TYPE_7B_A1B:        return "7B.A1B";
119
        case LLM_TYPE_8B_A1B:        return "8B.A1B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
120
        case LLM_TYPE_16B_A1B:       return "16B.A1B";
121
        case LLM_TYPE_21B_A3B:       return "21B.A3B";
122
        case LLM_TYPE_30B_A3B:       return "30B.A3B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
123
        case LLM_TYPE_100B_A6B:      return "100B.A6B";
124
        case LLM_TYPE_106B_A12B:     return "106B.A12B";
Daniel Hiltgen's avatar
Daniel Hiltgen committed
125
        case LLM_TYPE_230B_A10B:     return "230B.A10B";
126
        case LLM_TYPE_235B_A22B:     return "235B.A22B";
127
128
129
130
        case LLM_TYPE_300B_A47B:     return "300B.A47B";
        case LLM_TYPE_355B_A32B:     return "355B.A32B";
        case LLM_TYPE_E2B:           return "E2B";
        case LLM_TYPE_E4B:           return "E4B";
131
        default:                     return "?B";
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    }
}

static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
    switch (type) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
        default:                                    return "unknown";
    }
}

static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
    { LLAMA_ROPE_SCALING_TYPE_NONE,       "none"       },
    { LLAMA_ROPE_SCALING_TYPE_LINEAR,     "linear"     },
    { LLAMA_ROPE_SCALING_TYPE_YARN,       "yarn"       },
    { LLAMA_ROPE_SCALING_TYPE_LONGROPE,   "longrope"   },
};

150
151
152
153
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
    return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
}

154
155
156
157
158
159
160
161
162
163
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
    for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
        if (kv.second == name) {
            return (llama_rope_scaling_type) kv.first;
        }
    }

    return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
}

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// checks if the weight tensor can be used with the specified buffer type and device
static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
    GGML_ASSERT(w != nullptr);

    if (op == GGML_OP_NONE) {
        return true;
    }

    ggml_init_params params = {
        /*.mem_size   =*/ ggml_tensor_overhead()*8,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ true,
    };
    ggml_context_ptr ctx_ptr { ggml_init(params) };
    if (!ctx_ptr) {
        throw std::runtime_error(format("failed to create ggml context"));
    }
    ggml_context * ctx = ctx_ptr.get();

    ggml_tensor * op_tensor = nullptr;

    switch (op) {
        case GGML_OP_GET_ROWS:
            {
                ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
                op_tensor = ggml_get_rows(ctx, w, b);
            } break;
        case GGML_OP_MUL_MAT:
            {
                ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
                op_tensor = ggml_mul_mat(ctx, w, b);
            } break;
        case GGML_OP_MUL_MAT_ID:
            {
                int n_expert_used = hparams.n_expert_used;
                ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
                ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
                op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
            } break;
        case GGML_OP_ADD:
            {
                ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
                op_tensor = ggml_add(ctx, a, w);
            } break;
208
209
210
211
212
213
214
        case GGML_OP_ADD_ID:
            {
                int n_expert_used = hparams.n_expert_used;
                ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
                ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
                op_tensor = ggml_add_id(ctx, a, w, c);
            } break;
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        case GGML_OP_MUL:
            {
                ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
                op_tensor = ggml_mul(ctx, a, w);
            } break;
        case GGML_OP_DIV:
            {
                ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
                op_tensor = ggml_div(ctx, a, w);
            } break;
        case GGML_OP_ROPE:
            {
                int n_embd_head = hparams.n_embd_head_v;
                int n_head = hparams.n_head();
                ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
                ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
                op_tensor = ggml_rope_ext(
                    ctx, a, b, w,
                    0, 0, 0, 0, 0,
                    0, 0, 0, 0
                );

            } break;
        case GGML_OP_SSM_CONV:
            {
240
241
242
                const int64_t n_seq_tokens = 512;
                const int64_t n_seqs       = 3;
                ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
243
244
245
246
                op_tensor = ggml_ssm_conv(ctx, conv_x, w);
            } break;
        case GGML_OP_SSM_SCAN:
            {
247
248
249
250
251
                // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
                const int64_t d_state      = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
                const int64_t n_head       = w->ne[1];
                const int64_t head_dim     = hparams.ssm_d_inner / n_head;
                const int64_t n_group      = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
252
                const int64_t n_seq_tokens = 512;
253
254
255
256
257
258
259
260
                const int64_t n_seqs       = 3;
                ggml_tensor * s   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
                ggml_tensor * x   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
                ggml_tensor * dt  = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
                ggml_tensor * B   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
                ggml_tensor * C   = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
                ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
                op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
            } break;
        case GGML_OP_RWKV_WKV6:
            {
                // FIXME
                const int64_t S = 123;
                const int64_t H = 123;
                const int64_t n_tokens = 123;
                const int64_t n_seqs = 123;
                ggml_tensor  * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * tf = w;
                ggml_tensor  * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
                ggml_tensor  * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
                op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
            } break;
        case GGML_OP_IM2COL:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
279
280
                const int n_embd_inp = hparams.n_embd_inp();
                ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1);
281
282
                op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
            } break;
283
284
285
286
        case GGML_OP_SCALE:
            {
                op_tensor = ggml_scale(ctx, w, 1.0f);
            } break;
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        default:
            GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
    }

    // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
    GGML_ASSERT(w->buffer == nullptr);
    w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
    bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
    ggml_backend_buffer_free(w->buffer);
    w->buffer = nullptr;

    return op_supported;
}

// lists of buffer types used for each layer
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;

// find the first buffer type in the list that can use the tensor
static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
    GGML_ASSERT(!buft_list.empty());
    for (const auto & cur : buft_list) {
        ggml_backend_dev_t cur_dev = cur.first;
        ggml_backend_buffer_type_t cur_buft = cur.second;
        if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
            return cur_buft;
        }
    }
314

315
316
317
    return nullptr;
}

318
// CPU: ACCEL -> GPU host -> CPU extra -> CPU
319
static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts, bool no_host) {
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    buft_list_t buft_list;

    // add ACCEL buffer types
    for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
        ggml_backend_dev_t dev = ggml_backend_dev_get(i);
        if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
            auto * buft = ggml_backend_dev_buffer_type(dev);
            // skip
            if (buft != ggml_backend_cpu_buffer_type()) {
                buft_list.emplace_back(dev, buft);
            }
        }
    }

    // add a host buffer type
    // storing the tensors in a host buffer is useful when the processing of large batches
    // is offloaded to a GPU device, since it reduces the time spent on data transfers
    // generally, this will be done using the first device in the list
    // a better approach would be to handle this on a weight-by-weight basis using the offload_op
    // function of the device to determine if it would benefit from being stored in a host buffer
340
341
342
343
344
345
346
    if (!no_host) {
        for (auto * dev : devices) {
            ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
            if (buft) {
                buft_list.emplace_back(dev, buft);
                break;
            }
347
348
349
        }
    }

350
351
352
353
354
355
    // add extra buffer types
    if (use_extra_bufts) {
        auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
        if (cpu_dev == nullptr) {
            throw std::runtime_error(format("%s: no CPU backend found", __func__));
        }
356

357
358
359
360
361
362
363
364
365
        auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
        auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
            ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
        if (ggml_backend_dev_get_extra_bufts_fn) {
            ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
            while (extra_bufts && *extra_bufts) {
                buft_list.emplace_back(cpu_dev, *extra_bufts);
                ++extra_bufts;
            }
366
367
368
        }
    }

369
370
371
372
373
374
    // add the CPU buffer type
    for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
        ggml_backend_dev_t dev = ggml_backend_dev_get(i);
        if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
            buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
        }
375
    }
376
377
378
379
380

    return buft_list;
}

// GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
381
static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    buft_list_t buft_list;

    // add the device split buffer type if requested and available
    if (split_mode == LLAMA_SPLIT_MODE_ROW) {
        ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
        auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
            ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
        if (ggml_backend_split_buffer_type_fn) {
            size_t dev_index = [&]() {
                auto * reg = ggml_backend_dev_backend_reg(dev);
                for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
                    if (ggml_backend_reg_dev_get(reg, i) == dev) {
                        return i;
                    }
                }
                throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
            }();
            auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
            if (buft != nullptr) {
                buft_list.emplace_back(dev, buft);
            }
        }
404
405
    }

406
407
408
    // add the device default buffer type
    buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));

Daniel Hiltgen's avatar
Daniel Hiltgen committed
409
410
411
412
413
414
415
416
417
418
419
420
421
    // add the device extra buffer type (if any)
    ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
    auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
        ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");

    if (ggml_backend_dev_get_extra_bufts_fn) {
        ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
        while (extra_bufts && *extra_bufts) {
            buft_list.emplace_back(dev, *extra_bufts);
            ++extra_bufts;
        }
    }

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    return buft_list;
}

struct llama_model::impl {
    impl() {}
    ~impl() {}

    uint64_t n_elements = 0;

    size_t n_bytes = 0;

    std::string desc_str;

    // model memory mapped files
    llama_mmaps mappings;

    // objects representing data potentially being locked in memory
    llama_mlocks mlock_bufs;
    llama_mlocks mlock_mmaps;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
442
    // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
443
    std::vector<std::pair<ggml_context_ptr, std::vector<ggml_backend_buffer_ptr>>> ctxs_bufs;
444
445
446
447
448
449
450
451
452
453
454
455

    buft_list_t cpu_buft_list;
    std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;

    struct layer_dev {
        ggml_backend_dev_t dev;
        buft_list_t * buft_list;
    };

    layer_dev dev_input = {};
    layer_dev dev_output = {};
    std::vector<layer_dev> dev_layer;
456
457

    bool has_tensor_overrides;
458
459
};

460
461
llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
    pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
462
463
}

464
465
466
467
468
llama_model::~llama_model() {}

void llama_model::load_stats(llama_model_loader & ml) {
    pimpl->n_elements = ml.n_elements;
    pimpl->n_bytes = ml.n_bytes;
469
470
}

471
472
473
void llama_model::load_arch(llama_model_loader & ml) {
    arch = ml.get_arch();
    if (arch == LLM_ARCH_UNKNOWN) {
474
475
476
477
        throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
    }
}

478
void llama_model::load_hparams(llama_model_loader & ml) {
479
480
481
482
    const gguf_context * ctx = ml.meta.get();

    // get metadata as string
    for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
483
        gguf_type type = gguf_get_kv_type(ctx, i);
484
485
486
487
488
        if (type == GGUF_TYPE_ARRAY) {
            continue;
        }
        const char * name = gguf_get_key(ctx, i);
        const std::string value = gguf_kv_to_str(ctx, i);
489
        gguf_kv.emplace(name, value);
490
491
492
    }

    // get general kv
493
    ml.get_key(LLM_KV_GENERAL_NAME, name, false);
494
495

    // everything past this point is not vocab-related
Daniel Hiltgen's avatar
Daniel Hiltgen committed
496
497
    // for CLIP models, we only need to load tensors, no hparams
    if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
498
499
500
        return;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
501
502
503
504
505
506
507
    ml.get_key(LLM_KV_CONTEXT_LENGTH,          hparams.n_ctx_train);
    ml.get_key(LLM_KV_EMBEDDING_LENGTH,        hparams.n_embd);
    ml.get_key(LLM_KV_BLOCK_COUNT,             hparams.n_layer);
    ml.get_key(LLM_KV_EXPERT_COUNT,            hparams.n_expert,        false);
    ml.get_key(LLM_KV_EXPERT_USED_COUNT,       hparams.n_expert_used,   false);
    ml.get_key(LLM_KV_EXPERT_GROUP_COUNT,      hparams.n_expert_groups, false);
    ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used,    false);
508

509
    if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
510
511
512
513
514
515
516
517
518
519
520
521
522
        ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);

        ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
        ml.get_key(LLM_KV_POSNET_BLOCK_COUNT,      hparams.posnet.n_layer);

        ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
        ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT,      hparams.convnext.n_layer);
    }

    GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
    GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
    if (hparams.n_expert > 0) {
        GGML_ASSERT(hparams.n_expert_used > 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
523
524
525
526
527
528
        GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
        if (hparams.n_expert_groups > 1) {
            GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
            GGML_ASSERT(hparams.n_group_used > 0);
            GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
        }
529
530
    } else {
        GGML_ASSERT(hparams.n_expert_used == 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
531
        GGML_ASSERT(hparams.n_expert_groups == 0);
532
533
534
535
536
    }

    std::fill(hparams.n_head_arr.begin(),    hparams.n_head_arr.end(),    0);
    std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
    std::fill(hparams.n_ff_arr.begin(),      hparams.n_ff_arr.end(),      0);
537
538
539
540
541
542
543
    std::fill(
        hparams.recurrent_layer_arr.begin(),
        hparams.recurrent_layer_arr.end(),
        llm_arch_is_recurrent(ml.get_arch()));

    std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
    std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
544

545
546
547
548
549
    std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f);
    std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
    std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
    std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);

550
551
    ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH,  hparams.n_ff_arr,   hparams.n_layer, false);
    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

    // n_head_kv is optional, default to n_head
    hparams.n_head_kv_arr = hparams.n_head_arr;

    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);

    bool rope_finetuned = false;
    ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
    hparams.rope_finetuned = rope_finetuned;

    hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
    ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);

    // rope_freq_base (optional)
    hparams.rope_freq_base_train = 10000.0f;
    ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);

    std::string rope_scaling("linear");
    ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
    hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
    GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);

    // rope_freq_scale (inverse of the kv) is optional
    float ropescale = 0.0f;
    if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
        // try the old key name
        ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
    }
    hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;

582
583
584
585
    // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
    hparams.rope_freq_base_train_swa  = hparams.rope_freq_base_train;
    hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);

    // non-transformer models do not have attention heads
    if (hparams.n_head() > 0) {
        // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
        // gpt-j n_rot = rotary_dim

        hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
        ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);

        hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
        ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);

        // sanity check for n_rot (optional)
        hparams.n_rot = hparams.n_embd_head_k;

        ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);

604
        if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
605
606
607
608
609
610
611
612
613
614
            if (hparams.n_rot != hparams.n_embd_head_k) {
                throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
            }
        }
    } else {
        hparams.n_rot = 0;
        hparams.n_embd_head_k = 0;
        hparams.n_embd_head_v = 0;
    }

615
616
617
    // for differentiating model types
    uint32_t n_vocab = 0;
    ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
618

619
620
621
622
623
624
    // for classifier models
    ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
    if (!classifier_labels.empty()) {
        hparams.n_cls_out = classifier_labels.size();
    }

625
    // arch-specific KVs
626
    switch (arch) {
627
628
629
630
631
632
        case LLM_ARCH_LLAMA:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                if (hparams.n_expert == 8) {
                    switch (hparams.n_layer) {
633
634
635
                        case 32: type = LLM_TYPE_8x7B; break;
                        case 56: type = LLM_TYPE_8x22B; break;
                        default: type = LLM_TYPE_UNKNOWN;
636
637
638
                    }
                } else {
                    switch (hparams.n_layer) {
639
640
641
642
                        case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
                        case 22: type = LLM_TYPE_1B; break;
                        case 26: type = LLM_TYPE_3B; break;
                        case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
643
                        case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
644
                        // granite uses a vocab with len 49152
645
646
647
648
649
650
651
                        case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
                        case 36: type = LLM_TYPE_8B; break; // granite
                        case 40: type = LLM_TYPE_13B; break;
                        case 48: type = LLM_TYPE_34B; break;
                        case 60: type = LLM_TYPE_30B; break;
                        case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
                        default: type = LLM_TYPE_UNKNOWN;
652
653
654
                    }
                }
            } break;
655
656
657
658
659
        case LLM_ARCH_LLAMA4:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP,   hparams.n_moe_layer_step);
660

Daniel Hiltgen's avatar
Daniel Hiltgen committed
661
662
663
664
665
666
667
668
669
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
                if (found_swa && hparams.n_swa == 0) {
                    hparams.swa_type             = LLAMA_SWA_TYPE_NONE;
                    hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
                } else {
                    hparams.swa_type      = LLAMA_SWA_TYPE_CHUNKED;
                    hparams.n_swa         = 8192;
                    hparams.set_swa_pattern(4);   // pattern: 3 chunked - 1 full
                }
670
671

                switch (hparams.n_expert) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
672
673
674
675
676
677
678
679
680
                    case 0: {
                        // MobileLLM (no MoE)
                        switch (hparams.n_embd) {
                            case 2048: type = LLM_TYPE_140M; break;
                            case 4096: type = LLM_TYPE_360M; break;
                            case 6144: type = LLM_TYPE_950M; break;
                            default:   type = LLM_TYPE_UNKNOWN;
                        }
                    } break;
681
682
683
684
685
                    case 16:  type = LLM_TYPE_17B_16E; break;
                    case 128: type = LLM_TYPE_17B_128E; break;
                    default:  type = LLM_TYPE_UNKNOWN;
                }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
686
                hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
687
            } break;
688
689
690
691
692
693
694
695
696
697
        case LLM_ARCH_ARCEE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                // Arcee uses the same structure as Llama
                switch (hparams.n_layer) {
                    case 36: type = LLM_TYPE_4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        case LLM_ARCH_AFMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);

                // Set up interleaved sliding window attention (ISWA)
                // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
                if (hparams.n_swa > 0) {
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.set_swa_pattern(4);
                } else {
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
                }

                // Default to sigmoid if not set
                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
                    hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
                }

                switch (hparams.n_layer) {
                    case 56: type = LLM_TYPE_6B; break;
                    case 32: type = LLM_TYPE_26B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
729
730
731
732
        case LLM_ARCH_DECI:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
733
734
                    case 32: type = LLM_TYPE_7B; break;
                    case 80: type = LLM_TYPE_70B; break;
735
                    case 162: type = LLM_TYPE_405B; break;
736
                    default: type = LLM_TYPE_UNKNOWN;
737
738
739
740
                }
            } break;
        case LLM_ARCH_MINICPM:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
741
742
743
744
745
                // Backward-compatible defaults for older MiniCPM GGUFs
                hparams.f_embedding_scale = 12.0f;
                hparams.f_residual_scale  = 1.4f / sqrtf(float(hparams.n_layer));
                hparams.f_logit_scale     = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f;

746
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
747
748
749
750
751

                // Optional KV reads, override defaults if present in newer GGUF exports
                ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false);
                ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false);
                ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false);
752

753
754
755
                // MiniCPM uses rope by default, unlike Granite which uses it as a switch
                hparams.rope_finetuned = true;

756
                switch (hparams.n_layer) {
757
758
759
                    case 52: type = LLM_TYPE_1B; break;
                    case 40: type = LLM_TYPE_2B; break;
                    default: type = LLM_TYPE_UNKNOWN;
760
761
762
763
764
                }
            } break;
        case LLM_ARCH_MINICPM3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
765
766
                ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK,       hparams.n_lora_q);
                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK,      hparams.n_lora_kv);
767
768

                switch (hparams.n_layer) {
769
770
                    case 62: type = LLM_TYPE_4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
771
772
773
774
                }
            } break;
        case LLM_ARCH_GROK:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
                // defaults for old GGUFs
                hparams.yarn_beta_fast = 8.0f;
                hparams.f_logit_scale = 0.5773502691896257f;
                hparams.f_embedding_scale = 78.38367176906169f;
                hparams.f_attn_out_scale = 0.08838834764831845f;
                hparams.f_attn_logit_softcapping = 30.0f;
                hparams.f_router_logit_softcapping = 30.0f;
                // no final_logit_softcapping in grok-1
                hparams.f_final_logit_softcapping = 0.0f;

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,  hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,   hparams.n_ff_exp, false);
                ml.get_key(LLM_KV_LOGIT_SCALE,                  hparams.f_logit_scale, false);
                ml.get_key(LLM_KV_EMBEDDING_SCALE,              hparams.f_embedding_scale, false);
                ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE,       hparams.f_attn_out_scale, false);
                ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING,       hparams.f_attn_logit_softcapping, false);
                ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING,     hparams.f_router_logit_softcapping, false);
                ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING,      hparams.f_final_logit_softcapping, false);

                ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH,  hparams.attn_temp_length, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR,  hparams.yarn_ext_factor, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST,   hparams.yarn_beta_fast, false);
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW,   hparams.yarn_beta_slow, false);
799
800

                switch (hparams.n_layer) {
801
802
                    case 64: type = LLM_TYPE_314B; break;
                    default: type = LLM_TYPE_UNKNOWN;
803
804
805
806
807
808
809
                }
            } break;
        case LLM_ARCH_FALCON:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
810
811
812
                    case 32: type = LLM_TYPE_7B; break;
                    case 60: type = LLM_TYPE_40B; break;
                    default: type = LLM_TYPE_UNKNOWN;
813
814
815
816
817
818
                }
            } break;
        case LLM_ARCH_BAICHUAN:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
819
820
821
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
822
823
                }

824
                if (type == LLM_TYPE_13B) {
825
826
827
828
829
830
831
832
                    // TODO: become GGUF KV parameter
                    hparams.f_max_alibi_bias = 8.0f;
                }
            } break;
        case LLM_ARCH_STARCODER:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
833
834
835
836
837
                    case 24: type = LLM_TYPE_1B; break;
                    case 36: type = LLM_TYPE_3B; break;
                    case 42: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_15B; break;
                    default: type = LLM_TYPE_UNKNOWN;
838
839
840
841
842
843
                }
            } break;
        case LLM_ARCH_REFACT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
844
845
                    case 32: type = LLM_TYPE_1B; break;
                    default: type = LLM_TYPE_UNKNOWN;
846
847
848
849
850
851
852
853
854
855
856
857
858
                }

                // TODO: become GGUF KV parameter
                hparams.f_max_alibi_bias = 8.0f;
            } break;
        case LLM_ARCH_BERT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);

                switch (hparams.n_layer) {
                    case 3:
859
                        type = LLM_TYPE_17M; break; // bge-micro
860
                    case 6:
861
                        type = LLM_TYPE_22M; break; // MiniLM-L6
862
863
                    case 12:
                        switch (hparams.n_embd) {
864
865
866
                            case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
                            case 768: type = LLM_TYPE_109M; break; // bge-base
                            default: type = LLM_TYPE_UNKNOWN;
867
868
                        } break;
                    case 24:
869
870
                        type = LLM_TYPE_335M; break; // bge-large
                    default: type = LLM_TYPE_UNKNOWN;
871
872
873
874
875
876
877
878
879
880
                }
            } break;
        case LLM_ARCH_JINA_BERT_V2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);
                hparams.f_max_alibi_bias = 8.0f;

                switch (hparams.n_layer) {
881
882
883
                    case 4:  type = LLM_TYPE_33M;  break; // jina-embeddings-small
                    case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
                    default: type = LLM_TYPE_UNKNOWN;
884
885
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
886
887
888
889
890
891
892
893
894
895
896
897
        case LLM_ARCH_JINA_BERT_V3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);

                switch (hparams.n_layer) {
                    case 24:
                        type = LLM_TYPE_558M; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
898
        case LLM_ARCH_NOMIC_BERT:
899
        case LLM_ARCH_NOMIC_BERT_MOE:
900
901
902
903
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type);
904
                ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS,         hparams.moe_every_n_layers, 0);
905
906

                if (hparams.n_layer == 12 && hparams.n_embd == 768) {
907
908
909
910
911
                    if (arch == LLM_ARCH_NOMIC_BERT) {
                        type = LLM_TYPE_137M;
                    } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
                        type = LLM_TYPE_475M;
                    }
912
913
                }
            } break;
914
915
916
917
918
919
920
921
922
923
        case LLM_ARCH_NEO_BERT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,            hparams.causal_attn);
                ml.get_key(LLM_KV_POOLING_TYPE,                hparams.pooling_type);

                if (hparams.n_layer == 28) {
                    type = LLM_TYPE_250M;
                }
            } break;
924
925
926
927
928
        case LLM_ARCH_BLOOM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
929
                    case 24: type = LLM_TYPE_1B; break;
930
931
                    case 30:
                        switch (hparams.n_embd) {
932
933
934
                            case 2560: type = LLM_TYPE_3B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
935
                        } break;
936
                    default: type = LLM_TYPE_UNKNOWN;
937
938
939
940
941
942
943
944
945
946
947
948
                }

                // TODO: become GGUF KV parameter
                hparams.f_max_alibi_bias = 8.0f;
            } break;
        case LLM_ARCH_MPT:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,  hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,      hparams.f_clamp_kqv, false);
                ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);

                switch (hparams.n_layer) {
949
950
951
                    case 32: type = LLM_TYPE_7B; break;
                    case 48: type = LLM_TYPE_30B; break;
                    default: type = LLM_TYPE_UNKNOWN;
952
953
954
955
956
957
958
                }
            } break;
        case LLM_ARCH_STABLELM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
959
960
961
962
                    case 24: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_3B; break;
                    case 40: type = LLM_TYPE_12B; break;
                    default: type = LLM_TYPE_UNKNOWN;
963
964
965
966
967
968
969
               }
            } break;
        case LLM_ARCH_QWEN:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
970
971
972
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
973
974
975
976
977
978
979
980
981
                }
            } break;
        case LLM_ARCH_QWEN2VL:
            {
                ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
            }
            // fall through
        case LLM_ARCH_QWEN2:
            {
982
                ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
983
984
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
985
986
987
988
989
990
991
992
993
                    case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
                    case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 36: type = LLM_TYPE_3B; break;
                    case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
                    case 48: type = LLM_TYPE_14B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    case 80: type = LLM_TYPE_70B; break;
                    default: type = LLM_TYPE_UNKNOWN;
994
995
                }
            } break;
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        case LLM_ARCH_DREAM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                // Dream models are primarily 7B with 28 layers
                switch (hparams.n_layer) {
                    case 28:
                        type = LLM_TYPE_7B;
                        break;
                    default:
                        type = LLM_TYPE_UNKNOWN;
                }
                // Set non-causal attention for diffusion models
                hparams.causal_attn = false;
            }
            break;
        case LLM_ARCH_LLADA:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
                switch (hparams.n_layer) {
                    case 32:
                        type = LLM_TYPE_8B;
                        break;
                    default:
                        type = LLM_TYPE_UNKNOWN;
                }
                // Set non-causal attention for diffusion models
                hparams.causal_attn = false;
            }
            break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        case LLM_ARCH_LLADA_MOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                // diffusion language model uses non-causal attention
                hparams.causal_attn = false;
                switch (hparams.n_layer) {
                    case 16: type = LLM_TYPE_A1_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        case LLM_ARCH_RND1:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
                // Set non-causal attention for diffusion models
                hparams.causal_attn = false;
            } break;
1050
1051
        case LLM_ARCH_QWEN2MOE:
            {
1052
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);
1053
1054
1055
1056
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1057
1058
1059
                    case 24: type = LLM_TYPE_A2_7B; break;
                    case 28: type = LLM_TYPE_57B_A14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1060
1061
                }
            } break;
1062
1063
        case LLM_ARCH_QWEN3:
            {
1064
                ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
1065
1066
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1067
1068
1069
1070
                    case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
                    case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
                    case 40: type = LLM_TYPE_14B; break;
                    case 64: type = LLM_TYPE_32B; break;
1071
1072
1073
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        case LLM_ARCH_QWEN3VL:
            {
                ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
                ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 28: type = LLM_TYPE_1_7B; break;
                    case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1086
1087
1088
1089
        case LLM_ARCH_QWEN3MOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    case 94: type = LLM_TYPE_235B_A22B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_QWEN3VLMOE:
            {
                ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
                ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
1102
1103
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1104
1105
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    case 94: type = LLM_TYPE_235B_A22B; break;
1106
1107
1108
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1109
1110
1111
1112
1113
        case LLM_ARCH_PHI2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
1114
1115
1116
                    case 24: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1117
1118
1119
1120
1121
1122
1123
                }
            } break;
        case LLM_ARCH_PHI3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1124
1125
1126
1127
                    case 24: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_3B; break;
                    case 40: type = LLM_TYPE_14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1128
1129
                }

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);

                if (found_swa && hparams.n_swa > 0) {
                    LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
                            __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");

                    // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;

                    hparams.n_swa         = 0;
                    hparams.set_swa_pattern(1);
1141
1142
                }
            } break;
1143
1144
1145
1146
1147
1148
1149
1150
1151
        case LLM_ARCH_PHIMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_16x3_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1152
1153
1154
1155
1156
        case LLM_ARCH_PLAMO:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1157
1158
                    case 40: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1159
1160
               }
            } break;
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        case LLM_ARCH_PLAMO2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                // Load Mamba SSM parameters
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
                }

                switch (hparams.n_layer) {
                    case 16: type = LLM_TYPE_1B; break;
                    case 32:
                        if (hparams.n_embd == 2048) {
                            type = LLM_TYPE_2B;
                        } else if (hparams.n_embd == 4096) {
                            type = LLM_TYPE_8B;
                        }
                        break;
                    default: type = LLM_TYPE_UNKNOWN;
1186
1187
1188
1189
1190
                }

                // Load attention parameters
                ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH,   hparams.n_embd_head_k, false);
                ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
1191
            } break;
1192
1193
1194
1195
        case LLM_ARCH_GPT2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1196
1197
1198
1199
1200
                    case 12: type = LLM_TYPE_SMALL; break;
                    case 24: type = LLM_TYPE_MEDIUM; break;
                    case 36: type = LLM_TYPE_LARGE; break;
                    case 48: type = LLM_TYPE_XL; break;
                    default: type = LLM_TYPE_UNKNOWN;
1201
1202
1203
1204
1205
1206
                }
            } break;
        case LLM_ARCH_CODESHELL:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1207
1208
                    case 42: type = LLM_TYPE_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1209
1210
1211
1212
1213
1214
1215
                }
            } break;
        case LLM_ARCH_ORION:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);

                switch (hparams.n_layer) {
1216
1217
                    case 40: type = LLM_TYPE_14B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1218
1219
1220
1221
1222
1223
                }
            } break;
        case LLM_ARCH_INTERNLM2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1224
1225
1226
                    case 32: type = LLM_TYPE_7B; break;
                    case 48: type = LLM_TYPE_20B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1227
1228
1229
1230
1231
1232
1233
                }
            } break;
        case LLM_ARCH_GEMMA:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1234
1235
1236
                    case 18: type = LLM_TYPE_2B; break;
                    case 28: type = LLM_TYPE_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1237
1238
1239
1240
               }
            } break;
        case LLM_ARCH_GEMMA2:
            {
1241
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
1242
                hparams.n_swa = 4096; // default value of gemma 2
1243
                hparams.set_swa_pattern(2);
1244
1245
                hparams.attn_soft_cap = true;

1246
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
1247
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1248
1249
                ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING,      hparams.f_attn_logit_softcapping, false);
                ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING,     hparams.f_final_logit_softcapping, false);
1250
1251

                switch (hparams.n_layer) {
1252
1253
1254
1255
                    case 26: type = LLM_TYPE_2B; break;
                    case 42: type = LLM_TYPE_9B; break;
                    case 46: type = LLM_TYPE_27B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1256
               }
1257
1258
1259
1260
1261

                // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
                hparams.f_attention_scale = type == LLM_TYPE_27B
                    ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
                    : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
1262
            } break;
Patrick Devine's avatar
Patrick Devine committed
1263
1264
        case LLM_ARCH_GEMMA3:
            {
1265
1266
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(6);
1267
1268
1269
1270
1271
1272
1273
1274

                hparams.rope_freq_base_train_swa  = 10000.0f;
                hparams.rope_freq_scale_train_swa = 1.0f;

                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1275
                    case 18: type = LLM_TYPE_270M; break;
1276
1277
1278
1279
1280
1281
1282
                    case 26: type = LLM_TYPE_1B; break;
                    case 34: type = LLM_TYPE_4B; break;
                    case 48: type = LLM_TYPE_12B; break;
                    case 62: type = LLM_TYPE_27B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }

1283
                // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
1284
1285
1286
                hparams.f_attention_scale = type == LLM_TYPE_27B
                    ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
                    : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
Patrick Devine's avatar
Patrick Devine committed
1287
            } break;
1288
1289
1290
1291
1292
        case LLM_ARCH_GEMMA3N:
            {
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(5);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1293
                hparams.n_layer_kv_from_start     = 20;
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
                hparams.rope_freq_base_train_swa  = 10000.0f;
                hparams.rope_freq_scale_train_swa = 1.0f;
                hparams.f_attention_scale         = 1.0f;

                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 30: type = LLM_TYPE_E2B; break;
                    case 35: type = LLM_TYPE_E4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1307
1308
1309
1310
1311
1312
        case LLM_ARCH_GEMMA_EMBEDDING:
            {
                hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
                hparams.set_swa_pattern(6);

                hparams.causal_attn = false; // embeddings do not use causal attention
1313
                hparams.rope_freq_base_train_swa = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1314
1315
                hparams.rope_freq_scale_train_swa = 1.0f;

1316
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1317
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
                ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);

                //applied only if model converted with --sentence-transformers-dense-modules
                ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false);
                ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false);
                ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false);
                ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false);

                GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd");
                GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1328
1329
1330
1331
1332
1333
1334
1335

                switch (hparams.n_layer) {
                    case 24: type = LLM_TYPE_0_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
                hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));

            } break;
1336
1337
1338
1339
        case LLM_ARCH_STARCODER2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1340
1341
1342
1343
1344
1345
                    case 30: type = LLM_TYPE_3B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_15B; break;
                    case 52: type = LLM_TYPE_20B; break; // granite
                    case 88: type = LLM_TYPE_34B; break; // granite
                    default: type = LLM_TYPE_UNKNOWN;
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
                }
            } break;
        case LLM_ARCH_MAMBA:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_DT_B_C_RMS,     hparams.ssm_dt_b_c_rms, false);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 24:
                        switch (hparams.n_embd) {
1361
1362
                            case 768: type = LLM_TYPE_SMALL; break;
                            default: type = LLM_TYPE_UNKNOWN;
1363
1364
1365
                        } break;
                    case 48:
                        switch (hparams.n_embd) {
1366
1367
1368
1369
                            case 1024: type = LLM_TYPE_MEDIUM; break;
                            case 1536: type = LLM_TYPE_LARGE; break;
                            case 2048: type = LLM_TYPE_XL; break;
                            default:   type = LLM_TYPE_UNKNOWN;
1370
1371
1372
                        } break;
                    case 64:
                        switch (hparams.n_embd) {
1373
1374
                            case 2560: type = LLM_TYPE_3B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1375
                        } break;
1376
                    default: type = LLM_TYPE_UNKNOWN;
1377
1378
                }
            } break;
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        case LLM_ARCH_MAMBA2:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 24:
                        switch (hparams.n_embd) {
                            case 768: type = LLM_TYPE_SMALL; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 48:
                        switch (hparams.n_embd) {
                            case 1024: type = LLM_TYPE_MEDIUM; break;
                            case 1536: type = LLM_TYPE_LARGE; break;
                            case 2048: type = LLM_TYPE_XL; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 64:
                        switch (hparams.n_embd) {
                            case 2560: type = LLM_TYPE_3B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_JAMBA:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
                }

                switch (hparams.n_layer) {
                    // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
                    case 12: // 900M  8x???M
                    case 32: // 51B  16x?B
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1431
1432
1433
1434
        case LLM_ARCH_XVERSE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1435
1436
1437
1438
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
                    case 80: type = LLM_TYPE_65B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1439
1440
1441
1442
                }
            } break;
        case LLM_ARCH_COMMAND_R:
            {
1443
                ml.get_key(LLM_KV_LOGIT_SCALE,             hparams.f_logit_scale);
1444
1445
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1446
1447
                    case 40: type = LLM_TYPE_35B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1448
1449
1450
1451
                }
            } break;
        case LLM_ARCH_COHERE2:
            {
1452
1453
                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(4);
1454

1455
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
1456
1457
                ml.get_key(LLM_KV_LOGIT_SCALE,              hparams.f_logit_scale);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,  hparams.f_norm_eps);
1458
                switch (hparams.n_layer) {
1459
1460
                    case 32: type = LLM_TYPE_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1461
1462
1463
1464
1465
1466
1467
1468
                }
            } break;
        case LLM_ARCH_DBRX:
        {
            ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
            ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,     hparams.f_clamp_kqv);

            switch (hparams.n_layer) {
1469
1470
                case 40: type = LLM_TYPE_16x12B; break;
                default: type = LLM_TYPE_UNKNOWN;
1471
1472
1473
1474
1475
1476
1477
1478
            }
        } break;
        case LLM_ARCH_OLMO:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,     hparams.f_clamp_kqv, false);

                switch (hparams.n_layer) {
1479
1480
1481
1482
                    case 22: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 80: type = LLM_TYPE_70B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1483
1484
1485
1486
1487
1488
                }
            } break;
        case LLM_ARCH_OLMO2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1489
1490
1491
1492
1493
1494
1495
1496
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
                if (found_swa && hparams.n_swa > 0) {
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.set_swa_pattern(4);
                } else {
                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
                }

1497
                switch (hparams.n_layer) {
1498
1499
1500
                    case 16: type = LLM_TYPE_1B; break;
                    case 32: type = LLM_TYPE_7B; break;
                    case 40: type = LLM_TYPE_13B; break;
1501
                    case 64: type = LLM_TYPE_32B; break;
1502
                    default: type = LLM_TYPE_UNKNOWN;
1503
1504
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1505
1506
1507
1508
1509
1510
1511
1512
        case LLM_ARCH_SEED_OSS:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 64: type = LLM_TYPE_36B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1513
1514
1515
1516
        case LLM_ARCH_OLMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1517
1518
                    case 16: type = LLM_TYPE_A1_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1519
1520
1521
1522
1523
1524
1525
                }
            } break;
        case LLM_ARCH_OPENELM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1526
1527
1528
1529
1530
                case 16: type = LLM_TYPE_270M; break;
                case 20: type = LLM_TYPE_450M; break;
                case 28: type = LLM_TYPE_1B; break;
                case 36: type = LLM_TYPE_3B; break;
                default: type = LLM_TYPE_UNKNOWN;
1531
1532
1533
1534
1535
                }
            } break;
        case LLM_ARCH_GPTNEOX:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
1536
                ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL,   hparams.use_par_res);
1537
1538
1539
                switch (hparams.n_layer) {
                    case 6:
                        switch (hparams.n_ff()) {
1540
1541
1542
                            case 512:  type = LLM_TYPE_14M; break;
                            case 2048: type = LLM_TYPE_70M; break;
                            default:   type = LLM_TYPE_UNKNOWN;
1543
1544
1545
                        } break;
                    case 12:
                        switch (hparams.n_ff()) {
1546
1547
                            case 3072: type = LLM_TYPE_160M; break;
                            default: type = LLM_TYPE_UNKNOWN;
1548
1549
1550
                        } break;
                    case 16:
                        switch (hparams.n_ff()) {
1551
1552
                            case 8192: type = LLM_TYPE_1B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1553
1554
1555
                        } break;
                    case 24:
                        switch (hparams.n_ff()) {
1556
1557
1558
                            case 4096: type = LLM_TYPE_410M; break;
                            case 8192: type = LLM_TYPE_1_4B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1559
1560
1561
                        } break;
                    case 32:
                        switch (hparams.n_ff()) {
1562
1563
1564
                            case 10240: type = LLM_TYPE_2_8B; break;
                            case 16384: type = LLM_TYPE_6_9B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1565
1566
1567
                        } break;
                    case 36:
                        switch (hparams.n_ff()) {
1568
1569
                            case 20480: type = LLM_TYPE_12B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1570
1571
1572
                        } break;
                    case 44:
                        switch (hparams.n_ff()) {
1573
1574
                            case 24576: type = LLM_TYPE_20B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1575
                        } break;
1576
                    default: type = LLM_TYPE_UNKNOWN;
1577
1578
1579
1580
1581
1582
1583
1584
                }
            } break;
        case LLM_ARCH_ARCTIC:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                if (hparams.n_expert == 128) {
                    switch (hparams.n_layer) {
1585
1586
                        case 35: type = LLM_TYPE_10B_128x3_66B; break;
                        default: type = LLM_TYPE_UNKNOWN;
1587
1588
                    }
                } else {
1589
                    type = LLM_TYPE_UNKNOWN;
1590
1591
1592
1593
1594
                }
            } break;
        case LLM_ARCH_DEEPSEEK:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1595
1596
1597
1598
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
1599
1600

                switch (hparams.n_layer) {
1601
1602
                    case 28: type = LLM_TYPE_20B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1603
1604
1605
1606
                }
            } break;
        case LLM_ARCH_DEEPSEEK2:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1607
1608
                // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
                bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
1609
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1610
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
1611
1612
1613
                if (!is_lite) {
                    ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
                }
1614
                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK,     hparams.n_lora_kv);
1615
1616
                ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA,   hparams.n_embd_head_k_mla, false);
                ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
1617
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
1618
1619
1620
1621
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,        hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,       hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,        hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,         hparams.expert_gating_func, false);
1622
1623
1624
1625
1626
                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
                    // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
                    // that have no expert_gating_func model parameter set
                    hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
                }
1627
                ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
1628
1629

                switch (hparams.n_layer) {
1630
1631
1632
1633
                    case 27: type = LLM_TYPE_16B; break;
                    case 60: type = LLM_TYPE_236B; break;
                    case 61: type = LLM_TYPE_671B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1634
1635
                }
            } break;
1636
1637
1638
1639
1640
1641
1642
1643
1644
        case LLM_ARCH_PLM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_1_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1645
1646
1647
1648
        case LLM_ARCH_CHATGLM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
                    case 28: {
                        if (hparams.n_head(0) == 16) {
                            type = LLM_TYPE_1_5B;
                        } else {
                            type = LLM_TYPE_6B;
                        }
                    } break;
                    case 40: {
                        if (hparams.n_head(0) == 24) {
                            type = LLM_TYPE_4B;
                        } else {
                            type = LLM_TYPE_9B;
                        }
                    } break;
                    default: type = LLM_TYPE_UNKNOWN;
1664
1665
                }
            } break;
1666
1667
1668
1669
1670
1671
1672
1673
1674
        case LLM_ARCH_GLM4:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 40: type = LLM_TYPE_9B; break;
                    case 61: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
        case LLM_ARCH_GLM4_MOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                // MoE parameters
                ml.get_key(LLM_KV_EXPERT_COUNT,                hparams.n_expert);
                ml.get_key(LLM_KV_EXPERT_USED_COUNT,           hparams.n_expert_used);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead, false);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);

