convert.go 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
package convert

import (
	"bytes"
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"io"
	"log/slog"
	"os"
	"path/filepath"
	"regexp"
	"slices"
15
	"strings"
16

17
	"github.com/d4l3k/go-bfloat16"
18
	"github.com/mitchellh/mapstructure"
19
20
21
	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"
	"github.com/x448/float16"
22
23
	"google.golang.org/protobuf/proto"

24
25
	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
)

type Params struct {
	Architectures    []string `json:"architectures"`
	VocabSize        int      `json:"vocab_size"`
	HiddenSize       int      `json:"hidden_size"`       // n_embd
	HiddenLayers     int      `json:"num_hidden_layers"` // n_layer
	ContextSize      int      `json:"max_position_embeddings"`
	IntermediateSize int      `json:"intermediate_size"`
	AttentionHeads   int      `json:"num_attention_heads"` // n_head
	KeyValHeads      int      `json:"num_key_value_heads"`
	NormEPS          float64  `json:"rms_norm_eps"`
	RopeFreqBase     float64  `json:"rope_theta"`
	BoSTokenID       int      `json:"bos_token_id"`
	EoSTokenID       int      `json:"eos_token_id"`
41
42
43
44
45
46
47
48
49
	HeadDimension    int      `json:"head_dim"`
	PaddingTokenID   int      `json:"pad_token_id"`

	ByteOrder
}

type ByteOrder interface {
	binary.ByteOrder
	binary.AppendByteOrder
50
51
52
53
54
55
56
57
}

type MetaData struct {
	Type    string `mapstructure:"dtype"`
	Shape   []int  `mapstructure:"shape"`
	Offsets []int  `mapstructure:"data_offsets"`
}

58
func ReadSafeTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
59
60
	f, err := os.Open(fn)
	if err != nil {
61
		return nil, 0, err
62
63
64
65
	}
	defer f.Close()

	var jsonSize uint64
66
67
68
	if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
		return nil, 0, err
	}
69
70
71
72

	buf := make([]byte, jsonSize)
	_, err = io.ReadFull(f, buf)
	if err != nil {
73
		return nil, 0, err
74
75
76
77
78
79
	}

	d := json.NewDecoder(bytes.NewBuffer(buf))
	d.UseNumber()
	var parsed map[string]interface{}
	if err = d.Decode(&parsed); err != nil {
80
		return nil, 0, err
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
	}

	var keys []string
	for k := range parsed {
		keys = append(keys, k)
	}

	slices.Sort(keys)

	slog.Info("converting layers")

	var tensors []llm.Tensor
	for _, k := range keys {
		vals := parsed[k].(map[string]interface{})
		var data MetaData
		if err = mapstructure.Decode(vals, &data); err != nil {
97
			return nil, 0, err
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
		}

		var size uint64
		var kind uint32
		switch len(data.Shape) {
		case 0:
			// metadata
			continue
		case 1:
			// convert to float32
			kind = 0
			size = uint64(data.Shape[0] * 4)
		case 2:
			// convert to float16
			kind = 1
			size = uint64(data.Shape[0] * data.Shape[1] * 2)
		}

		ggufName, err := GetTensorName(k)
		if err != nil {
			slog.Error("%v", err)
119
			return nil, 0, err
120
121
		}

Michael Yang's avatar
Michael Yang committed
122
123
124
		shape := []uint64{0, 0, 0, 0}
		for i := range data.Shape {
			shape[i] = uint64(data.Shape[i])
125
126
127
		}

		t := llm.Tensor{
128
129
130
131
			Name:   ggufName,
			Kind:   kind,
			Offset: offset,
			Shape:  shape[:],
132
		}
133
134
135
136
137
138
139
140
141
142
143
144
145

		t.WriterTo = safetensorWriterTo{
			t:           &t,
			params:      params,
			bo:          params.ByteOrder,
			headCount:   uint32(params.AttentionHeads),
			headCountKV: uint32(params.KeyValHeads),
			filename:    fn,
			start:       uint64(data.Offsets[0]),
			end:         uint64(data.Offsets[1]),
			padding:     8 + jsonSize,
		}

