"research/slim/deployment/model_deploy_test.py" did not exist on "a5c4fd06d21e85a231ec05cc5305478a6c2d6a73"
memory.go 13 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
package llm

import (
4
	"fmt"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5
	"log/slog"
6
	"os"
7
8
	"strconv"
	"strings"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
9
10

	"github.com/ollama/ollama/api"
11
	"github.com/ollama/ollama/discover"
12
	"github.com/ollama/ollama/envconfig"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
13
	"github.com/ollama/ollama/format"
Michael Yang's avatar
Michael Yang committed
14
	"github.com/ollama/ollama/fs/ggml"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
15
16
17
)

// This algorithm looks for a complete fit to determine if we need to unload other models
18
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
19
	// Split up the GPUs by type and try them
20
	var estimatedVRAM uint64
Daniel Hiltgen's avatar
Daniel Hiltgen committed
21
22
	for _, gpus := range allGpus.ByLibrary() {
		var layerCount int
23
		estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
24
		layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
Daniel Hiltgen's avatar
Daniel Hiltgen committed
25
		if opts.NumGPU < 0 {
Michael Yang's avatar
Michael Yang committed
26
			if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
27
28
29
30
31
32
33
34
35
36
37
				return true, estimatedVRAM
			}
		} else {
			if layerCount > 0 && layerCount >= opts.NumGPU {
				return true, estimatedVRAM
			}
		}
	}
	return false, estimatedVRAM
}

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
type MemoryEstimate struct {
	// How many layers we predict we can load
	Layers int

	// The size of the graph which occupies the main GPU
	Graph uint64

	// How much VRAM will be allocated given the number of layers we predict
	VRAMSize uint64

	// The total size of the model if loaded into VRAM.  If all layers are loaded, VRAMSize == TotalSize
	TotalSize uint64

	// For multi-GPU scenarios, this provides the tensor split parameter
	TensorSplit string

	// For multi-GPU scenarios, this is the size in bytes per GPU
	GPUSizes []uint64
56
57
58
59
60
61
62
63
64
65
66
67

	// internal fields for logging purposes
	inferenceLibrary    string
	layersRequested     int
	layersModel         int
	availableList       []string
	kv                  uint64
	allocationsList     []string
	memoryWeights       uint64
	memoryLayerOutput   uint64
	graphFullOffload    uint64
	graphPartialOffload uint64
68
69

	projectorWeights, projectorGraph uint64
70
71
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
72
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
73
// The GPUs provided must all be the same Library
74
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
75
76
77
78
79
80
81
82
83
84
	// Graph size for a partial offload, applies to all GPUs
	var graphPartialOffload uint64

	// Graph size when all layers are offloaded, applies to all GPUs
	var graphFullOffload uint64

	// Final graph offload once we know full or partial
	var graphOffload uint64

	// Projectors loaded into GPU0 only
85
86
	var projectorWeights uint64
	var projectorGraph uint64
87
88
89
90

	// Conditional output size on GPU 0
	var memoryLayerOutput uint64

Daniel Hiltgen's avatar
Daniel Hiltgen committed
91
92
	// The sizes of a layer
	var layerSize uint64
Daniel Hiltgen's avatar
Daniel Hiltgen committed
93

94
95
96
97
98
99
100
101
102
	// The sum of all the layer sizes (just for logging)
	var memoryWeights uint64

	// True if all the layers are loaded
	var fullyLoaded bool

	// Overflow that didn't fit into the GPU
	var overflow uint64

103
	overhead := envconfig.GpuOverhead()
104
105
106
107
108
	availableList := make([]string, len(gpus))
	for i, gpu := range gpus {
		availableList[i] = format.HumanBytes2(gpu.FreeMemory)
	}
	slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
109
110

	for _, projector := range projectors {
111
112
113
		weight, graph := projectorMemoryRequirements(projector)
		projectorWeights += weight
		projectorGraph += graph
Daniel Hiltgen's avatar
Daniel Hiltgen committed
114
115
116
117

		// multimodal models require at least 2048 context
		opts.NumCtx = max(opts.NumCtx, 2048)
	}
118
119
120
	if projectorWeights == 0 && projectorGraph == 0 {
		projectorWeights, projectorGraph = f.VisionGraphSize()
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
121