                // Expert gating function (GLM-4.5 uses sigmoid)
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1691
                    hparams.expert_gating_func =  LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
1692
1693
1694
1695
1696
                }

                // NextN/MTP parameters
                ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS,        hparams.nextn_predict_layers, false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1697
1698
1699
                // TODO: when MTP is implemented, this should probably be updated if needed
                hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;

1700
1701
1702
1703
1704
1705
                switch (hparams.n_layer) {
                    case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
                    case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1706
1707
1708
1709
1710
        case LLM_ARCH_BITNET:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1711
1712
                    case 26: type = LLM_TYPE_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1713
1714
1715
1716
                }
            } break;
        case LLM_ARCH_T5:
            {
1717
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,      hparams.f_norm_rms_eps);
1718
1719
1720
1721
1722
1723
1724
                ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);

                uint32_t dec_start_token_id;
                if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
                    hparams.dec_start_token_id = dec_start_token_id;
                }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1725
1726
1727
                hparams.dec_n_layer = hparams.n_layer;
                ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);

1728
                switch (hparams.n_layer) {
1729
1730
                    case 6:  type = LLM_TYPE_60M;  break; // t5-small
                    case 8:  type = LLM_TYPE_80M;  break; // flan-t5-small
1731
1732
                    case 12:
                        switch (hparams.n_ff()) {
1733
1734
1735
                            case 3072: type = LLM_TYPE_220M; break; // t5-base
                            case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
                            default: type = LLM_TYPE_UNKNOWN;
1736
1737
1738
                        } break;
                    case 24:
                        switch (hparams.n_ff()) {
1739
1740
1741
1742
1743
1744
1745
                            case 4096:  type = LLM_TYPE_770M; break; // t5-large
                            case 2816:  type = LLM_TYPE_780M; break; // flan-t5-large
                            case 16384: type = LLM_TYPE_3B;   break; // t5-3b
                            case 5120:  type = LLM_TYPE_3B;   break; // flan-t5-xl
                            case 65536: type = LLM_TYPE_11B;  break; // t5-11b
                            case 10240: type = LLM_TYPE_11B;  break; // flan-t5-xxl
                            default: type = LLM_TYPE_UNKNOWN;
1746
                        } break;
1747
                    default: type = LLM_TYPE_UNKNOWN;
1748
1749
1750
1751
1752
1753
               }
            } break;
        case LLM_ARCH_T5ENCODER:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
1754
                type = LLM_TYPE_UNKNOWN;
1755
1756
1757
1758
1759
1760
1761
            } break;
        case LLM_ARCH_JAIS:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);

                switch (hparams.n_layer) {
1762
1763
                    case 24: type = LLM_TYPE_1_3B; break;
                    case 40: type = LLM_TYPE_13B; break;
1764
                    /* TODO: add variants */
1765
                    default: type = LLM_TYPE_UNKNOWN;
1766
1767
1768
1769
1770
1771
                }
            } break;
        case LLM_ARCH_NEMOTRON:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
                switch (hparams.n_layer) {
1772
1773
                    case 32: type = LLM_TYPE_4B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1774
1775
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
        case LLM_ARCH_NEMOTRON_H:
            {
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                // A layer is recurrent IFF the n_head_kv value is set to 0 and
                // the n_ff value is set to 0
                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
                }

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 56: type = LLM_TYPE_9B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1797
1798
1799
1800
1801
        case LLM_ARCH_EXAONE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
1802
1803
                    case 32: type = LLM_TYPE_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1804
1805
                }
            } break;
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
        case LLM_ARCH_EXAONE4:
            {
                if (hparams.n_layer == 64) {    // 32B
                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                    hparams.n_swa = 4096;
                    hparams.set_swa_pattern(4);
                }

                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 30: type = LLM_TYPE_1_2B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1823
        case LLM_ARCH_RWKV6:
1824
        case LLM_ARCH_RWKV6QWEN2:
1825
            {
1826
1827
1828
1829
1830
1831
1832
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,     hparams.f_norm_eps, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
                ml.get_key(LLM_KV_WKV_HEAD_SIZE,               hparams.wkv_head_size);
                ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM,          hparams.time_mix_extra_dim);
                ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM,        hparams.time_decay_extra_dim);
                ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS,      hparams.rescale_every_n_layers, false);
                ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT,           hparams.token_shift_count, false);
1833
1834

                switch (hparams.n_layer) {
1835
                    case 24: type = LLM_TYPE_1_6B; break;
1836
1837
                    case 32:
                        switch (hparams.n_embd) {
1838
1839
1840
                            case 2560: type = LLM_TYPE_3B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
1841
                        } break;
1842
1843
1844
                    case 61: type = LLM_TYPE_14B; break;
                    case 64: type = LLM_TYPE_32B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1845
1846
                }
            } break;
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
        case LLM_ARCH_RWKV7:
        case LLM_ARCH_ARWKV7:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,                hparams.f_norm_eps, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,            hparams.f_norm_rms_eps, false);
                ml.get_key(LLM_KV_WKV_HEAD_SIZE,                          hparams.wkv_head_size);
                ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK,              hparams.n_lora_decay);
                ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK,               hparams.n_lora_iclr);
                ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
                ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK,               hparams.n_lora_gate, false);
                ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT,                      hparams.token_shift_count, false);

                switch (hparams.n_layer) {
1860
1861
1862
1863
1864
                    case 12:
                        switch (hparams.n_embd) {
                            case 768: type = LLM_TYPE_190M; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
                    case 24:
                        switch (hparams.n_embd) {
                            case 1024: type = LLM_TYPE_450M; break;
                            case 2048: type = LLM_TYPE_1_5B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 28:
                        switch (hparams.n_embd) {
                            case 1536: type = LLM_TYPE_1_5B; break;
                            case 3584: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
                    case 32:
                        switch (hparams.n_embd) {
                            case 2560: type = LLM_TYPE_2_9B; break;
                            case 4096: type = LLM_TYPE_7B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
                    case 61:
                        switch (hparams.n_embd) {
                            case 4096: type = LLM_TYPE_14B; break;
                            default: type = LLM_TYPE_UNKNOWN;
                        } break;
1888
1889
1890
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
1891
1892
1893
1894
        case LLM_ARCH_GRANITE:
        case LLM_ARCH_GRANITE_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1895
1896
1897
1898
                ml.get_key(LLM_KV_LOGIT_SCALE,                 hparams.f_logit_scale);
                ml.get_key(LLM_KV_RESIDUAL_SCALE,              hparams.f_residual_scale);
                ml.get_key(LLM_KV_EMBEDDING_SCALE,             hparams.f_embedding_scale);
                ml.get_key(LLM_KV_ATTENTION_SCALE,             hparams.f_attention_scale);
1899

1900
1901
1902
1903
1904
                // Granite uses rope_finetuned as a switch for rope, so default to true
                bool rope_finetuned = true;
                ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
                hparams.rope_finetuned = rope_finetuned;

1905
                switch (hparams.n_layer) {
1906
1907
                    case 32: type = LLM_TYPE_3B; break;
                    case 40: type = LLM_TYPE_3B; break;
1908
                    // Add additional layer/vocab/etc checks here for other model sizes
1909
                    default: type = LLM_TYPE_UNKNOWN;
1910
                }
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

                // For Granite MoE Shared
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
            } break;
        case LLM_ARCH_GRANITE_HYBRID:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LOGIT_SCALE,                 hparams.f_logit_scale, /* required */ false);
                ml.get_key(LLM_KV_RESIDUAL_SCALE,              hparams.f_residual_scale, /* required */ false);
                ml.get_key(LLM_KV_EMBEDDING_SCALE,             hparams.f_embedding_scale, /* required */ false);
                ml.get_key(LLM_KV_ATTENTION_SCALE,             hparams.f_attention_scale, /* required */ false);

                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                // Granite uses rope_finetuned as a switch for rope, so default to true
                bool rope_finetuned = true;
                ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
                hparams.rope_finetuned = rope_finetuned;

                // A layer is recurrent IFF the n_head_kv value is set to 0
                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
                }

                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1941
                switch (hparams.n_embd) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1942
1943
                    case 768: type = LLM_TYPE_350M; break;
                    case 1536: type = (hparams.n_embd == 2048 ? LLM_TYPE_7B_A1B : LLM_TYPE_1B); break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1944
1945
                    case 2048: case 2560: type = LLM_TYPE_3B; break;
                    case 4096: type = LLM_TYPE_32B; break;
1946
1947
1948
1949
1950
                    default: type = LLM_TYPE_UNKNOWN;
                }

                // For Granite MoE Shared
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
1951
1952
1953
1954
1955
1956
1957
1958
            } break;
        case LLM_ARCH_CHAMELEON:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                hparams.f_norm_eps = 1e-5;  // eps for qk-norm, torch default
                ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);

                switch (hparams.n_layer) {
1959
1960
1961
                    case 32: type = LLM_TYPE_7B; break;
                    case 48: type = LLM_TYPE_34B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1962
1963
1964
1965
1966
1967
1968
1969
               }
            } break;
        case LLM_ARCH_SOLAR:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
                    auto & bskcn = hparams.n_bskcn_arr[i];
                    bskcn.fill(0);
1970
                    auto kv = LLM_KV(arch);
1971
1972
1973
1974
                    ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
                }

                switch (hparams.n_layer) {
1975
1976
                    case 64: type = LLM_TYPE_22B; break;
                    default: type = LLM_TYPE_UNKNOWN;
1977
1978
1979
1980
1981
1982
1983
1984
1985
                }
            } break;
        case LLM_ARCH_WAVTOKENIZER_DEC:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
                ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS,    hparams.f_norm_group_eps);
                ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
                ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
            } break;
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
        case LLM_ARCH_BAILINGMOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);

                switch (hparams.n_layer) {
                    case 28: type = LLM_TYPE_16B; break;
                    case 88: type = LLM_TYPE_290B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
        case LLM_ARCH_BAILINGMOE2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,               hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,                hparams.expert_gating_func);
                ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS,              hparams.nextn_predict_layers, false);

                // TODO: when MTP is implemented, this should probably be updated if needed
                hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;

                switch (hparams.n_layer) {
                    case 20: type = LLM_TYPE_16B_A1B; break;
                    case 21: type = LLM_TYPE_16B_A1B; break;
                    case 32: type = LLM_TYPE_100B_A6B; break;
                    case 33: type = LLM_TYPE_100B_A6B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
        case LLM_ARCH_DOTS1:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
                switch (hparams.n_layer) {
                    case 62: type = LLM_TYPE_142B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_ERNIE4_5:
        case LLM_ARCH_ERNIE4_5_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                if (arch == LLM_ARCH_ERNIE4_5_MOE) {
                    ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                    ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
                    ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP,         hparams.n_moe_layer_step);
                    ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
                }
2048

2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
                switch (hparams.n_layer) {
                    case 18: type = LLM_TYPE_0_3B; break;
                    case 28: type = LLM_TYPE_21B_A3B; break;
                    case 54: type = LLM_TYPE_300B_A47B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_FALCON_H1:
            {
                // Common parameters
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
2060

2061
2062
2063
2064
2065
2066
                // SSM parameters
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);
2067

2068
                std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
2069

2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
                switch (hparams.n_layer) {
                    case 36:
                        type = LLM_TYPE_0_5B; break;
                    case 24:
                        type = LLM_TYPE_1_5B; break;
                    case 66:
                        type = LLM_TYPE_1B; break;
                    case 32:
                        type = LLM_TYPE_3B; break;
                    case 44:
                        type = LLM_TYPE_7B; break;
                    case 72:
                        type = LLM_TYPE_34B; break;
                    default:
                        type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_HUNYUAN_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
2092

2093
2094
2095
2096
2097
2098
2099
2100
                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_A13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_HUNYUAN_DENSE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
2101

2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
                switch (hparams.n_embd) {
                    case 1024: type = LLM_TYPE_0_5B; break;
                    case 2048: type = LLM_TYPE_1_8B; break;
                    case 3072: type = LLM_TYPE_4B; break;
                    case 4096: type = LLM_TYPE_7B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_SMOLLM3:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                hparams.n_no_rope_layer_step = 4;
2114

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
                switch (hparams.n_layer) {
                    case 36: type = LLM_TYPE_3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_OPENAI_MOE:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa);

                hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
                hparams.set_swa_pattern(2);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2129
2130
2131
2132
2133
                switch (hparams.n_layer) {
                    case 24: type = LLM_TYPE_20B; break;
                    case 36: type = LLM_TYPE_120B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
2134
2135
2136
2137
2138
2139
2140
2141
            } break;
        case LLM_ARCH_LFM2:
            {
                ml.get_key(LLM_KV_SHORTCONV_L_CACHE,           hparams.n_shortconv_l_cache);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                for (uint32_t il = 0; il < hparams.n_layer; ++il) {
                    hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
                }
2142
                hparams.n_layer_dense_lead = hparams.n_layer;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2143
2144
2145
2146
2147
                switch (hparams.n_ff()) {
                    case  4608: type = LLM_TYPE_350M; break;
                    case  6912: type = LLM_TYPE_700M; break;
                    case  8192: type = LLM_TYPE_1_2B; break;
                    case 10752: type = LLM_TYPE_2_6B; break;
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
                    default:    type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_LFM2MOE:
            {
                ml.get_key(LLM_KV_SHORTCONV_L_CACHE,           hparams.n_shortconv_l_cache);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func);

                for (uint32_t il = 0; il < hparams.n_layer; ++il) {
                    hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
2161
                }
2162
2163

                type = LLM_TYPE_8B_A1B;
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
            } break;
        case LLM_ARCH_SMALLTHINKER:
            {
                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);

                if (found_swa && hparams.n_swa > 0) {
                    hparams.swa_type      = LLAMA_SWA_TYPE_STANDARD;
                    hparams.n_swa         = 4096;
                    hparams.set_swa_pattern(4, true);
                } else {
                    hparams.swa_type             = LLAMA_SWA_TYPE_NONE;
                    hparams.n_no_rope_layer_step = hparams.n_layer;
                }

                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);

                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_4B;  break;
                    case 52: type = LLM_TYPE_20B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
        case LLM_ARCH_GROVEMOE:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH,  hparams.n_ff_chexp);
                ml.get_key(LLM_KV_EXPERT_GROUP_SCALE,                hparams.expert_group_scale);
                ml.get_key(LLM_KV_EXPERTS_PER_GROUP,                 hparams.n_group_experts);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);

                switch (hparams.n_layer) {
                    case 48: type = LLM_TYPE_30B_A3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
        case LLM_ARCH_APERTUS:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N,        hparams.xielu_alpha_n, hparams.n_layer);
                ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P,        hparams.xielu_alpha_p, hparams.n_layer);
                ml.get_key_or_arr(LLM_KV_XIELU_BETA,           hparams.xielu_beta,    hparams.n_layer);
                ml.get_key_or_arr(LLM_KV_XIELU_EPS,            hparams.xielu_eps,     hparams.n_layer);

                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_8B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
        case LLM_ARCH_MINIMAX_M2:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,  hparams.f_norm_rms_eps);
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,   hparams.n_ff_exp);
                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,           hparams.expert_gating_func, false);

                switch (hparams.n_layer) {
                    case 62: type = LLM_TYPE_230B_A10B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_COGVLM:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 32: type = LLM_TYPE_13B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_PANGU_EMBED:
            {
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                switch (hparams.n_layer) {
                    case 26: type = LLM_TYPE_1B; break; // openPangu-Embedded-1B-V1.1
                    case 34: type = LLM_TYPE_7B; break; // openPangu-Embedded-7B-V1.1
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
        case LLM_ARCH_QWEN3NEXT:
            {
                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);
                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);

                // Load linear attention (gated delta net) parameters
                ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
                ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
                ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
                ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
                ml.get_key(LLM_KV_SSM_GROUP_COUNT,    hparams.ssm_n_group);

                // Mark recurrent layers (linear attention layers)
                for (uint32_t i = 0; i < hparams.n_layer; ++i) {
                    hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
                }

                switch (hparams.n_layer) {
                    case 80: type = LLM_TYPE_80B_A3B; break;
                    default: type = LLM_TYPE_UNKNOWN;
                }
            } break;
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
        default: throw std::runtime_error("unsupported model architecture");
    }

    pimpl->n_bytes = ml.n_bytes;

    pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();

    if (hparams.f_max_alibi_bias > 0.0f) {
        hparams.use_alibi = true;
    }

    hparams.rope_type = llama_model_rope_type(this);
}

void llama_model::load_vocab(llama_model_loader & ml) {
    const auto kv = LLM_KV(arch);

    vocab.load(ml, kv);
}

bool llama_model::load_tensors(llama_model_loader & ml) {
    const auto & split_mode   = params.split_mode;
    const auto & n_gpu_layers = params.n_gpu_layers;
    const auto & use_mlock    = params.use_mlock;
    const auto & tensor_split = params.tensor_split;

    const int n_layer = hparams.n_layer;
2292

2293
    const bool use_mmap_buffer = true;
2294

2295
    LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
2296

2297
    // build a list of buffer types for the CPU and GPU devices
2298
    pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
2299
2300
2301
2302
2303
    for (auto * dev : devices) {
        buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
        // add CPU buffer types as a fallback
        buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
        pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
2304
2305
    }