146
147
148
149
150
151
152
		slog.Debug(fmt.Sprintf("%v", t))
		tensors = append(tensors, t)
		offset += size
	}
	return tensors, offset, nil
}

153
func GetSafeTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
154
155
156
	var tensors []llm.Tensor
	files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
	if err != nil {
157
		return nil, err
158
159
160
161
162
163
	}

	var offset uint64
	for _, f := range files {
		var t []llm.Tensor
		var err error
164
		t, offset, err = ReadSafeTensors(f, offset, params)
165
166
		if err != nil {
			slog.Error("%v", err)
167
			return nil, err
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
		}
		tensors = append(tensors, t...)
	}
	return tensors, nil
}

func GetParams(dirpath string) (*Params, error) {
	f, err := os.Open(filepath.Join(dirpath, "config.json"))
	if err != nil {
		return nil, err
	}
	defer f.Close()

	var params Params

	d := json.NewDecoder(f)
	err = d.Decode(&params)
	if err != nil {
		return nil, err
	}

189
	params.ByteOrder = binary.LittleEndian
190
191
192
193
194
195
196
197
198
199
200
	return &params, nil
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
}

201
func LoadTokens(dirpath string, params *Params) (*Vocab, error) {
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
226
227
228
229
230
231
232
233
		switch t {
		case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
		case sentencepiece.ModelProto_SentencePiece_CONTROL:
		case sentencepiece.ModelProto_SentencePiece_UNUSED:
		case sentencepiece.ModelProto_SentencePiece_BYTE:
		default:
			t = sentencepiece.ModelProto_SentencePiece_NORMAL
		}
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

281
282
283
284
285
286
287
288
289
290
	if params.VocabSize > len(v.Tokens) {
		missingTokens := params.VocabSize - len(v.Tokens)
		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
		for cnt := 0; cnt < missingTokens; cnt++ {
			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
			v.Scores = append(v.Scores, -1)
			v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
		}
	}

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
	return v, nil
}

func GetTensorName(n string) (string, error) {
	tMap := map[string]string{
		"model.embed_tokens.weight":                           "token_embd.weight",
		"model.layers.(\\d+).input_layernorm.weight":          "blk.$1.attn_norm.weight",
		"model.layers.(\\d+).mlp.down_proj.weight":            "blk.$1.ffn_down.weight",
		"model.layers.(\\d+).mlp.gate_proj.weight":            "blk.$1.ffn_gate.weight",
		"model.layers.(\\d+).mlp.up_proj.weight":              "blk.$1.ffn_up.weight",
		"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
		"model.layers.(\\d+).self_attn.k_proj.weight":         "blk.$1.attn_k.weight",
		"model.layers.(\\d+).self_attn.o_proj.weight":         "blk.$1.attn_output.weight",
		"model.layers.(\\d+).self_attn.q_proj.weight":         "blk.$1.attn_q.weight",
		"model.layers.(\\d+).self_attn.v_proj.weight":         "blk.$1.attn_v.weight",
		"lm_head.weight":    "output.weight",
		"model.norm.weight": "output_norm.weight",
	}

	v, ok := tMap[n]
	if ok {
		return v, nil
	}

	// quick hack to rename the layers to gguf format
	for k, v := range tMap {
		re := regexp.MustCompile(k)
		newName := re.ReplaceAllString(n, v)
		if newName != n {
			return newName, nil
		}
	}

	return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
type safetensorWriterTo struct {
	t *llm.Tensor

	params      *Params
	bo          ByteOrder
	headCount   uint32
	headCountKV uint32

	filename string

	start, end, padding uint64
}

func (r safetensorWriterTo) addOnes(data []float32) ([]float32, error) {
	n := tensor.New(tensor.WithShape(int(r.t.Shape[0])), tensor.WithBacking(data))
	ones := tensor.Ones(tensor.Float32, int(r.t.Shape[0]))