Michael Yang's avatar
Michael Yang committed
122
	layers := f.Tensors().GroupLayers()
Michael Yang's avatar
typo  
Michael Yang committed
123
124
	// add one layer worth of memory as a buffer
	if blk0, ok := layers["blk.0"]; ok {
Michael Yang's avatar
Michael Yang committed
125
		layerSize = blk0.Size()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
126
127
	} else {
		slog.Warn("model missing blk.0 layer size")
Michael Yang's avatar
typo  
Michael Yang committed
128
	}
Michael Yang's avatar
Michael Yang committed
129

130
	var kvct string
Michael Yang's avatar
Michael Yang committed
131
132
133
	if envconfig.FlashAttention() &&
		discover.GetGPUInfo().FlashAttentionSupported() &&
		f.SupportsFlashAttention() {
134
		requested := strings.ToLower(envconfig.KvCacheType())
Michael Yang's avatar
Michael Yang committed
135
		if requested != "" && f.SupportsKVCacheType(requested) {
136
137
138
139
			kvct = requested
		}
	}

140
	kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
141

142
143
144
145
146
147
148
149
	if len(kv) > 0 {
		layerSize += kv[0]
	}

	var kvTotal uint64
	for _, kvLayer := range kv {
		kvTotal += kvLayer
	}
150

Daniel Hiltgen's avatar
Daniel Hiltgen committed
151
	if graphPartialOffload == 0 {
152
153
154
155
156
157
		headsKV := f.KV().HeadCountKVMin()
		if headsKV == 0 {
			headsKV = 1
		}
		gqa := f.KV().HeadCountMax() / headsKV
		graphPartialOffload = gqa * kvTotal / 6
Daniel Hiltgen's avatar
Daniel Hiltgen committed
158
159
160
161
162
	}
	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
	}

163
164
165
	// on metal there's no partial offload overhead
	if gpus[0].Library == "metal" {
		graphPartialOffload = graphFullOffload
Daniel Hiltgen's avatar
Daniel Hiltgen committed
166
167
168
	} else if len(gpus) > 1 {
		// multigpu should always use the partial graph size
		graphFullOffload = graphPartialOffload
169
170
	}

171
	if layer, ok := layers["output_norm"]; ok {
Michael Yang's avatar
Michael Yang committed
172
		memoryLayerOutput += layer.Size()
173
174
	}
	if layer, ok := layers["output"]; ok {
Michael Yang's avatar
Michael Yang committed
175
		memoryLayerOutput += layer.Size()
176
	} else if layer, ok := layers["token_embd"]; ok {
Michael Yang's avatar
Michael Yang committed
177
		memoryLayerOutput += layer.Size()
Michael Yang's avatar
Michael Yang committed
178
179
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
180
	// Output layer handled at the end if we have space
181
	gpuZeroOverhead := projectorWeights + projectorGraph
182
183

	// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
Michael Yang's avatar
Michael Yang committed
184
	var layerCount int
185
186
187
188
	layerCounts := make([]int, len(gpus))
	gpuAllocations := make([]uint64, len(gpus))
	type gs struct {
		i int
189
		g *discover.GpuInfo
190
191
192
193
194
195
196
197
	}
	gpusWithSpace := []gs{}
	for i := range gpus {
		var gzo uint64
		if len(gpusWithSpace) == 0 {
			gzo = gpuZeroOverhead
		}
		// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
198
		if gpus[i].FreeMemory < overhead+gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
			slog.Debug("gpu has too little memory to allocate any layers",
				"id", gpus[i].ID,
				"library", gpus[i].Library,
				"variant", gpus[i].Variant,
				"compute", gpus[i].Compute,
				"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
				"name", gpus[i].Name,
				"total", format.HumanBytes2(gpus[i].TotalMemory),
				"available", format.HumanBytes2(gpus[i].FreeMemory),
				"minimum_memory", gpus[i].MinimumMemory,
				"layer_size", format.HumanBytes2(layerSize),
				"gpu_zer_overhead", format.HumanBytes2(gzo),
				"partial_offload", format.HumanBytes2(graphPartialOffload),
				"full_offload", format.HumanBytes2(graphFullOffload),
			)
214
215
216
			continue
		}
		gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
Daniel Hiltgen's avatar
Daniel Hiltgen committed
217
		gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
218
219
220
221
222
223
224
225
	}