2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
    // calculate the split points
    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
    std::vector<float> splits(n_devices());
    if (all_zero) {
        // default split, by free memory
        for (size_t i = 0; i < n_devices(); ++i) {
            ggml_backend_dev_t dev = devices[i];
            size_t total;
            size_t free;
            ggml_backend_dev_memory(dev, &free, &total);
            splits[i] = free;
        }
    } else {
        std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
2320
2321
    }

2322
2323
2324
2325
2326
    // sum and normalize the splits to get the split points
    float split_sum = 0.0f;
    for (size_t i = 0; i < n_devices(); ++i) {
        split_sum += splits[i];
        splits[i] = split_sum;
2327
    }
2328
2329
    for (size_t i = 0; i < n_devices(); ++i) {
        splits[i] /= split_sum;
2330
2331
    }

2332
    ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
2333
2334
2335
    if (cpu_dev == nullptr) {
        throw std::runtime_error(format("%s: no CPU backend found", __func__));
    }
2336
2337
2338
    const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
    const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
    auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
2339
        const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
2340
        if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
2341
            LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
2342
2343
2344
2345
            return {cpu_dev, &pimpl->cpu_buft_list};
        }
        const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
        auto * dev = devices.at(layer_gpu);
2346
        LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
2347
2348
        return {dev, &pimpl->gpu_buft_list.at(dev)};
    };
2349

2350
2351
2352
    // assign the input layer
    // there is very little benefit to offloading the input layer, so always keep it on the CPU
    pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
2353

2354
2355
2356
2357
2358
    // assign the repeating layers to the devices according to the splits
    pimpl->dev_layer.resize(n_layer);
    for (int il = 0; il < n_layer; ++il) {
        pimpl->dev_layer[il] = get_layer_buft_list(il);
    }
2359

2360
2361
2362
2363
2364
2365
2366
2367
2368
    // assign the output layer
    pimpl->dev_output = get_layer_buft_list(n_layer);

    // one ggml context per buffer type
    int max_n_tensors = ml.n_tensors;
    max_n_tensors += 1;         // duplicated output tensor
    max_n_tensors += n_layer*2; // duplicated rope freq tensors
    const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2369
2370
2371
    // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
    struct ggml_backend_buft_comparator {
        bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2372
            return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2373
2374
2375
2376
        }
    };
    std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;

2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
            ggml_init_params params = {
                /*.mem_size   =*/ ctx_size,
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };

            ggml_context * ctx = ggml_init(params);
            if (!ctx) {
                throw std::runtime_error(format("failed to create ggml context"));
2389
2390
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2391
            ctx_map.emplace(buft, ctx);
2392

2393
            return ctx;
2394
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2395
        return it->second.get();
2396
    };
2397

2398
2399
    const auto TENSOR_DUPLICATED   = llama_model_loader::TENSOR_DUPLICATED;
    const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
2400
    const auto TENSOR_SKIP         = llama_model_loader::TENSOR_SKIP;
2401

2402
    // create tensors for the weights
2403
    {
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
        // note: cast to int64_t since we will use these for the tensor dimensions
        const int64_t n_head        = hparams.n_head();
        const int64_t n_head_kv     = hparams.n_head_kv();
        const int64_t n_embd        = hparams.n_embd;
        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
        const int64_t n_embd_head_k = hparams.n_embd_head_k;
        const int64_t n_embd_head_v = hparams.n_embd_head_v;
        const int64_t n_ff          = hparams.n_ff();
        const int64_t n_embd_gqa    = n_embd_v_gqa;
2414
        const int64_t n_vocab       = vocab.n_tokens();
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
        const int64_t n_token_types = vocab.n_token_types();
        const int64_t n_rot         = hparams.n_rot;
        const int64_t n_expert      = hparams.n_expert;
        const int64_t n_expert_used = hparams.n_expert_used;
        const int64_t n_ctx_train   = hparams.n_ctx_train;

        if (n_expert > 0 && hparams.n_expert_used == 0) {
            throw std::runtime_error("model has expert layers but no expert layers are used");
        }

        int n_moved_tensors = 0;
        ggml_tensor * first_moved_tensor = nullptr;
        ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
        ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
2429

2430
2431
        auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
            ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
2432

2433
2434
2435
2436
2437
            if (!t_meta) {
                if (flags & TENSOR_NOT_REQUIRED) {
                    return nullptr;
                }
                throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
2438
            }
2439
2440
2441
2442
2443
2444
2445

            // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
            // the tensor is duplicated
            // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
            llm_tensor tn_tensor = tn.tensor;
            if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
                tn_tensor = LLM_TENSOR_OUTPUT;
2446
2447
            }

2448
2449
2450
2451
2452
2453
            llm_tensor_info info;
            try {
                info = llm_tensor_info_for(tn_tensor);
            } catch (const std::out_of_range & e) {
                throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
            }
2454

2455
            // skip unused tensors
2456
            if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
2457
2458
2459
2460
                const size_t nbytes = ggml_nbytes(t_meta);
                LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);

                ml.size_data -= nbytes;
2461
2462
2463
                ml.n_created++;

                return nullptr;
2464
            }
2465

2466
            // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
2467
2468
2469
            ggml_op op;
            bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
            if (bias) {
2470
2471
2472
2473
2474
                if (info.op == GGML_OP_MUL_MAT_ID) {
                    op = GGML_OP_ADD_ID;
                } else {
                    op = GGML_OP_ADD;
                }
2475
2476
            } else {
                op = info.op;
2477
2478
            }

2479
2480
2481
2482
2483
2484
2485
2486
            // sanity checks
            if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
                if (tn.bid != -1) {
                    GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
                }
            } else {
                if (tn.bid == -1) {
                    GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
2487
2488
2489
                }
            }

2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
            // select the buffer type for this tensor
            buft_list_t * buft_list;
            switch (info.layer) {
                case LLM_TENSOR_LAYER_INPUT:
                    buft_list = pimpl->dev_input.buft_list;
                    break;
                case LLM_TENSOR_LAYER_OUTPUT:
                    buft_list = pimpl->dev_output.buft_list;
                    break;
                case LLM_TENSOR_LAYER_REPEATING:
                    buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
                    break;
                default:
                    GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
2504
2505
            }

2506
2507
2508
2509
2510
2511
2512
2513
            ggml_backend_buffer_type_t buft = nullptr;

            // check overrides
            if (ml.tensor_buft_overrides) {
                std::string tensor_name = tn.str();
                for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
                    std::regex pattern(overrides->pattern);
                    if (std::regex_search(tensor_name, pattern)) {
2514
2515
2516
2517
2518
2519
2520
                        if (overrides->buft == ggml_backend_cpu_buffer_type()) {
                            // when overriding to a CPU buffer, consider the extra buffer types
                            buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
                        } else {
                            buft = overrides->buft;
                        }

2521
2522
2523
2524
                        LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
                                tensor_name.c_str(),
                                ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
                                ggml_backend_buft_name(buft));
2525
2526
2527
2528
2529
                        break;
                    }
                }
            }

2530
            if (!buft) {
2531
2532
2533
2534
                buft = select_weight_buft(hparams, t_meta, op, *buft_list);
                if (!buft) {
                    throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
                }
2535
2536
            }

2537
2538
2539
2540
            // avoid using a host buffer when using mmap
            auto * buft_dev = ggml_backend_buft_get_device(buft);
            if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
                auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
2541
2542
2543
                if (!cpu_dev) {
                    throw std::runtime_error("no CPU backend found");
                }
2544
                buft = ggml_backend_dev_buffer_type(cpu_dev);
2545
2546
            }

2547
2548
2549
2550
2551
2552
            if (buft != buft_list->front().second) {
                n_moved_tensors++;
                if (!first_moved_tensor) {
                    first_moved_tensor = t_meta;
                    first_moved_from_buft = buft_list->front().second;
                    first_moved_to_buft   = buft;
2553
2554
2555
                }
            }

2556
2557
2558
2559
2560
2561
2562
            ggml_context * ctx = ctx_for_buft(buft);

            // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
            if (flags & TENSOR_DUPLICATED) {
                ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
                if (t) {
                    return t;
2563
2564
                }
            }
2565
2566
            return ml.create_tensor(ctx, tn, ne, flags);
        };
2567

2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
        layers.resize(n_layer);

        // TODO: move to a separate function
        const auto tn = LLM_TN(arch);
        switch (arch) {
            case LLM_ARCH_LLAMA:
            case LLM_ARCH_REFACT:
            case LLM_ARCH_MINICPM:
            case LLM_ARCH_GRANITE:
            case LLM_ARCH_GRANITE_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
2588
2589
                    }

2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }
                        else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

                        if (n_expert == 0) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                            // optional MLP bias
                            layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                        } else {
                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);
2630
2631
2632
2633
2634
2635
2636

                            // For Granite MoE Shared
                            if (hparams.n_ff_shexp > 0) {
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
                            }
2637
2638
2639
                        }
                    }
                } break;
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
            case LLM_ARCH_LLADA:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output =
                            create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
                        layer.wq =
                            create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
                        // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
                        layer.wo =
                            create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
                                                         TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);

                        // optional MLP bias
                        layer.ffn_gate_b =
                            create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_b =
                            create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
                    }
                }
                break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
            case LLM_ARCH_LLADA_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                    }
                } break;
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
            case LLM_ARCH_LLAMA4:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2735
                        bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        if (is_moe_layer) {
                            int n_ff_exp = hparams.n_ff_exp;

                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff_exp, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);

                            // Shared expert
                            const int64_t n_ff_shexp = n_ff_exp;
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, n_ff_shexp}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd    }, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp}, 0);
                        } else {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
                    }
                } break;
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
            case LLM_ARCH_DECI:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
2782

2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
                        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa(i);
                        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa(i);
                        const int64_t n_embd_gqa    = hparams.n_embd_v_gqa(i);
                        const int64_t n_ff          = hparams.n_ff(i);
                        const int64_t n_head        = hparams.n_head(i);
                        const int64_t n_head_kv     = hparams.n_head_kv(i);

                        if (n_head_kv == 0 && n_head > 0) {
                            // linear attention for DeciLMCausalModel
                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        }
                        else if (n_head_kv > 0) {
                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
                        }

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

2812
2813
2814
                        if (n_ff > 0) {
                            layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        }
2815
2816
2817
2818
2819
2820
2821
2822
2823

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }
                        else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

2824
2825
2826
2827
2828
                        if (n_ff > 0) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852

                        // optional MLP bias
                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_MINICPM3:
                {
                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;

                    const int64_t q_lora_rank  = hparams.n_lora_q;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
2853

2854
2855
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
2856

2857
2858
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
2859

2860
                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
2861

2862
2863
                        layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
                        layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
2864

2865
2866
2867
                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
                        layer.wkv_b     = create_tensor(tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
                        layer.wo        = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd}, 0);
2868

2869
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2870

2871
2872
2873
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
2874

2875
2876
2877
2878
2879
2880
2881
2882
2883
                        layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                    }
                } break;
            case LLM_ARCH_GROK:
                {
                    if (n_expert == 0) {
                        throw std::runtime_error("Grok model cannot have zero experts");
                    }
2884

2885
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2886

2887
2888
2889
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
2890

2891
2892
2893
2894
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
2895

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2896
                    const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
2897
2898
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
2899

2900
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2901

2902
2903
2904
2905
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2906

2907
                        layer.attn_out_norm   = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
2908

2909
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2910

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2911
2912
2913
2914
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff,   n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);

2915
                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2916
2917
2918
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd,   n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);
2919

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2920
2921
2922
2923
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        if (!layer.ffn_post_norm) {
                            layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                        }
2924
2925
2926
2927
2928
2929
2930
                    }
                } break;
            case LLM_ARCH_DBRX:
                {
                    if (n_expert == 0) {
                        throw std::runtime_error("DBRX model cannot have zero experts");
                    }
2931

2932
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2933

2934
2935
2936
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
2937

2938
2939
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
2940

2941
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2942

2943
2944
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2945

2946
                        layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
2947

2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_BAICHUAN:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
                    }
2961

2962
2963
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
2964

2965
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2966

2967
2968
2969
2970
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2971

2972
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2973

2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_FALCON:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    {
                        output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);

                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        if (!output) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_STARCODER:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, 0);

                    // output
                    {
                        output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                        output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        if (!output) {
                            // needs to be on GPU
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }

                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff}, 0);
                        layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_BERT:
            case LLM_ARCH_NOMIC_BERT:
3051
            case LLM_ARCH_NOMIC_BERT_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3052
            case LLM_ARCH_JINA_BERT_V3:
3053
3054
                {
                    tok_embd     = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0);
3055
                    type_embd    = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
3056
3057
3058
3059
3060
3061
3062

                    if (arch == LLM_ARCH_BERT) {
                        pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,    "weight"), {n_embd, n_ctx_train}, 0);

                        cls   = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
                        cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"),   {n_embd},         TENSOR_NOT_REQUIRED);

3063
3064
                        cls_out   = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
                        cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"),   {hparams.n_cls_out},         TENSOR_NOT_REQUIRED);
3065
3066
3067
3068
3069
3070
3071
3072
                    }

                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

3073
3074
3075
3076
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        if (!layer.wqkv) {
3077
3078
3079
3080
3081
3082
3083
3084
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd}, 0);

                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa}, 0);

                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa}, 0);
3085
3086
                        }

3087
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3088
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);
3089
3090
3091
3092

                        layer.attn_out_norm   = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd}, 0);

3093
3094
3095
3096
                        if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff,   n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff,   n_embd, n_expert}, 0);
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,   "weight", i), {n_embd, n_expert}, 0);
3097
                        } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3098
3099
3100
3101
3102
3103
                            layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                            if (arch == LLM_ARCH_NOMIC_BERT) {
3104
3105
                                layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                            }
3106
3107
3108
3109
3110
3111
                        }

                        layer.layer_out_norm   = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
                        layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd}, 0);
                    }
                } break;
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
            case LLM_ARCH_NEO_BERT:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0);

                    cls   = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
                    cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"),   {n_embd},         TENSOR_NOT_REQUIRED);

                    cls_out   = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
                    cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"),   {hparams.n_cls_out},         TENSOR_NOT_REQUIRED);

                    output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff*2}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                    }
                } break;
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
            case LLM_ARCH_JINA_BERT_V2:
                {
                    tok_embd  = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0); // word_embeddings
                    type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings

                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}, 0); //LayerNorm bias

                    cls   = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
                    cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"),   {1},         TENSOR_NOT_REQUIRED);
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i]; // JinaBertLayer

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd}, 0);

                        layer.attn_q_norm   = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias",   i), {n_embd_gqa}, 0);

                        layer.attn_k_norm   = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias",   i), {n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd}, 0); //output_dens

                        layer.attn_out_norm   = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
                        layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias",   i), {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

3175
3176
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd}, 0);

                        layer.layer_out_norm   = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
                        layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias",   i), {n_embd}, 0);
                    }
                } break;
            case LLM_ARCH_BLOOM:
                {
                    tok_embd   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, 0);
                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
3194
3195
3196
3197
3198
3199
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias",   i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias",   i), {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias",   i), {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias",   i), {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_MPT:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, TENSOR_NOT_REQUIRED);

                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    if (!output) {
                        output    = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, TENSOR_NOT_REQUIRED);

                        layer.attn_q_norm   = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.attn_k_norm   = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);

                        // AWQ ScaleActivation layer
                        layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_STABLELM:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm =   create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors, present in Stable LM 2 1.6B
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        // optional q and k layernorms, present in StableLM 2 12B
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head},    TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);

                        // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, TENSOR_NOT_REQUIRED);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd*3}, 0);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN2:
            case LLM_ARCH_QWEN2VL:
3332
            case LLM_ARCH_DREAM:
3333
3334
3335
3336
3337
3338
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
3339
                    output_b    = create_tensor(tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab}, TENSOR_NOT_REQUIRED);
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN2MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
3386
3387
3388
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
                        }

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        // Shared expert branch
                        const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;

                        layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, n_ff_shexp}, 0);
                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp,     n_embd}, 0);
                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp}, 0);
                    }
                } break;
3417
            case LLM_ARCH_QWEN3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3418
            case LLM_ARCH_QWEN3VL:
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3430
3431
3432
                    // output rerank head
                    cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);

3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN3MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3453
3454
            case LLM_ARCH_QWEN3VLMOE:
            case LLM_ARCH_RND1:
3455
3456
3457
3458
3459
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
3460
3461
3462
3463
3464
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
                        }

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                    }
                } break;
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
            case LLM_ARCH_PHI2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
                    output_b      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd}, 0);

                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i),   {n_embd_gqa}, 0);

                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i),   {n_embd_gqa}, 0);
                        }

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_PHI3:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
3544
3545
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

3546
3547
3548
3549
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);

3564
3565
                        layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
                    }
                } break;
            case LLM_ARCH_PHIMOE:
                {
                    const int64_t n_embd_head = n_embd / n_head;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), { n_embd, n_vocab }, 0);
                    output_b      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "bias"),   { n_vocab }, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias",   i), { n_embd }, 0);

3586
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias",   i), {n_embd}, 0);

                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias",   i), {n_embd_gqa}, 0);

                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias",   i), {n_embd_gqa}, 0);
                        }
                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), { n_embd }, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias",   i), { n_embd }, 0);

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert},         0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);

                        layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                     }
                } break;
            case LLM_ARCH_PLAMO:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
3635
3636
            case LLM_ARCH_PLAMO2:
                {
3637
                    // mamba parameters
3638
3639
3640
3641
3642
3643
                    const uint32_t d_conv             = hparams.ssm_d_conv;
                    const uint32_t d_state            = hparams.ssm_d_state;
                    const uint32_t num_heads          = hparams.ssm_dt_rank;
                    const uint32_t intermediate_size  = hparams.ssm_d_inner;
                    const int64_t dt_dim              = std::max(64, int(hparams.n_embd / 16));

3644
3645
3646
3647
                    // attention parameters
                    const uint32_t qk_dim = hparams.n_embd_head_k;
                    const uint32_t v_dim  = hparams.n_embd_head_v;

3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
                        bool is_mamba_layer = hparams.is_recurrent(i);

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (is_mamba_layer) {
                            layer.ssm_in       = create_tensor(tn(LLM_TENSOR_SSM_IN,     "weight", i), {n_embd, 2 * intermediate_size}, 0);
                            layer.ssm_conv1d   = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);

                            layer.ssm_x    = create_tensor(tn(LLM_TENSOR_SSM_X,  "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
                            layer.ssm_dt   = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);

                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);

                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);

                            layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
                            layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
                            layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
                        } else {
3681
3682
                            const int64_t num_attention_heads = hparams.n_head(i);
                            const int64_t q_num_heads         = num_attention_heads;
3683
3684
3685
3686
3687
3688
3689
3690
                            const int64_t num_key_value_heads = hparams.n_head_kv(i);
                            const int64_t k_num_heads         = num_key_value_heads;
                            const int64_t v_num_heads         = num_key_value_heads;
                            const int64_t q_proj_dim          = q_num_heads * qk_dim;
                            const int64_t k_proj_dim          = k_num_heads * qk_dim;
                            const int64_t v_proj_dim          = v_num_heads * v_dim;

                            layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
3691
3692
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
                        }

                        // All layers have post-attention norm, FFN norm, and FFN tensors
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
                    }
                } break;
3704
3705
3706
3707
3708
3709
3710
3711
            case LLM_ARCH_GPT2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
                    pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
3712
3713
3714
3715
3716
3717
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_CODESHELL:
                {
3743
3744
3745
3746
3747
3748
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if tok embd is NULL, init from output
                    if (tok_embd == NULL) {
                        tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_ORION:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_INTERNLM2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_GEMMA:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                    }
                } break;
            case LLM_ARCH_GEMMA2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
Patrick Devine's avatar
Patrick Devine committed
3878
            case LLM_ARCH_GEMMA3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3879
            case LLM_ARCH_GEMMA_EMBEDDING:
3880
3881
3882
3883
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
3884
3885
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
3886
3887
3888

