causal_test.go 20.5 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
2
3
4
5
6
7
package kvcache

import (
	"math"
	"slices"
	"testing"

8
	"github.com/ollama/ollama/fs"
Jesse Gross's avatar
Jesse Gross committed
9
	"github.com/ollama/ollama/ml"
10
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
)

type testCase struct {
	name          string
	in            []float32
	inShape       []int
	seqs          []int
	pos           []int32
	expected      []float32
	expectedShape []int
	expectedMask  []float32
}

func TestStore(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(nil)
	defer cache.Close()

29
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
			inShape:       []int{2, 3, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
			expectedShape: []int{2, 3, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
		},
		{
			name:          "SecondBatch",
			in:            []float32{115, 215, 125, 225, 135, 235},
			inShape:       []int{2, 3, 1},
			seqs:          []int{0},
			pos:           []int32{4},
			expected:      []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
			expectedShape: []int{2, 3, 5},
			expectedMask:  []float32{0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestSWA(t *testing.T) {
	backend := &testBackend{}
	cache := NewSWACache(1, nil)
	defer cache.Close()

62
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
63
64
65

	tests := []testCase{
		{
66
			name:          "FirstBatch",
Jesse Gross's avatar
Jesse Gross committed
67
68
69
70
71
72
73
74
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
75
76
77
78
79
80
81
82
83
84
		{
			name:          "SecondBatch",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 0},
			pos:           []int32{4, 5},
			expected:      []float32{5, 6, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
		},
Jesse Gross's avatar
Jesse Gross committed
85
86
87
88
89
90
91
92
93
94
	}

	testCache(t, backend, cache, tests)
}

func TestSequences(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(nil)
	defer cache.Close()

95
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 1, 1},
			pos:           []int32{0, 1, 0, 1},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
		{
			name:          "SecondBatch",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 1},
			pos:           []int32{2, 2},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestRemove(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
		return key.Add(ctx, shift), nil
	})
	defer cache.Close()

130
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 1, 1},
			pos:           []int32{0, 1, 0, 1},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	err := cache.Remove(0, 1, math.MaxInt32)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "RemoveEnd",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 1},
			pos:           []int32{1, 2},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)

	err = cache.Remove(0, 0, 1)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "RemoveMiddle",
			in:            []float32{7, 8},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 0},
			pos:           []int32{1, 2},
			expected:      []float32{7, 8, 3, 4, 4},
			expectedShape: []int{1, 1, 5},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestDefrag(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
		return key.Add(ctx, shift), nil
	})
	defer cache.Close()

195
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
			inShape:       []int{1, 1, 16},
			seqs:          []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
			expected:      []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
			expectedShape: []int{1, 1, 16},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	err := cache.Remove(0, 2, 4)
	if err != nil {
		panic(err)
	}

	err = cache.Remove(0, 13, math.MaxInt32)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "Defrag",
			in:            []float32{17, 18, 19},
			inShape:       []int{1, 1, 3},
			seqs:          []int{0, 0, 0},
			pos:           []int32{16, 17, 18},
			expected:      []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
			expectedShape: []int{1, 1, 16},
			expectedMask:  []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestCopy(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
	defer cache.Close()

243
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	cache.CopyPrefix(0, 1, 2)

	tests = []testCase{
		{
			name:          "Copy",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{1, 1},
			pos:           []int32{3, 4},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
	for _, test := range tests {
		t.Run(test.name, func(t *testing.T) {
			context := backend.NewContext()
			defer context.Close()

Jesse Gross's avatar
Jesse Gross committed
284
			err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
Jesse Gross's avatar
Jesse Gross committed
285
286
287
288
289
290
291
292
293
294
			if err != nil {
				panic(err)
			}

			cache.SetLayer(0)
			tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
			cache.Put(context, tensor, tensor)

			out, _, mask := cache.Get(context)

295
			context.Forward(out, mask).Compute(out, mask)
Jesse Gross's avatar
Jesse Gross committed
296
297
298
299
300
301
302
303

			if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
				t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
			}
		})
	}
}

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
func TestCanResume(t *testing.T) {
	backend := &testBackend{}
	windowSize := int32(4)
	cache := NewSWACache(windowSize, nil)
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 1, 16, 16)

	context := backend.NewContext()
	defer context.Close()

	err := cache.StartForward(context, input.Batch{
		Positions: []int32{0, 1, 2, 3},
		Sequences: []int{0, 0, 0, 0},
	})
	if err != nil {
		t.Fatalf("StartForward failed: %v", err)
	}

	cache.SetLayer(0)
	tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
	cache.Put(context, tensor, tensor)

	// with window size 4, nothing has slid out of the window yet
	if !cache.CanResume(0, 0) {
		t.Errorf("CanResume(0, 0) = false, want true (within window)")
	}
	if !cache.CanResume(0, 1) {
		t.Errorf("CanResume(0, 1) = false, want true (within window)")
	}
	if !cache.CanResume(0, 2) {
		t.Errorf("CanResume(0, 2) = false, want true (within window)")
	}
	if !cache.CanResume(0, 3) {
		t.Errorf("CanResume(0, 3) = false, want true (latest position)")
	}

	// shift window by adding position 4
	err = cache.StartForward(context, input.Batch{
		Positions: []int32{4, 5},
		Sequences: []int{0, 0},
	})
	if err != nil {
		t.Fatalf("StartForward failed: %v", err)
	}

	cache.SetLayer(0)
	tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
	cache.Put(context, tensor, tensor)