	var gpuZeroID int
	if len(gpusWithSpace) > 0 {
		gpuZeroID = gpusWithSpace[0].i
		gpuAllocations[gpuZeroID] += gpuZeroOverhead
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
226
	// For all the layers, find where they can fit on the GPU(s)
Michael Yang's avatar
Michael Yang committed
227
	for i := range int(f.KV().BlockCount()) {
228
229
		// Some models have inconsistent layer sizes
		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
Michael Yang's avatar
Michael Yang committed
230
			layerSize = blk.Size()
231
			layerSize += kv[i]
Michael Yang's avatar
Michael Yang committed
232
			memoryWeights += blk.Size()
233
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
234

235
236
237
238
239
240
241
242
243
		if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
			// Stop allocating on GPU(s) once we hit the users target NumGPU
			continue
		}

		// distribute the layers across the GPU(s) that have space
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[i%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
244
			if g.g.FreeMemory > overhead+used+layerSize {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
245
				gpuAllocations[g.i] += layerSize
246
				layerCounts[g.i]++
Michael Yang's avatar
typo  
Michael Yang committed
247
				layerCount++
248
249
250
				break
			} else {
				gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
Michael Yang's avatar
typo  
Michael Yang committed
251
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
252
		}
253
	}
Michael Yang's avatar
Michael Yang committed
254
	if layerCount >= int(f.KV().BlockCount()) {
255
256
		fullyLoaded = true
	} else {
Michael Yang's avatar
Michael Yang committed
257
		for i := layerCount; i < int(f.KV().BlockCount()); i++ {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
258
			overflow += layerSize
259
260
		}
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
261
262

	// Determine if we need to consider output then find where it fits
263
	if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
264
265
266
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[layerCount%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
267
			if g.g.FreeMemory > overhead+used+memoryLayerOutput {
268
269
270
271
272
273
				gpuAllocations[g.i] += memoryLayerOutput
				layerCounts[g.i]++
				layerCount++
				break
			}
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
274

Michael Yang's avatar
Michael Yang committed
275
		if layerCount < int(f.KV().BlockCount())+1 {
276
277
278
			fullyLoaded = false
			overflow += memoryLayerOutput
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
279
280
	}

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
	// Add the applicable (full or partial) graph allocations
	for i := range gpus {
		if layerCounts[i] <= 0 {
			continue
		}
		if fullyLoaded {
			gpuAllocations[i] += graphFullOffload
		} else {
			gpuAllocations[i] += graphPartialOffload
		}
	}
	if fullyLoaded {
		graphOffload = graphFullOffload
	} else {
		graphOffload = graphPartialOffload
Daniel Hiltgen's avatar
Daniel Hiltgen committed
296
297
	}

298
299
300
301
	// Summaries for the log
	var memoryRequiredPartial, memoryRequiredTotal uint64
	for i := range gpuAllocations {
		memoryRequiredPartial += gpuAllocations[i]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
302
	}
303
	memoryRequiredTotal = memoryRequiredPartial + overflow
Daniel Hiltgen's avatar
Daniel Hiltgen committed
304

305
306
307
308
309
310
311
312
313
314
315
316
	tensorSplit := ""
	if len(gpus) > 1 {
		splits := make([]string, len(gpus))
		for i, count := range layerCounts {
			splits[i] = strconv.Itoa(count)
		}
		tensorSplit = strings.Join(splits, ",")
	}
	allocationsList := []string{}
	for _, a := range gpuAllocations {
		allocationsList = append(allocationsList, format.HumanBytes2(a))
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
317

318
319
320
321
322
323
324
325
326
	estimate := MemoryEstimate{
		TotalSize: memoryRequiredTotal,
		Layers:    0,
		Graph:     0,
		VRAMSize:  0,
		GPUSizes:  []uint64{},

		inferenceLibrary:    gpus[0].Library,
		layersRequested:     opts.NumGPU,
Michael Yang's avatar
Michael Yang committed
327
		layersModel:         int(f.KV().BlockCount()) + 1,
328
		availableList:       availableList,
329
		kv:                  kvTotal,
330
331
332
333
334
		allocationsList:     allocationsList,
		memoryWeights:       memoryWeights,
		memoryLayerOutput:   memoryLayerOutput,
		graphFullOffload:    graphFullOffload,
		graphPartialOffload: graphPartialOffload,
335
336
		projectorWeights:    projectorWeights,
		projectorGraph:      projectorGraph,
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
	}