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
3889
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,   "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
3890
3891
                    }

3892
3893
3894
3895
3896
                    // Dense linear weights
                    dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED);
                    dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED);


3897
3898
3899
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

3900
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
3901

3902
3903
3904
3905
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
3906

3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_k_norm    = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM,    "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm    = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM,    "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
            case LLM_ARCH_GEMMA3N:
                {
                    const int64_t n_altup      = hparams.n_altup;
                    const int64_t laurel_rank  = hparams.laurel_rank;
                    const int64_t n_embd_altup = hparams.n_embd_altup;

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    tok_embd           = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,           "weight"), {n_embd, n_vocab}, 0);
                    tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);

                    altup_proj           = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ,           "weight"), {n_embd, n_embd, n_altup - 1}, 0);
                    altup_unembd_proj    = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ,    "weight"), {n_embd, n_embd, n_altup - 1}, 0);
                    per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
                    per_layer_proj_norm  = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM,  "weight"), {n_embd_altup}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_q_norm    = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM,    "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm    = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM,    "weight", i), {n_embd_head_k}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);

                        // altup & laurel
                        layer.per_layer_inp_gate   = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE,  "weight", i), {n_embd, n_embd_altup}, 0);
                        layer.per_layer_proj       = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ,      "weight", i), {n_embd_altup, n_embd}, 0);
                        layer.per_layer_post_norm  = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
                        layer.altup_correct_coef   = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF,  "weight", i), {n_altup, n_altup}, 0);
                        layer.altup_correct_scale  = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
                        layer.altup_predict_coef   = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF,  "weight", i), {n_altup, n_altup * n_altup}, 0);
                        layer.altup_router         = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER,        "weight", i), {n_embd, n_altup}, 0);
                        layer.altup_router_norm    = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM,   "weight", i), {n_embd}, 0);
                        layer.laurel_l             = create_tensor(tn(LLM_TENSOR_LAUREL_L,            "weight", i), {n_embd, laurel_rank}, 0);
                        layer.laurel_r             = create_tensor(tn(LLM_TENSOR_LAUREL_R,            "weight", i), {laurel_rank, n_embd}, 0);
                        layer.laurel_post_norm     = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM,    "weight", i), {n_embd}, 0);
                    }
                } break;
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
            case LLM_ARCH_STARCODER2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, 0);
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                        // optional bias tensors
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP ,  "bias", i), {  n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_MAMBA:
                {
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t dt_rank = hparams.ssm_dt_rank;

                    // only an expansion factor of 2 is supported for now
                    if (2 * n_embd != d_inner) {
                        throw std::runtime_error("only an expansion factor of 2 is supported for now");
                    }

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed, duplicated to allow offloading
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // norm
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);

                        layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
                        layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);

                        layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);

                        layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
                        layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);

                        // no "weight" suffix for these
                        layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
                        layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);

                        // out_proj
                        layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                    }
                } break;
4063
            case LLM_ARCH_MAMBA2:
4064
                {
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t n_head  = hparams.ssm_dt_rank;
                    const int64_t n_group = hparams.ssm_n_group;
                    const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

4075
4076
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
                    // output
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }
4087
4088
4089
4090

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

4091
                        // norm
4092
4093
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

4094
                        layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
4095

4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
                        layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
                        layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);

                        layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);

                        // no "weight" suffix for these
                        layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
                        layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);

                        layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);

                        // out_proj
                        layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
4109
4110
                    }
                } break;
4111
            case LLM_ARCH_JAMBA:
4112
                {
4113
4114
4115
4116
4117
4118
4119
4120
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t dt_rank = hparams.ssm_dt_rank;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

4121
4122
4123
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
4124
4125
4126
4127
4128
4129
4130
4131
4132
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }
4133
4134

                    for (int i = 0; i < n_layer; ++i) {
4135
4136
4137
                        const int64_t n_head_kv = hparams.n_head_kv(i);
                        const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);

4138
4139
                        auto & layer = layers[i];

4140
                        // norm
4141
4142
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

4143
4144
4145
                        if (n_head_kv == 0) {
                            // Mamba layer
                            layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
4146

4147
4148
                            layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
                            layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
4149

4150
                            layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
4151

4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
                            layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);

                            layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);

                            layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
                            layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);

                            // no "weight" suffix for these
                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);

                            // out_proj
                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                        } else {
                            // Attention layers

                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        }

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);

                        if (layer.ffn_gate_inp) {
                            // MoE
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff, n_expert}, 0);
                        } else {
                            // FFN (no MoE)
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_GRANITE_HYBRID:
                {
                    // mamba2 Mixer SSM params
                    // NOTE: int64_t for tensor dimensions
                    const int64_t d_conv     = hparams.ssm_d_conv;
                    const int64_t d_inner    = hparams.ssm_d_inner;
                    const int64_t d_state    = hparams.ssm_d_state;
                    const int64_t n_ssm_head = hparams.ssm_dt_rank;
                    const int64_t n_group    = hparams.ssm_n_group;
                    const int64_t d_in_proj  = 2*d_inner + 2*n_group*d_state + n_ssm_head;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

                    // embeddings
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // norm
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.is_recurrent(i)) {
                            // ssm layers
                            layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);

                            layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
                            layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);

                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);

                            // no "weight" suffix for these
                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);

                            layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);

                            // out_proj
                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                        } else {
                            // attention layers (with optional bias)
                            const int64_t n_head_i = hparams.n_head(i);
                            const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
                            const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},         TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},         TENSOR_NOT_REQUIRED);
                        }

                        // feed forward (w/ optional biases)
                        if (n_expert > 0) {
                            // MoE FFN
                            layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);

                            // For Granite MoE Shared
                            if (hparams.n_ff_shexp > 0) {
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
                            }
                        } else {
                            layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                        }
                    }
                } break;
            case LLM_ARCH_XVERSE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_COMMAND_R:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    // init output from the input tok embed
                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (n_layer >= 64){
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
                        }

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_COHERE2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    // init output from the input tok embed
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
                    output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
                                                      TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
                    }
                }
                break;
            case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_OLMO2:
                {
4389
4390
                    const int64_t n_embd_head = n_embd / n_head;

4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
4405
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
4406
4407
4408
4409
4410
4411
4412
4413
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
            case LLM_ARCH_SEED_OSS:
                {
                    const uint32_t head_dim             = hparams.n_embd_head_k;
                    const int64_t n_qo_dim              = n_head * head_dim;
                    const int64_t n_kv_dim              = n_head_kv * head_dim;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_qo_dim}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_kv_dim}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_kv_dim}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);

                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_qo_dim},   TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_kv_dim},   TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_kv_dim},   TENSOR_NOT_REQUIRED);

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                    }
                } break;

4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
            case LLM_ARCH_OLMOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0");
                        }

                        // MoE branch
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_OPENELM:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    // init output from the input tok embed
                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        const int64_t n_head      =   hparams.n_head(i);
                        const int64_t n_head_qkv  = 2*hparams.n_head_kv(i) + n_head;
                        const int64_t n_ff        =   hparams.n_ff(i);

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_GPTNEOX:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_ARCTIC:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, false);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_DEEPSEEK:
                {

                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        } else {
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                            if (n_expert == 0) {
                                throw std::runtime_error("n_expert must be > 0");
                            }
                            if (n_expert_used == 0) {
                                throw std::runtime_error("n_expert_used must be > 0");
                            }

                            // MoE branch
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                            // Shared expert branch
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_DEEPSEEK2:
                {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4635
4636
                    // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
                    const bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
4637

4638
4639
4640
4641
4642
4643
                    const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);

                    // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
                    const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
                    const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;

4644
                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
4645
                    const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670

                    const int64_t q_lora_rank  = hparams.n_lora_q;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;

                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        if (!is_lite) {
                            layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
                        }

                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);

                        if (!is_lite) {
                            layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
4671
                            layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
4672
                        } else {
4673
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
4674
4675
                        }

4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);

                        // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
                        if (is_mla) {
                            layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
                            layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
                        } else {
                            layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
                        }

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        } else {
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);

                            if (n_expert == 0) {
                                throw std::runtime_error("n_expert must be > 0");
                            }
                            if (n_expert_used == 0) {
                                throw std::runtime_error("n_expert_used must be > 0");
                            }

                            // MoE branch
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                            // Shared expert branch
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        }
                    }
                } break;
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
            case LLM_ARCH_PLM:
                {
                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    // output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq        = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
                        layer.wkv_b     = create_tensor(tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
                        layer.wo        = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
            case LLM_ARCH_BITNET:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm     = create_tensor(tn(LLM_TENSOR_ATTN_NORM,     "weight", i), {n_embd}, 0);
                        layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);

                        layer.wq       = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.wk       = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.wv       = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.wo       = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale",  i), {1}, TENSOR_NOT_REQUIRED);

                        layer.ffn_norm     = create_tensor(tn(LLM_TENSOR_FFN_NORM,     "weight", i), {n_embd}, 0);
                        layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);

                        layer.ffn_gate       = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down       = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up         = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_scale   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "scale",  i), {1}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_T5:
                {
                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm     = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);

                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4795
4796
4797
4798
4799
4800
4801
4802
                    // n_layer:     number of encoder_layers
                    // dec_n_layer: number of decoder_layers
                    const int dec_n_layer = hparams.dec_n_layer;
                    if (dec_n_layer > n_layer) {
                        layers.resize(dec_n_layer);
                    }

                    // load encoder layers
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm_enc  = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up_enc   = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4818
4819
4820
4821
4822
                    }

                    // load decoder layers
                    for (int i = 0; i < dec_n_layer; ++i) {
                        auto & layer = layers[i];
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917

                        layer.attn_norm  = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.attn_norm_cross  = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        // this tensor seems to be unused in HF transformers implementation
                        layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd,   n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_T5ENCODER:
                {
                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm_enc  = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd}, 0);
                        layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);

                        layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);

                        layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up_enc   = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_JAIS:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, 0);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, 0);

                        layer.ffn_gate   = create_tensor(tn(LLM_TENSOR_FFN_GATE,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE,   "bias", i),   {n_ff}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_CHATGLM:
                {
                    tok_embd   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
4918
4919
4920
4921
4922
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
4923
4924
4925
4926
4927

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4928
4929
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
4930
4931
4932
4933
4934

                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
4935
4936
4937
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
                        }

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);

                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                    }
                } break;
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
            case LLM_ARCH_GLM4:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);

                        if (layer.wqkv == nullptr) {
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        }

                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);

                        layer.ffn_post_norm  = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
            case LLM_ARCH_GLM4_MOE:
                {
                    const int64_t n_expert        = hparams.n_expert;
                    const int64_t n_expert_used   = hparams.n_expert_used;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
                    GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
                    }

                    // Load ALL tensors including NextN layer to satisfy total tensor count
                    // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
                    for (int i = 0; i < n_layer; ++i) {
                        int flags = 0;
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            // skip all tensors in the NextN layers
                            flags |= TENSOR_SKIP;
                        }

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);

                        // GLM-style attention with bias terms
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);

                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);

                        // K/Q norm tensors (optional for GLM-4.5 355B variant)
                        layer.attn_q_norm = create_tensor(
                            tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
                        layer.attn_k_norm = create_tensor(
                            tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);

                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);

                        // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
                        // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
                        const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);

                        if (use_moe) {
                            // MoE layers
                            layer.ffn_gate_inp =
                                create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);

                            // MoE branch
                            const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                            layer.ffn_gate_exps = create_tensor(
                                tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
                            layer.ffn_down_exps = create_tensor(
                                tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
                            layer.ffn_up_exps = create_tensor(
                                tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);

                            // Shared expert
                            if (n_expert_shared > 0) {
                                const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
                                layer.ffn_gate_shexp = create_tensor(
                                    tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
                                layer.ffn_down_shexp = create_tensor(
                                    tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
                                layer.ffn_up_shexp = create_tensor(
                                    tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
                            }
                        } else {
                            // Dense layers (first k layers) - GLM uses separate gate/up projections
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), { n_embd, n_ff }, flags);
                        }

                        // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            layer.nextn.eh_proj          = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
                            layer.nextn.enorm            = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
                            layer.nextn.hnorm            = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
5080
5081
5082
5083
5084

                            // Optional tensors
                            layer.nextn.embed_tokens     = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
                            layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
                            layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
5085
5086
5087
5088
                        }
                    }
                }
                break;
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
            case LLM_ARCH_NEMOTRON:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
                    output        = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                        // optional MLP bias
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
            case LLM_ARCH_NEMOTRON_H:
                {
                    // mamba2 Mixer SSM params
                    // NOTE: int64_t for tensor dimensions
                    const int64_t d_conv     = hparams.ssm_d_conv;
                    const int64_t d_inner    = hparams.ssm_d_inner;
                    const int64_t d_state    = hparams.ssm_d_state;
                    const int64_t n_ssm_head = hparams.ssm_dt_rank;
                    const int64_t n_group    = hparams.ssm_n_group;
                    const int64_t d_in_proj  = 2*d_inner + 2*n_group*d_state + n_ssm_head;

                    // embeddings
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (output == NULL) {
                            output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // all blocks use the attn norm
                        layer.attn_norm  = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.is_recurrent(i)) {
                            // ssm layers
                            layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);

                            layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
                            layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);

                            layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);

                            // no "weight" suffix for these
                            layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
                            layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);

                            layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);

                            // out_proj
                            layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
                        } else if (hparams.n_ff(i) == 0) {
                            // attention layers (with optional bias)
                            const int64_t n_head_i = hparams.n_head(i);
                            const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
                            const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias",   i), {n_embd},         TENSOR_NOT_REQUIRED);
                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias",   i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias",   i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
                            layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd},         TENSOR_NOT_REQUIRED);
                        } else {
                            // mlp layers
                            layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  hparams.n_ff(i), n_embd}, 0);
                            layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   hparams.n_ff(i)}, 0);
                            layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd}, TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias",   i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
                        }
                    }
                } break;
5195
5196
5197
5198
5199
5200
            case LLM_ARCH_EXAONE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
5201
5202
5203
5204
5205
5206
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm   = create_tensor(tn(LLM_TENSOR_FFN_NORM,   "weight", i), {n_embd}, 0);
                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.ffn_gate   = create_tensor(tn(LLM_TENSOR_FFN_GATE,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN,   "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,     "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
            case LLM_ARCH_EXAONE4:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_post_norm  = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                    }
                } break;
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
            case LLM_ARCH_RWKV6:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // Block 0, LN0
                    tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int time_mix_extra_dim = hparams.time_mix_extra_dim;
                    const int time_decay_extra_dim = hparams.time_decay_extra_dim;
                    const int head_size = hparams.wkv_head_size;
                    const int attn_hidden_size = n_embd;
                    const int ffn_size = hparams.n_ff_arr[0];

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, 0);

                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);

                        layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
5290
5291
5292
5293
5294
5295
                        layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
                        GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));

                        layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
                        layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
                        layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
                        layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);

                        layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
                        layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
                        layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);

                        layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
                        layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
                        layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
                    }

                } break;
            case LLM_ARCH_RWKV6QWEN2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
5325
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int time_mix_extra_dim = hparams.time_mix_extra_dim;
                    const int time_decay_extra_dim = hparams.time_decay_extra_dim;
                    const int head_size = hparams.wkv_head_size;
                    const int attn_hidden_size = n_embd;
                    const int n_head_kv = hparams.n_head_kv();
                    int attn_key_value_size;
                    if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
                        attn_key_value_size = attn_hidden_size;
                    } else {
                        attn_key_value_size = n_head_kv * head_size;
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);

                        layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
                        layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);

5351
                        layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
5352
5353
5354
5355
5356
5357
5358
5359
                        layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
                        layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
                        layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        // optional bias tensors
5360
5361
5362
                        layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372

                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
5373
            case LLM_ARCH_SOLAR:
5374
5375
5376
5377
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
5378
5379
5380
                    {
                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
5381
5382
5383
5384
5385
5386
5387
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

5388
5389
5390
5391
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
5392
5393
5394

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

5395
                        layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
5396
5397
5398
5399
5400
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
5401
            case LLM_ARCH_RWKV7:
5402
5403
5404
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

5405
5406
5407
5408
                    // Block 0, LN0
                    tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);

5409
                    // output
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int n_lora_decay = hparams.n_lora_decay;
                    const int n_lora_iclr = hparams.n_lora_iclr;
                    const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
                    const int n_lora_gate = hparams.n_lora_gate;
                    const int attn_hidden_size = n_embd;
                    const int ffn_size = hparams.n_ff_arr[0];

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, 0);

                        layer.attn_norm_2   = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
                        layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, 0);

                        layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);

                        layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
                        layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
                        layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);

                        if (i == 0) {
                            // actually not used
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
                        } else {
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
                        }

                        layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
                        layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);

                        layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);

                        layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);

                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);

                        layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
                        layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);

                        layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
                        layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
                    }

                } break;
            case LLM_ARCH_ARWKV7:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);

                    const int n_lora_decay = hparams.n_lora_decay;
                    const int n_lora_iclr = hparams.n_lora_iclr;
                    const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
                    const int n_lora_gate = hparams.n_lora_gate;
                    const int attn_hidden_size = n_embd;

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
                        layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
                        layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);

                        layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
                        layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
                        layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);

                        if (i == 0) {
                            // actually not used
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
                        } else {
                            layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
                            layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
                            layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
                        }

                        layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);

                        try {
                            layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
                        } catch(std::runtime_error & e) {
                            // ARWKV models may not have gate tensors
                            layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
                        }

                        layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
                        layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);

                        layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
                        layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);

                        layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
                        layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }

                } break;
            case LLM_ARCH_CHAMELEON:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
5551
5552
5553
5554
5555
5556
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
5557
5558
5559
5560
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i),  {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i),  {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
5561

5562
5563
5564
5565
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_WAVTOKENIZER_DEC:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);

                    conv1d   = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
                    conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"),   {1, hparams.posnet.n_embd}, 0);

                    // posnet
                    {
                        const int64_t n_embd = hparams.posnet.n_embd;

                        for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
                            auto & layer = layers[i].posnet;

                            // posnet:
                            //
                            //  - resnet
                            //  - resnet
                            //  - attn
                            //  - resnet
                            //  - resnet
                            //  - norm
                            //
                            switch (i) {
                                case 0:
                                case 1:
                                case 3:
                                case 4:
                                    {
                                        layer.norm1   = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
                                        layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias",   i), {1, n_embd}, 0);

                                        layer.conv1   = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
                                        layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias",   i), {1, n_embd}, 0);

                                        layer.norm2   = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
                                        layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias",   i), {1, n_embd}, 0);

                                        layer.conv2   = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
                                        layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias",   i), {1, n_embd}, 0);
                                    } break;
                                case 2:
                                    {
                                        layer.attn_norm   = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
                                        layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias",   i), {1, n_embd}, 0);

                                        layer.attn_q      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q,    "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_q_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q,    "bias",   i), {1, n_embd}, 0);

                                        layer.attn_k      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K,    "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_k_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K,    "bias",   i), {1, n_embd}, 0);

                                        layer.attn_v      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V,    "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_v_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V,    "bias",   i), {1, n_embd}, 0);

                                        layer.attn_o      = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT,  "weight", i), {1, n_embd, n_embd}, 0);
                                        layer.attn_o_b    = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT,  "bias",   i), {1, n_embd}, 0);
                                    } break;
                                case 5:
                                    {
                                        layer.norm   = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
                                        layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias",   i), {1, n_embd}, 0);
                                    } break;
                                default: GGML_ABORT("unknown posnet layer");
                            };
                        }
                    }

                    GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);

                    tok_norm   = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
                    tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {hparams.posnet.n_embd}, 0);