	// only the latest position has overlapping windows
	if cache.CanResume(0, 0) {
		t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
	}
	if cache.CanResume(0, 1) {
		t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
	}
	if cache.CanResume(0, 2) {
		t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
	}
	if cache.CanResume(0, 3) {
		t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
	}
	if cache.CanResume(0, 4) {
		t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
	}
	if !cache.CanResume(0, 5) {
		t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
	}
}

Jesse Gross's avatar
Jesse Gross committed
375
376
type testBackend struct{}

377
func (b *testBackend) Config() fs.Config {
Jesse Gross's avatar
Jesse Gross committed
378
379
380
381
382
383
384
385
386
387
388
	panic("not implemented")
}

func (b *testBackend) Get(name string) ml.Tensor {
	panic("not implemented")
}

func (b *testBackend) NewContext() ml.Context {
	return &testContext{}
}

Michael Yang's avatar
Michael Yang committed
389
390
391
392
func (b *testBackend) NewContextSize(int) ml.Context {
	return &testContext{}
}

393
394
395
396
func (b *testBackend) SystemInfo() string {
	return "not implemented"
}

Jesse Gross's avatar
Jesse Gross committed
397
398
type testContext struct{}

399
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
Jesse Gross's avatar
Jesse Gross committed
400
401
402
403
404
405
406
407
408
409
410
411
	total := 0

	if len(shape) > 0 {
		total = 1
		for _, s := range shape {
			total *= s
		}
	}

	return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}

412
413
414
415
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
	return c.Empty(dtype, shape...)
}

Jesse Gross's avatar
Jesse Gross committed
416
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
417
	t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

	copy(t.data, s)

	return t, nil
}

func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
	f := make([]float32, len(s))
	for i := range f {
		f[i] = float32(s[i])
	}

	out, _ := c.FromFloatSlice(f, shape...)
	out.(*testTensor).dtype = ml.DTypeI32

	return out, nil
}

Michael Yang's avatar
Michael Yang committed
436
437
438
func (c *testContext) Input() ml.Context    { return c }
func (c *testContext) Layer(int) ml.Context { return c }

Michael Yang's avatar
Michael Yang committed
439
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
Jesse Gross's avatar
Jesse Gross committed
440
441
442

func (c *testContext) Compute(...ml.Tensor) {}

Michael Yang's avatar
Michael Yang committed
443
func (c *testContext) MaxGraphNodes() int {
Jesse Gross's avatar
Jesse Gross committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
	return 10
}

func (c *testContext) Close() {}

type testTensor struct {
	dtype       ml.DType
	elementSize int
	data        []float32
	shape       []int
}

func (t *testTensor) Dim(n int) int {
	return t.shape[n]
}

func (t *testTensor) Stride(n int) int {
	stride := t.elementSize
	for i := range n {
		stride *= t.shape[i]
	}

	return stride
}

func (t *testTensor) Shape() []int {
	return t.shape
}

func (t *testTensor) DType() ml.DType {
	return t.dtype
}

func (t *testTensor) Bytes() []byte {
	panic("not implemented")
}

func (t *testTensor) Floats() []float32 {
	out := make([]float32, len(t.data))
	copy(out, t.data)
	return out
}

487
488
489
490
491
492
493
494
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
	out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
	for i := range out.data {
		out.data[i] = -t.data[i]
	}
	return out
}

Jesse Gross's avatar
Jesse Gross committed
495
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
496
	out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

	for i := range out.data {
		out.data[i] = t.data[i] + t2.(*testTensor).data[i]
	}

	return out
}

func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
	panic("not implemented")
}

Jesse Gross's avatar
Jesse Gross committed
533
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
534
535
536
537
	panic("not implemented")
}

func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
Jesse Gross's avatar
Jesse Gross committed
538
539
540
	panic("not implemented")
}

Jesse Gross's avatar
Jesse Gross committed
541
542
543
544
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	panic("not implemented")
}

Patrick Devine's avatar
Patrick Devine committed
545
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
Jesse Gross's avatar
Jesse Gross committed
546
547
548
	panic("not implemented")
}

549
func (t *testTensor) IM2Col(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
Jesse Gross's avatar
Jesse Gross committed
550
551
552
	panic("not implemented")
}

553
554
555
556
557
func (t *testTensor) Cos(ctx ml.Context) ml.Tensor  { panic("not implemented") }
func (t *testTensor) Sin(ctx ml.Context) ml.Tensor  { panic("not implemented") }
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor { panic("not implemented") }
Jesse Gross's avatar
Jesse Gross committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	offset /= t.elementSize

	var s []int

	switch len(shape) {
	case 1:
		s = []int{shape[0]}
	case 5:
		s = []int{shape[0], shape[2], shape[4]}
	default:
		panic("unsupported number of dimensions")
	}

	context := &testContext{}

579
	view := context.Empty(t.dtype, s...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
580
581
582
583
584
585
586
587
588
589
590
591
592
	view.data = t.data[offset : offset+len(view.data)]

	return view
}

func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

Jesse Gross's avatar
Jesse Gross committed
593
594
595
596
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
	panic("not implemented")
}

Jesse Gross's avatar
Jesse Gross committed
597
598
599
600
601
602
603
604
605
606
607
608
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
	panic("not implemented")
}

609
610
func (t *testTensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor { panic("not implemented") }

Jesse Gross's avatar
Jesse Gross committed
611
612
613
614
615
616
617
618
619
620
621
622
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	copy(t2.(*testTensor).data, t.data)
	return nil
}
623
624

func (t *testTensor) Duplicate(ctx ml.Context) ml.Tensor { panic("not implemented") }