	if gpus[0].Library == "cpu" {
		return estimate
	}
	if layerCount == 0 {
		slog.Debug("insufficient VRAM to load any model layers")
		return estimate
	}
	estimate.Layers = layerCount
	estimate.Graph = graphOffload
	estimate.VRAMSize = memoryRequiredPartial
	estimate.TotalSize = memoryRequiredTotal
	estimate.TensorSplit = tensorSplit
	estimate.GPUSizes = gpuAllocations
	return estimate
}

Michael Yang's avatar
Michael Yang committed
355
356
357
func (m MemoryEstimate) LogValue() slog.Value {
	attrs := []slog.Attr{
		slog.String("library", m.inferenceLibrary),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
358
359
		slog.Group(
			"layers",
Michael Yang's avatar
Michael Yang committed
360
			// requested number of layers to offload
361
			"requested", m.layersRequested,
362
			// The number of layers the model has (including output)
363
			"model", m.layersModel,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
364
			// estimated number of layers that can be offloaded
365
366
367
			"offload", m.Layers,
			// multi-gpu split for tensors
			"split", m.TensorSplit,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
368
369
370
		),
		slog.Group(
			"memory",
371
			// memory available by GPU for offloading
372
			"available", m.availableList,
Michael Yang's avatar
Michael Yang committed
373
			"gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
374
375
376
			slog.Group(
				"required",
				// memory required for full offloading
377
				"full", format.HumanBytes2(m.TotalSize),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
378
				// memory required to offload layers.estimate layers
379
				"partial", format.HumanBytes2(m.VRAMSize),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
380
				// memory of KV cache
381
				"kv", format.HumanBytes2(m.kv),
382
				// Allocations across the GPUs
383
				"allocations", m.allocationsList,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
384
385
386
387
			),
			slog.Group(
				"weights",
				// memory of the weights
388
				"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
389
				// memory of repeating layers
Michael Yang's avatar
Michael Yang committed
390
				"repeating", format.HumanBytes2(m.memoryWeights),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
391
				// memory of non-repeating layers
392
				"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
393
394
395
396
			),
			slog.Group(
				"graph",
				// memory of graph when fully offloaded
397
				"full", format.HumanBytes2(m.graphFullOffload),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
398
				// memory of graph when not fully offloaded
399
				"partial", format.HumanBytes2(m.graphPartialOffload),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
400
401
			),
		),
Michael Yang's avatar
Michael Yang committed
402
403
404
405
406
407
408
409
410
411
412
	}

	if m.projectorWeights > 0 {
		attrs = append(attrs, slog.Group(
			"projector",
			"weights", format.HumanBytes2(m.projectorWeights),
			"graph", format.HumanBytes2(m.projectorGraph),
		))
	}

	return slog.GroupValue(attrs...)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
413
}
414
415
416
417
418
419
420
421

func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
	file, err := os.Open(filename)
	if err != nil {
		return 0, 0
	}
	defer file.Close()

422
	ggml, _, err := ggml.Decode(file, 1024)
423
424
425
426
	if err != nil {
		return 0, 0
	}

Michael Yang's avatar
Michael Yang committed
427
428
	for _, layer := range ggml.Tensors().GroupLayers() {
		weights += layer.Size()
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
	}

	switch arch := ggml.KV().Architecture(); arch {
	case "mllama":
		kv := func(n string) uint64 {
			if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
				return uint64(v)
			}

			return 0
		}

		imageSize := kv("image_size")

		maxNumTiles := kv("max_num_tiles")
		embeddingLength := kv("embedding_length")
		headCount := kv("attention.head_count")

		numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
Michael Yang's avatar
Michael Yang committed
448
		if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
449
450
451
452
453
454
455
456
457
458
459
460
461
462
			numPatches++
		}

		numPaddedPatches := numPatches + 8 - (numPatches%8)%8

		graphSize = 4 * (8 +
			imageSize*imageSize*kv("num_channels")*maxNumTiles +
			embeddingLength*numPatches*maxNumTiles +
			9*embeddingLength*numPaddedPatches*maxNumTiles +
			numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
	}

	return weights, graphSize
}