                    // convnext
                    {
                        const int64_t n_embd = hparams.convnext.n_embd;

                        for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
                            auto & layer = layers[i].convnext;

                            layer.dw     = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW,    "weight", i), {7, 1, n_embd}, 0);
                            layer.dw_b   = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW,    "bias",   i), {1, n_embd}, 0);

                            layer.norm   = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM,  "weight", i), {n_embd}, 0);
                            layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM,  "bias",   i), {n_embd}, 0);

                            layer.pw1    = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1,   "weight", i), {n_embd, n_ff}, 0);
                            layer.pw1_b  = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1,   "bias",   i), {n_ff}, 0);

                            layer.pw2    = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2,   "weight", i), {n_ff, n_embd}, 0);
                            layer.pw2_b  = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2,   "bias",   i), {n_embd}, 0);

                            layer.gamma  = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
                        }

                        // output
                        output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                        output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, 0);
                    }

                    output   = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
                    output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"),   {n_embd}, 0);
                } break;
5677
5678
5679
5680
            case LLM_ARCH_BAILINGMOE:
                {
                    const int64_t n_ff_exp            = hparams.n_ff_exp;
                    const int64_t n_expert_shared     = hparams.n_expert_shared;
5681

5682
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
5683

5684
5685
5686
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
5687

5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_head * n_rot}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        if (n_expert == 0) {
                            throw std::runtime_error("n_expert must be > 0");
                        }
                        if (n_expert_used == 0) {
                            throw std::runtime_error("n_expert_used must be > 0");
                        }

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
            case LLM_ARCH_BAILINGMOE2:
                {
                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");

                    for (int i = 0; i < n_layer; ++i) {
                        int flags = 0;
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            // skip all tensors in the NextN layers
                            flags |= TENSOR_SKIP;
                        }

                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);

                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);

                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);

                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
                            const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;

                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);

                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, flags);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);

                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, flags);
                        } else { // Dense layers
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, flags);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, flags);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, flags);
                        }

                        // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
                            layer.nextn.eh_proj          = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
                            layer.nextn.embed_tokens     = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
                            layer.nextn.enorm            = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
                            layer.nextn.hnorm            = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
                            layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
                            layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
                            layer.layer_out_norm         = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
                        }
                    }
                } break;
5781
5782
5783
5784
            case LLM_ARCH_DOTS1:
                {
                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;
5785

5786
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
5787

5788
5789
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
5790

5791
5792
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
5793

5794
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
5795

5796
5797
5798
5799
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
5800

5801
5802
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
5803

5804
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
5805

5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        } else {
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);

                            if (n_expert == 0) {
                                throw std::runtime_error("n_expert must be > 0");
                            }
                            if (n_expert_used == 0) {
                                throw std::runtime_error("n_expert_used must be > 0");
                            }

                            // MoE branch
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                            // Shared expert branch
                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_ARCEE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
            case LLM_ARCH_AFMOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    const int64_t n_ff_exp = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        // dual attention normalization
                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), {n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        // attention projections
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // Q/K normalization
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);

                        // attention gating
                        layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);

                        // dual ffn normalization
                        layer.ffn_norm      = create_tensor(tn(LLM_TENSOR_FFN_NORM,      "weight", i), {n_embd}, 0);
                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);

                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
                            // MoE layers
                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);

                            // grouped expert weights
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff_exp, n_expert}, 0);

                            // shared expert
                            if (n_expert_shared > 0) {
                                const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, 0);
                            }
                        } else {
                            // Dense layers
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
                        }
                    }
                } break;
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
            case LLM_ARCH_ERNIE4_5:
            case LLM_ARCH_ERNIE4_5_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
                            int n_ff_exp = hparams.n_ff_exp;

                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff_exp, n_embd, n_expert}, 0);
                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);

                            // Shared expert (if present)
                            if (hparams.n_ff_shexp > 0) {
                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, hparams.n_ff_shexp}, 0);
                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd    }, 0);
                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, hparams.n_ff_shexp}, 0);
                            }
                        } else { // Dense layers
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_FALCON_H1:
                {
                    // Common
                    const int64_t hidden_size = hparams.n_embd; // hidden_size

                    // mamba2 Mixer SSM params
                    const int64_t ssm_conv_kernel_size  = hparams.ssm_d_conv; // ssm_conv_kernel_size
                    const int64_t ssm_n_groups          = hparams.ssm_n_group; // ssm_n_groups
                    const int64_t ssm_state_size        = hparams.ssm_d_state; // ssm_state_size
                    const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
                    const int64_t ssm_num_heads         = hparams.ssm_dt_rank; // ssm_num_heads
                    const int64_t ssm_conv_dim          = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
                    const int64_t ssm_projection_size   = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;

                    // attn params
                    const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
                    const int64_t attn_num_key_value_head = hparams.n_head_kv(0);

                    // ffn params
                    const int64_t ffn_intermediate_size = hparams.n_ff(0);

                    // embeddings
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);

                    // output
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        /*SSM LAYERS*/
                        // ssm in
                        layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
                        // ssm 1d conv
                        layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
                        layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
                        // ssm_dt
                        layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
                        // no "weight" suffix for these
                        layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
                        layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
                        // ssm_norm
                        layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
                        // out_proj
                        layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);

                        /*ATTENTION LAYERS*/
                        // attention layers (with optional bias)
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);


                        // feed forward (w/ optional biases)
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size,   ffn_intermediate_size}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  ffn_intermediate_size, hidden_size}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {hidden_size,   ffn_intermediate_size}, 0);

                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_HUNYUAN_MOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);

                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
                    }
                } break;
            case LLM_ARCH_HUNYUAN_DENSE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                    }
                } break;
            case LLM_ARCH_SMOLLM3:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_OPENAI_MOE:
                {
                    const int64_t n_ff_exp = hparams.n_ff_exp;

                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), {n_embd}, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_head * n_rot}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);

                        layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {  n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        // bias
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_head * n_rot}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_head_kv * n_rot}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_head_kv * n_rot}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

                        layer.ffn_gate_inp_b  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "bias", i), {n_expert}, 0);
                        layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), {  n_embd, n_expert}, 0);
                        layer.ffn_up_exps_b   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "bias", i), {n_ff_exp, n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_LFM2:
6199
            case LLM_ARCH_LFM2MOE:
6200
                {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6201
6202
6203
6204
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6205
6206
6207
6208

                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
6209
6210
6211

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
6212
6213
6214
6215

                        const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);

                        // ffn/moe is same for transformer and conv layers
6216
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
                        if (is_moe_layer) {
                            GGML_ASSERT(n_expert && n_expert_used);
                            layer.ffn_gate_inp    = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i),  {n_embd, n_expert}, 0);
                            layer.ffn_gate_exps   = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
                            layer.ffn_down_exps   = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp,   n_embd, n_expert}, 0);
                            layer.ffn_up_exps     = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i),   {n_embd, hparams.n_ff_exp, n_expert}, 0);
                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
                        } else {  // dense
                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                        }
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285

                        // for operator_norm
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        if (!hparams.is_recurrent(i)) {
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                            GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);

                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);

                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
                        } else {
                            layer.shortconv.conv     = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV,    "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
                            layer.shortconv.in_proj  = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ,  "weight", i), {n_embd, 3 * n_embd}, 0);
                            layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
                        }
                    }
                } break;
            case LLM_ARCH_SMALLTHINKER:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);

                        GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
                        GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp;
                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6286
6287
6288
            case LLM_ARCH_GROVEMOE:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
6289

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6290
6291
6292
6293
6294
6295
6296
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
6297

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6298
6299
6300
                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE");
                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE");
                    GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE");
6301

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6302
6303
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
6304

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
                        const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k;
                        const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;

                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);

                        layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), {  n_embd, n_ff_chexp, n_chunk_expert}, 0);
                        layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp,   n_embd, n_chunk_expert}, 0);
                        layer.ffn_up_chexps   = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS,   "weight", i), {  n_embd, n_ff_chexp, n_chunk_expert}, 0);
                    }
                } break;
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
            case LLM_ARCH_APERTUS:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), { n_embd, n_vocab }, 0);

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        } else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);

                        // optional bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), { n_embd },     TENSOR_NOT_REQUIRED);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd },     TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
                        layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);

                        // Q and K layernorms for Apertus
                        layer.attn_q_norm   = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
                        layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm   = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
                        layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
                    }
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6375
6376
6377
            case LLM_ARCH_MINIMAX_M2:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6378

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6379
6380
6381
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6382

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6383
6384
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6385

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6386
6387
6388
6389
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6390

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6391
6392
6393
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6394

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6395
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
6396

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
                        layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
                    }
                } break;
            case LLM_ARCH_COGVLM:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
6407

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6408
6409
6410
                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
6411

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6412
6413
6414
6415
                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }
6416

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6417
6418
                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];
6419

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6420
6421
6422
                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
6423

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6424
6425
                        layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
                        layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
6426

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6427
                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
6428

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);

                        layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.visexp_ffn_up   = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_PANGU_EMBED:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

                        // weight tensors
                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

                        // bias tensors
                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd_head_k * n_head}, 0);
                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, 0);
                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, 0);
                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        } else {
                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
                        }

                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                    }
                } break;
            case LLM_ARCH_QWEN3NEXT:
                {
                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);

                    // output
                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
                    output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);

                    // if output is NULL, init from the input tok embed
                    if (output == NULL) {
                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
                    }

                    const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                    // Calculate dimensions from hyperparameters
                    const int64_t head_k_dim = hparams.ssm_d_state;
                    const int64_t head_v_dim = hparams.ssm_d_state;
                    const int64_t n_k_heads  = hparams.ssm_n_group;
                    const int64_t n_v_heads  = hparams.ssm_dt_rank;
                    const int64_t key_dim    = head_k_dim * n_k_heads;
                    const int64_t value_dim  = head_v_dim * n_v_heads;
                    const int64_t conv_dim   = key_dim * 2 + value_dim;

                    // Calculate projection sizes
                    const int64_t qkvz_dim = key_dim * 2 + value_dim * 2;
                    const int64_t ba_dim   = n_v_heads * 2;

                    for (int i = 0; i < n_layer; ++i) {
                        auto & layer = layers[i];

                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), { n_embd }, 0);
                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);

                        if (!hparams.is_recurrent(i)) {
                            // Attention layers
                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), { n_embd, n_embd_k_gqa }, 0);
                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), { n_embd, n_embd_v_gqa }, 0);
                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);

                            // Q/K normalization for attention layers
                            layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
                            layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
                        } else {
                            // Linear attention (gated delta net) specific tensors
                            // Create tensors with calculated dimensions
                            layer.ssm_in         = create_tensor(tn(LLM_TENSOR_SSM_IN,         "weight", i), { n_embd, qkvz_dim }, 0);
                            layer.ssm_conv1d     = create_tensor(tn(LLM_TENSOR_SSM_CONV1D,     "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
                            layer.ssm_dt         = create_tensor(tn(LLM_TENSOR_SSM_DT,         "bias",   i), { hparams.ssm_dt_rank }, 0);
                            layer.ssm_a          = create_tensor(tn(LLM_TENSOR_SSM_A,                    i), { hparams.ssm_dt_rank }, 0);
                            layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
                            layer.ssm_norm       = create_tensor(tn(LLM_TENSOR_SSM_NORM,       "weight", i), { head_v_dim }, 0);
                            layer.ssm_out        = create_tensor(tn(LLM_TENSOR_SSM_OUT,        "weight", i), { value_dim, n_embd }, 0);
                        }

                        layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), { n_embd, n_expert }, 0);
                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), { n_embd, n_ff_exp, n_expert }, 0);

                        // Shared experts
                        layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
                        layer.ffn_gate_shexp     = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP,     "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
                        layer.ffn_up_shexp       = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,       "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
                        layer.ffn_down_shexp     = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP,     "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
                    }
                } break;
            default:
                throw std::runtime_error("unknown architecture");
        }

        if (n_moved_tensors > 0) {
            LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
                __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
                ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
        }
    }

    ml.done_getting_tensors();

    ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
    pimpl->mappings.reserve(ml.mappings.size());

    // create the backend buffers
    std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
    ctx_buf_maps.reserve(ctx_map.size());

    // Ensure we have enough capacity for the maximum backend buffer we will potentially create
    const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
    pimpl->ctxs_bufs.reserve(n_max_backend_buffer);

    for (auto & [buft, ctx_ptr] : ctx_map) {
        ggml_context * ctx = ctx_ptr.get();

        // skip contexts without tensors
        if (ggml_get_first_tensor(ctx) == nullptr) {
            continue;
        }

        llama_buf_map buf_map;
        buf_map.reserve(n_max_backend_buffer);

        // check if it is possible to use buffer_from_host_ptr with this buffer type
        ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
        if (!dev) {
            // FIXME: workaround for CPU backend buft having a NULL device
            dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
            if (!dev) {
                throw std::runtime_error(format("%s: no CPU backend found", __func__));
            }
        }
        ggml_backend_dev_props props;
        ggml_backend_dev_get_props(dev, &props);
        bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
        bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);

        std::vector<ggml_backend_buffer_ptr> bufs;
        if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                // only the mmap region containing the tensors in the model is mapped to the backend buffer
                // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
                // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
                void * addr = nullptr;
                size_t first, last; // NOLINT
                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
                if (first >= last) {
                    continue;
                }
                const size_t max_size = ggml_get_max_tensor_size(ctx);
                ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
                if (buf == nullptr) {
                    throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
                }
                bufs.emplace_back(buf);
                buf_map.emplace(idx, buf);
            }
        }
        else {
            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
            if (buf == nullptr) {
                throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
            }
            if (use_mlock && ggml_backend_buffer_is_host(buf)) {
                pimpl->mlock_bufs.emplace_back(new llama_mlock);
                auto & mlock_buf = pimpl->mlock_bufs.back();
                mlock_buf->init   (ggml_backend_buffer_get_base(buf));
                mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
            }
            bufs.emplace_back(buf);
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                buf_map.emplace(idx, buf);
            }
        }
        pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), std::move(bufs));

        for (auto & buf : buf_map) {
            // indicate that this buffer contains weights
            // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
            ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
        }

        ctx_buf_maps.emplace_back(ctx, buf_map);
    }

    if (llama_supports_gpu_offload()) {
        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662

        LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
        if (n_gpu_layers > (int) hparams.n_layer) {
            LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
        }

        const int max_backend_supported_layers = hparams.n_layer + 1;
        const int max_offloadable_layers       = hparams.n_layer + 1;

        LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
    }

    // print memory requirements per buffer type
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6663
6664
6665
6666
6667
    for (auto & [_, bufs] : pimpl->ctxs_bufs) {
        for (auto & buf: bufs) {
            LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n",
                __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
        }
6668
6669
6670
    }

    // populate tensors_by_name
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6671
    for (auto & [ctx, _] : pimpl->ctxs_bufs) {
6672
6673
6674
6675
6676
6677
        for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
            tensors_by_name.emplace_back(ggml_get_name(cur), cur);
        }
    }

    // load tensor data
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6678
6679
    for (auto & [ctx, buf_map] : ctx_buf_maps) {
        if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
            return false;
        }
    }

    if (use_mmap_buffer) {
        for (auto & mapping : ml.mappings) {
            pimpl->mappings.emplace_back(std::move(mapping));
        }
    }

    return true;
}

std::string llama_model::arch_name() const {
    return llm_arch_name(arch);
}

std::string llama_model::type_name() const {
    return llm_type_name(type);
}

std::string llama_model::desc() const {
    return pimpl->desc_str;
}

size_t llama_model::size() const {
    return pimpl->n_bytes;
}

size_t llama_model::n_tensors() const {
    return tensors_by_name.size();
}

size_t llama_model::n_devices() const {
    return devices.size();
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6717
6718
std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
    std::map<ggml_backend_buffer_type_t, size_t> ret;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6719
6720
6721
6722
    for (const auto & [_, bufs] : pimpl->ctxs_bufs) {
        for (const auto & buf : bufs) {
            ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6723
6724
6725
6726
    }
    return ret;
}

6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
uint64_t llama_model::n_elements() const {
    return pimpl->n_elements;
}

void llama_model::print_info() const {
    const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);

    auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
        bool is_var = false;

        std::vector<uint32_t> v;
        for (uint32_t i = 0; i < n; ++i) {
            v.push_back(f(i));
            if (v[i] != v[0]) {
                is_var = true;
            }
        }

        std::stringstream ss;

        if (is_var) {
            ss << "[";
            for (uint32_t i = 0; i < n; ++i) {
                ss << v[i];
                if (i < n - 1) {
                    ss << ", ";
                }
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6755
6756
6757
            ss << "]";
        } else {
            ss << v[0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6758
6759
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6760
6761
        return ss.str();
    };
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6762

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6763
6764
6765
    // hparams
    LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, arch_name().c_str());
    LLAMA_LOG_INFO("%s: vocab_only       = %d\n",     __func__, hparams.vocab_only);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6766

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
    if (!hparams.vocab_only) {
        LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
        LLAMA_LOG_INFO("%s: n_embd           = %u\n",     __func__, hparams.n_embd);
        LLAMA_LOG_INFO("%s: n_embd_inp       = %u\n",     __func__, hparams.n_embd_inp());
        LLAMA_LOG_INFO("%s: n_layer          = %u\n",     __func__, hparams.n_layer);
        LLAMA_LOG_INFO("%s: n_head           = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head(il);    }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_head_kv        = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_rot            = %u\n",     __func__, hparams.n_rot);
        LLAMA_LOG_INFO("%s: n_swa            = %u\n",     __func__, hparams.n_swa);
        LLAMA_LOG_INFO("%s: is_swa_any       = %u\n",     __func__, hparams.is_swa_any());
        LLAMA_LOG_INFO("%s: n_embd_head_k    = %u\n",     __func__, hparams.n_embd_head_k);
        LLAMA_LOG_INFO("%s: n_embd_head_v    = %u\n",     __func__, hparams.n_embd_head_v);
        LLAMA_LOG_INFO("%s: n_gqa            = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il);        }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_embd_k_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_embd_v_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps);
        LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
        LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
        LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
        LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
        LLAMA_LOG_INFO("%s: f_attn_scale     = %.1e\n",   __func__, hparams.f_attention_scale);
        LLAMA_LOG_INFO("%s: n_ff             = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
        LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
        LLAMA_LOG_INFO("%s: n_expert_groups  = %d\n",     __func__, hparams.n_expert_groups);
        LLAMA_LOG_INFO("%s: n_group_used     = %d\n",     __func__, hparams.n_group_used);
        LLAMA_LOG_INFO("%s: causal attn      = %d\n",     __func__, hparams.causal_attn);
        LLAMA_LOG_INFO("%s: pooling type     = %d\n",     __func__, hparams.pooling_type);
        LLAMA_LOG_INFO("%s: rope type        = %d\n",     __func__, hparams.rope_type);
        LLAMA_LOG_INFO("%s: rope scaling     = %s\n",     __func__, rope_scaling_type.c_str());
        LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train);
        LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train);
        LLAMA_LOG_INFO("%s: n_ctx_orig_yarn  = %u\n",     __func__, hparams.n_ctx_orig_yarn);
        LLAMA_LOG_INFO("%s: rope_finetuned   = %s\n",     __func__, hparams.rope_finetuned ? "yes" : "unknown");
        // MRoPE (Multi-axis Rotary Position Embedding) sections
        if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) {
            LLAMA_LOG_INFO("%s: mrope sections   = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]);
        }
        if (!classifier_labels.empty()) {
            LLAMA_LOG_INFO("%s: n_cls_out        = %u\n", __func__, hparams.n_cls_out);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6807

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6808
6809
6810
6811
6812
            size_t i = 0;
            for (auto label : classifier_labels) {
                LLAMA_LOG_INFO("%s: cls_label[%2zu]    = %s\n", __func__, i++, label.c_str());
            }
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
6813
    }
6814

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
    if (arch == LLM_ARCH_MAMBA ||
        arch == LLM_ARCH_MAMBA2 ||
        arch == LLM_ARCH_JAMBA ||
        arch == LLM_ARCH_FALCON_H1 ||
        arch == LLM_ARCH_PLAMO2 ||
        arch == LLM_ARCH_GRANITE_HYBRID ||
        arch == LLM_ARCH_QWEN3NEXT ||
        arch == LLM_ARCH_NEMOTRON_H) {
        LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
        LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
        LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
        LLAMA_LOG_INFO("%s: ssm_dt_rank      = %u\n",     __func__, hparams.ssm_dt_rank);
        LLAMA_LOG_INFO("%s: ssm_n_group      = %u\n",     __func__, hparams.ssm_n_group);
        LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms   = %d\n",     __func__, hparams.ssm_dt_b_c_rms);
    }
6830

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
    LLAMA_LOG_INFO("%s: model type       = %s\n",     __func__, type_name().c_str());
    if (pimpl->n_elements >= 1e12) {
        LLAMA_LOG_INFO("%s: model params     = %.2f T\n", __func__, pimpl->n_elements*1e-12);
    } else if (pimpl->n_elements >= 1e9) {
        LLAMA_LOG_INFO("%s: model params     = %.2f B\n", __func__, pimpl->n_elements*1e-9);
    } else if (pimpl->n_elements >= 1e6) {
        LLAMA_LOG_INFO("%s: model params     = %.2f M\n", __func__, pimpl->n_elements*1e-6);
    } else {
        LLAMA_LOG_INFO("%s: model params     = %.2f K\n", __func__, pimpl->n_elements*1e-3);
    }
6841

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6842
6843
    // general kv
    LLAMA_LOG_INFO("%s: general.name     = %s\n",    __func__, name.c_str());
6844

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6845
6846
6847
6848
6849
6850
    if (arch == LLM_ARCH_DEEPSEEK) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
    }
6851

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
    if (arch == LLM_ARCH_DEEPSEEK2) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_lora_q             = %d\n",     __func__, hparams.n_lora_q);
        LLAMA_LOG_INFO("%s: n_lora_kv            = %d\n",     __func__, hparams.n_lora_kv);
        LLAMA_LOG_INFO("%s: n_embd_head_k_mla    = %d\n",     __func__, hparams.n_embd_head_k_mla);
        LLAMA_LOG_INFO("%s: n_embd_head_v_mla    = %d\n",     __func__, hparams.n_embd_head_v_mla);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
        LLAMA_LOG_INFO("%s: rope_yarn_log_mul    = %.4f\n",   __func__, hparams.rope_yarn_log_mul);
    }
6865

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6866
6867
6868
6869
    if (arch == LLM_ARCH_QWEN2MOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_shexp       = %d\n",     __func__, hparams.n_ff_shexp);
    }
6870

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6871
6872
6873
    if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
    }
6874

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6875
6876
6877
6878
6879
6880
6881
6882
6883
    if (arch == LLM_ARCH_MINICPM ||
        arch == LLM_ARCH_GRANITE ||
        arch == LLM_ARCH_GRANITE_MOE ||
        arch == LLM_ARCH_GRANITE_HYBRID) {
        LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
        LLAMA_LOG_INFO("%s: f_residual_scale  = %f\n", __func__, hparams.f_residual_scale);
        LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
        LLAMA_LOG_INFO("%s: n_ff_shexp        = %d\n", __func__, hparams.n_ff_shexp);
    }
6884

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6885
6886
6887
6888
6889
6890
6891
    if (arch == LLM_ARCH_BAILINGMOE) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
    }
6892

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
    if (arch == LLM_ARCH_BAILINGMOE2) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_shexp           = %d\n",     __func__, hparams.n_ff_shexp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
        LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n",     __func__, hparams.nextn_predict_layers);
    }
6903

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6904
6905
6906
6907
    if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
    }
6908

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6909
6910
6911
6912
6913
6914
    if (arch == LLM_ARCH_GROVEMOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_chexp           = %d\n",     __func__, hparams.n_ff_chexp);
        LLAMA_LOG_INFO("%s: n_group_experts      = %d\n",     __func__, hparams.n_group_experts);
        LLAMA_LOG_INFO("%s: expert_group_scale   = %.2f\n",   __func__, hparams.expert_group_scale);
    }
6915

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6916
6917
    vocab.print_info();
}
6918

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6919
6920
6921
ggml_backend_dev_t llama_model::dev_layer(int il) const {
    return pimpl->dev_layer.at(il).dev;
}
6922

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6923
6924
6925
ggml_backend_dev_t llama_model::dev_output() const {
    return pimpl->dev_output.dev;
}
6926

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6927
6928
6929
6930
6931
6932
6933
template<typename F>
static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
    ggml_init_params params = {
        /*.mem_size   =*/ ggml_tensor_overhead()*8,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ true,
    };
6934

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6935
6936
6937
6938
    ggml_context_ptr ctx { ggml_init(params) };
    if (!ctx) {
        throw std::runtime_error(format("failed to create ggml context"));
    }
6939

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6940
6941
6942
6943
6944
6945
6946
6947
    ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
    ggml_tensor * op_tensor = fn(ctx.get());
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        if (op_tensor->src[i] != nullptr) {
            assert(op_tensor->src[i]->buffer == nullptr);
            op_tensor->src[i]->buffer = buf.get();
        }
    }
6948

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6949
    bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
6950

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6951
6952
    return op_supported;
}
6953

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6954
6955
6956
6957
6958
6959
6960
6961
6962
template<typename F>
static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
    for (const auto & cur : buft_list) {
        ggml_backend_dev_t cur_dev = cur.first;
        ggml_backend_buffer_type_t cur_buft = cur.second;
        if (buft_supported(cur_buft, cur_dev, fn)) {
            return cur_buft;
        }
    }
6963

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6964
6965
    throw std::runtime_error(format("no suitable buffer type found"));
}
6966

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6967
6968
6969
6970
6971
6972
6973
6974
6975
ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
    return ::select_buft(
            *pimpl->dev_layer.at(il).buft_list,
            [&](ggml_context * ctx) {
                ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
                ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
                return ggml_add(ctx, cur, layer_dir);
            });
}
6976

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6977
6978
6979
bool llama_model::has_tensor_overrides() const {
    return pimpl->has_tensor_overrides;
}
6980

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6981
6982
6983
6984
6985
6986
6987
6988
const ggml_tensor * llama_model::get_tensor(const char * name) const {
    auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
            [name](const std::pair<std::string, ggml_tensor *> & it) {
                return it.first == name;
            });
    if (it == tensors_by_name.end()) {
        return nullptr;
    }
6989

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6990
6991
    return it->second;
}
6992

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6993
6994
6995
float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
    return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
}
6996

Daniel Hiltgen's avatar
Daniel Hiltgen committed
6997
6998
6999
float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
    return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
}
7000

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7001
7002
ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
    const uint32_t n_ctx_seq = cparams.n_ctx_seq;
7003

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7004
7005
7006
7007
    // choose long/short freq factors based on the context size
    if (layers[il].rope_freqs != nullptr) {
        return layers[il].rope_freqs;
    }
7008

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7009
7010
    if (n_ctx_seq > hparams.n_ctx_orig_yarn) {
        return layers[il].rope_long;
7011
7012
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7013
7014
7015
7016
    return layers[il].rope_short;
}

llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
7017
7018
7019
    llama_memory_i * res;

    switch (arch) {
7020
7021
        // Models that need specific instantiation should be handled in the
        // switch statement
7022
7023
        case LLM_ARCH_BERT:
        case LLM_ARCH_JINA_BERT_V2:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7024
        case LLM_ARCH_JINA_BERT_V3:
7025
7026
        case LLM_ARCH_NOMIC_BERT:
        case LLM_ARCH_NOMIC_BERT_MOE:
7027
7028
        case LLM_ARCH_NEO_BERT:
        case LLM_ARCH_WAVTOKENIZER_DEC:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7029
        case LLM_ARCH_GEMMA_EMBEDDING:
7030
7031
        case LLM_ARCH_DREAM:
        case LLM_ARCH_LLADA:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7032
        case LLM_ARCH_LLADA_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7033
        case LLM_ARCH_RND1:
7034
7035
7036
            {
                res = nullptr;
            } break;
7037
7038
        // Models that need standard caching should rely on recurrent/hybrid
        // checks
7039
7040
        default:
            {
7041
7042
7043
7044
7045
7046
7047
                if (llm_arch_is_recurrent(arch)) {
                    res = new llama_memory_recurrent(
                            *this,
                            GGML_TYPE_F32,
                            GGML_TYPE_F32,
                            cparams.offload_kqv,
                            std::max((uint32_t) 1, cparams.n_seq_max),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7048
7049
                            cparams.n_seq_max,
                            nullptr);
7050
                } else if (llm_arch_is_hybrid(arch)) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067

                    // The main difference between hybrid architectures is the
                    // layer filters, so pick the right one here
                    llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
                    llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
                    if (arch == LLM_ARCH_FALCON_H1) {
                        filter_attn = [&](int32_t) { return true; };
                        filter_recr = [&](int32_t) { return true; };
                    } else if (arch == LLM_ARCH_NEMOTRON_H) {
                        filter_attn = [&](int32_t il) {
                            return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
                        };
                        filter_recr = [&](int32_t il) {
                            return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
                        };
                    }

7068
7069
7070
7071
7072
7073
                    res = new llama_memory_hybrid(
                        /* model             */ *this,
                        /* attn_type_k       */ params.type_k,
                        /* attn_type_v       */ params.type_v,
                        /* attn_v_trans      */ !cparams.flash_attn,
                        /* attn_kv_size      */ cparams.n_ctx,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7074
                        /* attn_n_pad        */ 1,
7075
7076
7077
7078
7079
7080
7081
7082
                        /* attn_n_swa        */ hparams.n_swa,
                        /* attn_swa_type     */ hparams.swa_type,
                        /* recurrent_type_k  */ GGML_TYPE_F32,
                        /* recurrent_type_v  */ GGML_TYPE_F32,
                        /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
                        /* n_seq_max         */ cparams.n_seq_max,
                        /* offload           */ cparams.offload_kqv,
                        /* unified           */ cparams.kv_unified,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7083
7084
                        /* filter_attn       */ std::move(filter_attn),
                        /* filter_recr       */ std::move(filter_recr));
7085
                } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
                    llama_memory_i::layer_reuse_cb reuse = nullptr;

                    if (arch == LLM_ARCH_GEMMA3N) {
                        reuse = [&](int32_t il) {
                            if (il >= (int32_t) hparams.n_layer_kv_from_start) {
                                return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
                            }

                            return -1;
                        };
                    }

7098
7099
7100
                    if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
                        GGML_ASSERT(hparams.is_swa_any());

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7101
                        res = new llama_kv_cache_iswa(
7102
7103
7104
7105
7106
7107
7108
                                *this,
                                params.type_k,
                                params.type_v,
                                !cparams.flash_attn,
                                cparams.offload_kqv,
                                params.swa_full,
                                cparams.kv_unified,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7109
                                cparams.n_ctx_seq,
7110
7111
                                cparams.n_seq_max,
                                cparams.n_ubatch,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7112
                                1,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7113
7114
                                nullptr,
                                reuse);
7115
7116
7117
                    } else {
                        GGML_ASSERT(!hparams.is_swa_any());

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7118
                        res = new llama_kv_cache(
7119
7120
7121
7122
7123
7124
                                *this,
                                params.type_k,
                                params.type_v,
                                !cparams.flash_attn,
                                cparams.offload_kqv,
                                cparams.kv_unified,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7125
                                cparams.n_ctx_seq,
7126
                                cparams.n_seq_max,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7127
                                1,
7128
                                hparams.n_swa,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7129
7130
7131
                                hparams.swa_type,
                                nullptr,
                                nullptr);
7132
7133
                    }
                }
7134
7135
7136
7137
7138
7139
            }
    }

    return res;
}

7140
ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
7141
7142
7143
7144
    std::unique_ptr<llm_graph_context> llm;

    switch (arch) {
        case LLM_ARCH_LLAMA:
7145
7146
7147
            {
                llm = std::make_unique<llm_build_llama>(*this, params);
            } break;
7148
7149
        case LLM_ARCH_LLAMA4:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7150
7151
7152
7153
7154
                if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
                    llm = std::make_unique<llm_build_llama>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_llama_iswa>(*this, params);
                }
7155
7156
7157
            } break;
        case LLM_ARCH_DECI:
            {
7158
                llm = std::make_unique<llm_build_deci>(*this, params);
7159
7160
7161
            } break;
        case LLM_ARCH_BAICHUAN:
            {
7162
                llm = std::make_unique<llm_build_baichuan>(*this, params);
7163
7164
7165
            } break;
        case LLM_ARCH_FALCON:
            {
7166
                llm = std::make_unique<llm_build_falcon>(*this, params);
7167
7168
7169
            } break;
        case LLM_ARCH_GROK:
            {
7170
                llm = std::make_unique<llm_build_grok>(*this, params);
7171
7172
7173
            } break;
        case LLM_ARCH_STARCODER:
            {
7174
                llm = std::make_unique<llm_build_starcoder>(*this, params);
7175
7176
7177
            } break;
        case LLM_ARCH_REFACT:
            {
7178
                llm = std::make_unique<llm_build_refact>(*this, params);
7179
7180
7181
            } break;
        case LLM_ARCH_BERT:
        case LLM_ARCH_JINA_BERT_V2:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7182
        case LLM_ARCH_JINA_BERT_V3:
7183
        case LLM_ARCH_NOMIC_BERT:
7184
        case LLM_ARCH_NOMIC_BERT_MOE:
7185
            {
7186
7187
7188
7189
7190
                llm = std::make_unique<llm_build_bert>(*this, params);
            } break;
        case LLM_ARCH_NEO_BERT:
            {
                llm = std::make_unique<llm_build_neo_bert>(*this, params);
7191
7192
7193
            } break;
        case LLM_ARCH_BLOOM:
            {
7194
                llm = std::make_unique<llm_build_bloom>(*this, params);
7195
7196
7197
            } break;
        case LLM_ARCH_MPT:
            {
7198
                llm = std::make_unique<llm_build_mpt>(*this, params);
7199
7200
7201
            } break;
        case LLM_ARCH_STABLELM:
            {
7202
                llm = std::make_unique<llm_build_stablelm>(*this, params);
7203
7204
7205
            } break;
        case LLM_ARCH_QWEN:
            {
7206
                llm = std::make_unique<llm_build_qwen>(*this, params);
7207
7208
7209
            } break;
        case LLM_ARCH_QWEN2:
            {
7210
                llm = std::make_unique<llm_build_qwen2>(*this, params);
7211
            } break;
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
        case LLM_ARCH_DREAM:
            {
                llm = std::make_unique<llm_build_dream>(*this, params);
            }
            break;
        case LLM_ARCH_LLADA:
            {
                llm = std::make_unique<llm_build_llada>(*this, params);
            }
            break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7222
7223
7224
7225
7226
        case LLM_ARCH_LLADA_MOE:
            {
                llm = std::make_unique<llm_build_llada_moe>(*this, params);
            }
            break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7227
7228
7229
7230
7231
        case LLM_ARCH_RND1:
            {
                llm = std::make_unique<llm_build_rnd1>(*this, params);
            }
            break;
7232
7233
        case LLM_ARCH_QWEN2VL:
            {
7234
                llm = std::make_unique<llm_build_qwen2vl>(*this, params);
7235
7236
7237
            } break;
        case LLM_ARCH_QWEN2MOE:
            {
7238
                llm = std::make_unique<llm_build_qwen2moe>(*this, params);
7239
7240
7241
            } break;
        case LLM_ARCH_QWEN3:
            {
7242
                llm = std::make_unique<llm_build_qwen3>(*this, params);
7243
7244
7245
            } break;
        case LLM_ARCH_QWEN3MOE:
            {
7246
                llm = std::make_unique<llm_build_qwen3moe>(*this, params);
7247
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7248
7249
7250
7251
7252
7253
7254
7255
        case LLM_ARCH_QWEN3VL:
            {
                llm = std::make_unique<llm_build_qwen3vl>(*this, params);
            } break;
        case LLM_ARCH_QWEN3VLMOE:
            {
                llm = std::make_unique<llm_build_qwen3vlmoe>(*this, params);
            } break;
7256
7257
        case LLM_ARCH_PHI2:
            {
7258
                llm = std::make_unique<llm_build_phi2>(*this, params);
7259
7260
7261
7262
            } break;
        case LLM_ARCH_PHI3:
        case LLM_ARCH_PHIMOE:
            {
7263
7264
7265
7266
7267
                if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
                    llm = std::make_unique<llm_build_phi3<true>> (*this, params);
                } else {
                    llm = std::make_unique<llm_build_phi3<false>>(*this, params);
                }
7268
7269
7270
            } break;
        case LLM_ARCH_PLAMO:
            {
7271
7272
7273
7274
7275
                llm = std::make_unique<llm_build_plamo>(*this, params);
            } break;
        case LLM_ARCH_PLAMO2:
            {
                llm = std::make_unique<llm_build_plamo2>(*this, params);
7276
7277
7278
            } break;
        case LLM_ARCH_GPT2:
            {
7279
                llm = std::make_unique<llm_build_gpt2>(*this, params);
7280
7281
7282
            } break;
        case LLM_ARCH_CODESHELL:
            {
7283
                llm = std::make_unique<llm_build_codeshell>(*this, params);
7284
7285
7286
            } break;
        case LLM_ARCH_ORION:
            {
7287
                llm = std::make_unique<llm_build_orion>(*this, params);
7288
7289
7290
            } break;
        case LLM_ARCH_INTERNLM2:
            {
7291
                llm = std::make_unique<llm_build_internlm2>(*this, params);
7292
7293
7294
            } break;
        case LLM_ARCH_MINICPM3:
            {
7295
                llm = std::make_unique<llm_build_minicpm3>(*this, params);
7296
7297
7298
            } break;
        case LLM_ARCH_GEMMA:
            {
7299
                llm = std::make_unique<llm_build_gemma>(*this, params);
7300
7301
7302
            } break;
        case LLM_ARCH_GEMMA2:
            {
7303
                llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
7304
7305
7306
            } break;
        case LLM_ARCH_GEMMA3:
            {
7307
7308
7309
7310
7311
                llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
            } break;
        case LLM_ARCH_GEMMA3N:
            {
                llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
7312
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7313
7314
        case LLM_ARCH_GEMMA_EMBEDDING:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7315
                llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7316
            } break;
7317
7318
        case LLM_ARCH_STARCODER2:
            {
7319
                llm = std::make_unique<llm_build_starcoder2>(*this, params);
7320
7321
            } break;
        case LLM_ARCH_MAMBA:
7322
        case LLM_ARCH_MAMBA2:
7323
            {
7324
7325
7326
7327
7328
                llm = std::make_unique<llm_build_mamba>(*this, params);
            } break;
        case LLM_ARCH_JAMBA:
            {
                llm = std::make_unique<llm_build_jamba>(*this, params);
7329
7330
7331
            } break;
        case LLM_ARCH_XVERSE:
            {
7332
                llm = std::make_unique<llm_build_xverse>(*this, params);
7333
7334
7335
            } break;
        case LLM_ARCH_COMMAND_R:
            {
7336
                llm = std::make_unique<llm_build_command_r>(*this, params);
7337
7338
7339
            } break;
        case LLM_ARCH_COHERE2:
            {
7340
                llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
7341
7342
7343
            } break;
        case LLM_ARCH_DBRX:
            {
7344
                llm = std::make_unique<llm_build_dbrx>(*this, params);
7345
7346
7347
            } break;
        case LLM_ARCH_OLMO:
            {
7348
                llm = std::make_unique<llm_build_olmo>(*this, params);
7349
7350
7351
            } break;
        case LLM_ARCH_OLMO2:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7352
7353
7354
7355
7356
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
                }
7357
7358
7359
            } break;
        case LLM_ARCH_OLMOE:
            {
7360
                llm = std::make_unique<llm_build_olmoe>(*this, params);
7361
7362
7363
            } break;
        case LLM_ARCH_OPENELM:
            {
7364
                llm = std::make_unique<llm_build_openelm>(*this, params);
7365
7366
7367
            } break;
        case LLM_ARCH_GPTNEOX:
            {
7368
                llm = std::make_unique<llm_build_gptneox>(*this, params);
7369
7370
7371
            } break;
        case LLM_ARCH_ARCTIC:
            {
7372
                llm = std::make_unique<llm_build_arctic>(*this, params);
7373
7374
7375
            } break;
        case LLM_ARCH_DEEPSEEK:
            {
7376
                llm = std::make_unique<llm_build_deepseek>(*this, params);
7377
7378
7379
            } break;
        case LLM_ARCH_DEEPSEEK2:
            {
7380
                llm = std::make_unique<llm_build_deepseek2>(*this, params);
7381
7382
7383
            } break;
        case LLM_ARCH_CHATGLM:
            {
7384
                llm = std::make_unique<llm_build_chatglm>(*this, params);
7385
7386
7387
            } break;
        case LLM_ARCH_GLM4:
            {
7388
7389
7390
7391
7392
                llm = std::make_unique<llm_build_glm4>(*this, params);
            } break;
        case LLM_ARCH_GLM4_MOE:
            {
                llm = std::make_unique<llm_build_glm4_moe>(*this, params);
7393
7394
7395
            } break;
        case LLM_ARCH_BITNET:
            {
7396
                llm = std::make_unique<llm_build_bitnet>(*this, params);
7397
7398
7399
            } break;
        case LLM_ARCH_T5:
            {
7400
                switch (params.gtype) {
7401
                    case LLM_GRAPH_TYPE_ENCODER:
7402
                        llm = std::make_unique<llm_build_t5_enc>(*this, params);
7403
7404
7405
                        break;
                    case LLM_GRAPH_TYPE_DEFAULT:
                    case LLM_GRAPH_TYPE_DECODER:
7406
                        llm = std::make_unique<llm_build_t5_dec>(*this, params);
7407
7408
7409
7410
7411
7412
7413
                        break;
                    default:
                        GGML_ABORT("invalid graph type");
                };
            } break;
        case LLM_ARCH_T5ENCODER:
            {
7414
                llm = std::make_unique<llm_build_t5_enc>(*this, params);
7415
7416
7417
7418
            }
            break;
        case LLM_ARCH_JAIS:
            {
7419
                llm = std::make_unique<llm_build_jais>(*this, params);
7420
7421
7422
            } break;
        case LLM_ARCH_NEMOTRON:
            {
7423
                llm = std::make_unique<llm_build_nemotron>(*this, params);
7424
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7425
7426
7427
7428
        case LLM_ARCH_NEMOTRON_H:
            {
                llm = std::make_unique<llm_build_nemotron_h>(*this, params);
            } break;
7429
7430
        case LLM_ARCH_EXAONE:
            {
7431
7432
7433
7434
7435
7436
7437
7438
7439
                llm = std::make_unique<llm_build_exaone>(*this, params);
            } break;
        case LLM_ARCH_EXAONE4:
            {
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
                } else {
                    llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
                }
7440
7441
7442
            } break;
        case LLM_ARCH_RWKV6:
            {
7443
                llm = std::make_unique<llm_build_rwkv6>(*this, params);
7444
7445
7446
            } break;
        case LLM_ARCH_RWKV6QWEN2:
            {
7447
                llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
7448
7449
7450
            } break;
        case LLM_ARCH_RWKV7:
            {
7451
                llm = std::make_unique<llm_build_rwkv7>(*this, params);
7452
7453
7454
            } break;
        case LLM_ARCH_ARWKV7:
            {
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
                llm = std::make_unique<llm_build_arwkv7>(*this, params);
            } break;
        case LLM_ARCH_GRANITE:
        case LLM_ARCH_GRANITE_MOE:
        case LLM_ARCH_MINICPM:
            {
                llm = std::make_unique<llm_build_granite>(*this, params);
            } break;
        case LLM_ARCH_GRANITE_HYBRID:
            {
                llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
7466
7467
7468
            } break;
        case LLM_ARCH_CHAMELEON:
            {
7469
                llm = std::make_unique<llm_build_chameleon>(*this, params);
7470
7471
7472
            } break;
        case LLM_ARCH_SOLAR:
            {
7473
                llm = std::make_unique<llm_build_solar>(*this, params);
7474
7475
7476
            } break;
        case LLM_ARCH_WAVTOKENIZER_DEC:
            {
7477
                llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
7478
7479
7480
            } break;
        case LLM_ARCH_PLM:
            {
7481
                llm = std::make_unique<llm_build_plm>(*this, params);
7482
7483
7484
            } break;
        case LLM_ARCH_BAILINGMOE:
            {
7485
7486
                llm = std::make_unique<llm_build_bailingmoe>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7487
7488
7489
7490
        case LLM_ARCH_BAILINGMOE2:
            {
                llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7491
7492
7493
7494
        case LLM_ARCH_SEED_OSS:
            {
                llm = std::make_unique<llm_build_seed_oss>(*this, params);
            } break;
7495
7496
7497
7498
7499
7500
7501
7502
        case LLM_ARCH_DOTS1:
            {
                llm = std::make_unique<llm_build_dots1>(*this, params);
            } break;
        case LLM_ARCH_ARCEE:
            {
                llm = std::make_unique<llm_build_arcee>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7503
7504
7505
7506
        case LLM_ARCH_AFMOE:
            {
                llm = std::make_unique<llm_build_afmoe>(*this, params);
            } break;
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
        case LLM_ARCH_ERNIE4_5:
            {
                llm = std::make_unique<llm_build_ernie4_5>(*this, params);
            } break;
        case LLM_ARCH_ERNIE4_5_MOE:
            {
                llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
            } break;
        case LLM_ARCH_HUNYUAN_MOE:
            {
                llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
            } break;
        case LLM_ARCH_HUNYUAN_DENSE:
            {
                llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
            } break;
        case LLM_ARCH_SMOLLM3:
            {
                llm = std::make_unique<llm_build_smollm3>(*this, params);
            } break;
        case LLM_ARCH_OPENAI_MOE:
            {
                llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
            } break;
        case LLM_ARCH_FALCON_H1:
            {
                llm = std::make_unique<llm_build_falcon_h1>(*this, params);
            } break;
        case LLM_ARCH_LFM2:
7536
        case LLM_ARCH_LFM2MOE:
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
            {
                llm = std::make_unique<llm_build_lfm2>(*this, params);
            } break;
        case LLM_ARCH_SMALLTHINKER:
            {
                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
                    llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
                } else {
                    llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
                }
7547
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7548
7549
7550
7551
        case LLM_ARCH_GROVEMOE:
            {
                llm = std::make_unique<llm_build_grovemoe>(*this, params);
            } break;
7552
7553
7554
7555
        case LLM_ARCH_APERTUS:
            {
                llm = std::make_unique<llm_build_apertus>(*this, params);
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
        case LLM_ARCH_MINIMAX_M2:
            {
                llm = std::make_unique<llm_build_minimax_m2>(*this, params);
            } break;
        case LLM_ARCH_COGVLM:
            {
                llm = std::make_unique<llm_build_cogvlm>(*this, params);
            } break;
        case LLM_ARCH_PANGU_EMBED:
            {
                llm = std::make_unique<llm_build_pangu_embedded>(*this, params);
            } break;
        case LLM_ARCH_QWEN3NEXT:
            {
                llm = std::make_unique<llm_build_qwen3next>(*this, params);
            } break;
7572
7573
7574
7575
7576
        default:
            GGML_ABORT("fatal error");
    }

    // add on pooling layer
7577
    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
7578

7579
7580
7581
7582
7583
7584
    // if the gguf model was converted with --sentence-transformers-dense-modules
    // there will be two additional dense projection layers
    // dense linear projections are applied after pooling
    // TODO: move reranking logic here and generalize
    llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);

7585
    return llm->res->get_gf();
7586
7587
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7588

7589
7590
7591
7592
7593
7594
7595
7596
//
// interface implementation
//

llama_model_params llama_model_default_params() {
    llama_model_params result = {
        /*.devices                     =*/ nullptr,
        /*.tensor_buft_overrides       =*/ nullptr,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7597
        /*.n_gpu_layers                =*/ 999,
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
        /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
        /*.main_gpu                    =*/ 0,
        /*.tensor_split                =*/ nullptr,
        /*.progress_callback           =*/ nullptr,
        /*.progress_callback_user_data =*/ nullptr,
        /*.kv_overrides                =*/ nullptr,
        /*.vocab_only                  =*/ false,
        /*.use_mmap                    =*/ true,
        /*.use_mlock                   =*/ false,
        /*.check_tensors               =*/ false,
7608
        /*.use_extra_bufts             =*/ true,
7609
        /*.no_host                     =*/ false,
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
    };

    return result;
}

const llama_vocab * llama_model_get_vocab(const llama_model * model) {
    return &model->vocab;
}

void llama_free_model(llama_model * model) {
    llama_model_free(model);
}

void llama_model_free(llama_model * model) {
    delete model;
}

int32_t llama_model_n_ctx_train(const llama_model * model) {
    return model->hparams.n_ctx_train;
}

int32_t llama_model_n_embd(const llama_model * model) {
    return model->hparams.n_embd;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7635
7636
7637
7638
int32_t llama_model_n_embd_inp(const llama_model * model) {
    return model->hparams.n_embd_inp();
}

7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
int32_t llama_model_n_layer(const llama_model * model) {
    return model->hparams.n_layer;
}

int32_t llama_model_n_head(const llama_model * model) {
    return model->hparams.n_head();
}

int32_t llama_model_n_head_kv(const llama_model * model) {
    return model->hparams.n_head_kv();
}

7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
int32_t llama_model_n_swa(const llama_model * model) {
    return model->hparams.n_swa;
}

uint32_t llama_model_n_cls_out(const struct llama_model * model) {
    return model->hparams.n_cls_out;
}

const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
    if (i < model->classifier_labels.size()) {
        return model->classifier_labels[i].c_str();
    }

    return nullptr;
}

7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
// deprecated
int32_t llama_n_ctx_train(const llama_model * model) {
    return llama_model_n_ctx_train(model);
}

// deprecated
int32_t llama_n_embd(const llama_model * model) {
    return llama_model_n_embd(model);
}

// deprecated
int32_t llama_n_layer(const llama_model * model) {
    return llama_model_n_layer(model);
}

// deprecated
int32_t llama_n_head(const llama_model * model) {
    return llama_model_n_head(model);
}

llama_rope_type llama_model_rope_type(const llama_model * model) {
    switch (model->arch) {
        // these models do not use RoPE
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7690
        case LLM_ARCH_CLIP:
7691
7692
7693
7694
7695
7696
        case LLM_ARCH_GPT2:
        case LLM_ARCH_GPTJ:
        case LLM_ARCH_MPT:
        case LLM_ARCH_REFACT:
        case LLM_ARCH_BLOOM:
        case LLM_ARCH_MAMBA:
7697
7698
        case LLM_ARCH_MAMBA2:
        case LLM_ARCH_JAMBA:
7699
7700
7701
7702
7703
7704
7705
7706
7707
        case LLM_ARCH_JINA_BERT_V2:
        case LLM_ARCH_T5:
        case LLM_ARCH_T5ENCODER:
        case LLM_ARCH_JAIS:
        case LLM_ARCH_RWKV6:
        case LLM_ARCH_RWKV6QWEN2:
        case LLM_ARCH_RWKV7:
        case LLM_ARCH_ARWKV7:
        case LLM_ARCH_WAVTOKENIZER_DEC:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7708
        case LLM_ARCH_NEMOTRON_H:
7709
7710
7711
7712
            return LLAMA_ROPE_TYPE_NONE;

        // use what we call a normal RoPE, operating on pairs of consecutive head values
        case LLM_ARCH_LLAMA:
7713
        case LLM_ARCH_LLADA:
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
        case LLM_ARCH_LLAMA4:
        case LLM_ARCH_DECI:
        case LLM_ARCH_BAICHUAN:
        case LLM_ARCH_STARCODER:
        case LLM_ARCH_INTERNLM2:
        case LLM_ARCH_MINICPM:
        case LLM_ARCH_XVERSE:
        case LLM_ARCH_COMMAND_R:
        case LLM_ARCH_COHERE2:
        case LLM_ARCH_OLMO:
        case LLM_ARCH_ARCTIC:
        case LLM_ARCH_DEEPSEEK:
        case LLM_ARCH_DEEPSEEK2:
        case LLM_ARCH_PLM:
        case LLM_ARCH_CHATGLM:
        case LLM_ARCH_GLM4:
        case LLM_ARCH_GRANITE:
        case LLM_ARCH_GRANITE_MOE:
7732
        case LLM_ARCH_GRANITE_HYBRID:
7733
7734
7735
        case LLM_ARCH_CHAMELEON:
        case LLM_ARCH_SOLAR:
        case LLM_ARCH_BAILINGMOE:
7736
7737
7738
7739
7740
        case LLM_ARCH_NEO_BERT:
        case LLM_ARCH_SMOLLM3:
        case LLM_ARCH_ARCEE:
        case LLM_ARCH_ERNIE4_5:
        case LLM_ARCH_ERNIE4_5_MOE:
7741
7742
7743
7744
            return LLAMA_ROPE_TYPE_NORM;

        // the pairs of head values are offset by n_rot/2
        case LLM_ARCH_FALCON:
7745
        case LLM_ARCH_FALCON_H1:
7746
7747
7748
        case LLM_ARCH_GROK:
        case LLM_ARCH_DBRX:
        case LLM_ARCH_BERT:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7749
        case LLM_ARCH_JINA_BERT_V3:
7750
        case LLM_ARCH_NOMIC_BERT:
7751
        case LLM_ARCH_NOMIC_BERT_MOE:
7752
7753
7754
7755
        case LLM_ARCH_STABLELM:
        case LLM_ARCH_BITNET:
        case LLM_ARCH_QWEN:
        case LLM_ARCH_QWEN2:
7756
        case LLM_ARCH_DREAM:
7757
7758
7759
        case LLM_ARCH_QWEN2MOE:
        case LLM_ARCH_QWEN3:
        case LLM_ARCH_QWEN3MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7760
        case LLM_ARCH_LLADA_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7761
        case LLM_ARCH_RND1:
7762
7763
7764
7765
7766
        case LLM_ARCH_OLMO2:
        case LLM_ARCH_OLMOE:
        case LLM_ARCH_PHI2:
        case LLM_ARCH_PHI3:
        case LLM_ARCH_PHIMOE:
7767
        case LLM_ARCH_PLAMO:
7768
        case LLM_ARCH_PLAMO2:
7769
7770
7771
        case LLM_ARCH_GEMMA:
        case LLM_ARCH_GEMMA2:
        case LLM_ARCH_GEMMA3:
7772
        case LLM_ARCH_GEMMA3N:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7773
        case LLM_ARCH_GEMMA_EMBEDDING:
7774
7775
7776
7777
        case LLM_ARCH_STARCODER2:
        case LLM_ARCH_OPENELM:
        case LLM_ARCH_GPTNEOX:
        case LLM_ARCH_CODESHELL:
7778
        case LLM_ARCH_ORION:
7779
7780
        case LLM_ARCH_NEMOTRON:
        case LLM_ARCH_EXAONE:
7781
        case LLM_ARCH_EXAONE4:
7782
        case LLM_ARCH_MINICPM3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7783
        case LLM_ARCH_BAILINGMOE2:
7784
7785
7786
7787
7788
        case LLM_ARCH_DOTS1:
        case LLM_ARCH_HUNYUAN_MOE:
        case LLM_ARCH_OPENAI_MOE:
        case LLM_ARCH_HUNYUAN_DENSE:
        case LLM_ARCH_LFM2:
7789
        case LLM_ARCH_LFM2MOE:
7790
7791
        case LLM_ARCH_SMALLTHINKER:
        case LLM_ARCH_GLM4_MOE:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7792
7793
        case LLM_ARCH_SEED_OSS:
        case LLM_ARCH_GROVEMOE:
7794
        case LLM_ARCH_APERTUS:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7795
7796
7797
7798
7799
        case LLM_ARCH_MINIMAX_M2:
        case LLM_ARCH_COGVLM:
        case LLM_ARCH_PANGU_EMBED:
        case LLM_ARCH_AFMOE:
        case LLM_ARCH_QWEN3NEXT:
7800
7801
7802
7803
            return LLAMA_ROPE_TYPE_NEOX;

        case LLM_ARCH_QWEN2VL:
            return LLAMA_ROPE_TYPE_MROPE;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
7804
7805
7806
        case LLM_ARCH_QWEN3VL:
        case LLM_ARCH_QWEN3VLMOE:
            return LLAMA_ROPE_TYPE_IMROPE;
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834

        // all model arches should be listed explicitly here
        case LLM_ARCH_UNKNOWN:
            GGML_ABORT("unknown architecture");
    }

    return LLAMA_ROPE_TYPE_NONE;
}

float llama_model_rope_freq_scale_train(const llama_model * model) {
    return model->hparams.rope_freq_scale_train;
}

int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
    const auto & it = model->gguf_kv.find(key);
    if (it == model->gguf_kv.end()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_meta_count(const llama_model * model) {
    return (int)model->gguf_kv.size();
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
const char * llama_model_meta_key_str(llama_model_meta_key key) {
    switch (key) {
        case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE:        return "general.sampling.sequence";
        case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K:           return "general.sampling.top_k";
        case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P:           return "general.sampling.top_p";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P:           return "general.sampling.min_p";
        case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
        case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD:   return "general.sampling.xtc_threshold";
        case LLAMA_MODEL_META_KEY_SAMPLING_TEMP:            return "general.sampling.temp";
        case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N:  return "general.sampling.penalty_last_n";
        case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT:  return "general.sampling.penalty_repeat";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT:        return "general.sampling.mirostat";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU:    return "general.sampling.mirostat_tau";
        case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA:    return "general.sampling.mirostat_eta";
        default:                                            return nullptr;
    }
}

7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->first.c_str());
}

int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
    return snprintf(buf, buf_size, "%s", model->desc().c_str());
}

uint64_t llama_model_size(const llama_model * model) {
    return model->size();
}

const char * llama_model_chat_template(const llama_model * model, const char * name) {
7886
    const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
7887
7888
7889
        : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
    const auto & it = model->gguf_kv.find(key);
    if (it == model->gguf_kv.end()) {
7890
7891
7892
7893
        // one-off fix for very popular models (so we are not flooded with issues)
        // do not extend this list unless absolutely necessary
        // Mistral-Small-2503 does not have built-in chat template
        llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
7894
        if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
7895
7896
7897
            return "mistral-v7-tekken";
        }

7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
        return nullptr;
    }

    return it->second.c_str();
}

uint64_t llama_model_n_params(const llama_model * model) {
    return model->n_elements();
}

bool llama_model_has_encoder(const llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_T5:        return true;
        case LLM_ARCH_T5ENCODER: return true;
        default:                 return false;
    }
}

bool llama_model_has_decoder(const llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_T5ENCODER: return false;
        default:                 return true;
    }
}

llama_token llama_model_decoder_start_token(const llama_model * model) {
    return model->hparams.dec_start_token_id;
}

bool llama_model_is_recurrent(const llama_model * model) {
7928
7929
7930
    return llm_arch_is_recurrent(model->arch);
}

7931
7932
7933
7934
bool llama_model_is_hybrid(const llama_model * model) {
    return llm_arch_is_hybrid(model->arch);
}

7935
7936
bool llama_model_is_diffusion(const llama_model * model) {
    return llm_arch_is_diffusion(model->arch);
7937
7938
7939
7940
}

const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
    return model->tensors_by_name;
7941
}