	var err error
	n, err = n.Add(ones)
	if err != nil {
		return []float32{}, err
	}

	newN, err := native.SelectF32(n, 0)
	if err != nil {
		return []float32{}, err
	}

	var fullTensor []float32
	for _, v := range newN {
		fullTensor = append(fullTensor, v...)
	}

	return fullTensor, nil
}

func (r safetensorWriterTo) repack(data []uint16, heads int) ([]uint16, error) {
	n := tensor.New(tensor.WithShape(int(r.t.Shape[0]), int(r.t.Shape[1])), tensor.WithBacking(data))
	origShape := n.Shape().Clone()

	// reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
	if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
		return nil, err
	}

	if err := n.T(0, 2, 1, 3); err != nil {
		return nil, err
	}

	if err := n.Reshape(origShape...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}
	newN, err := native.SelectU16(n, 1)
	if err != nil {
		return nil, err
	}

	var fullTensor []uint16
	for _, v := range newN {
		fullTensor = append(fullTensor, v...)
	}
	return fullTensor, nil
}

func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
	arch, err := getArchFromParams(r.params)
	if err != nil {
		return 0, err
	}

	f, err := os.Open(r.filename)
	if err != nil {
		return 0, err
	}
	defer f.Close()

	if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
		return 0, err
	}

	switch arch {
	case "llama":

		pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
		re, err := regexp.Compile(pattern)
		if err != nil {
			return 0, err
		}

		matches := re.FindAllStringSubmatch(r.t.Name, -1)
		if len(matches) > 0 {
			layerSize := r.end - r.start

			var err error
			tData := make([]uint16, layerSize/2)
			if err = binary.Read(f, r.bo, tData); err != nil {
				return 0, err
			}

			layerType := matches[0][re.SubexpIndex("layer")]
			var heads uint32
			switch layerType {
			case "q":
				heads = r.headCount
			case "k":
				heads = r.headCountKV
				if heads == 0 {
					heads = r.headCount
				}
			}

			tData, err = r.repack(tData, int(heads))
			if err != nil {
				return 0, err
			}

			var buf []byte
			for _, n := range tData {
				buf = r.bo.AppendUint16(buf, n)
			}

			tempBuf := make([]uint16, len(tData))
			tDataF32 := bfloat16.DecodeFloat32(buf)
			for cnt, v := range tDataF32 {
				tDataF16 := float16.Fromfloat32(v)
				tempBuf[cnt] = uint16(tDataF16)
			}

			if err = binary.Write(w, r.bo, tempBuf); err != nil {
				return 0, err
			}

			return 0, nil
		}

	case "gemma":
		if strings.HasSuffix(r.t.Name, "norm.weight") {
			slog.Debug(fmt.Sprintf("converting '%s'", r.t.Name))

			data := make([]byte, r.end-r.start)
			if err = binary.Read(f, r.bo, data); err != nil {
				return 0, err
			}

			tDataF32 := bfloat16.DecodeFloat32(data)

			var err error
			tDataF32, err = r.addOnes(tDataF32)
			if err != nil {
				return 0, err
			}

			if err := binary.Write(w, r.bo, tDataF32); err != nil {
				return 0, err
			}
			return 0, nil
		}
	}

	remaining := r.end - r.start

	bufSize := uint64(10240)
	var finished bool
	for {
		data := make([]byte, min(bufSize, remaining))

		b, err := io.ReadFull(f, data)
		remaining -= uint64(b)

		if err == io.EOF || remaining <= 0 {
			finished = true
		} else if err != nil {
			return 0, err
		}

		// convert bfloat16 -> ieee float32
		tDataF32 := bfloat16.DecodeFloat32(data)

		switch r.t.Kind {
		case 0:
			if err := binary.Write(w, r.bo, tDataF32); err != nil {
				return 0, err
			}
		case 1:
			// convert float32 -> float16
			tempBuf := make([]uint16, len(data)/2)
			for cnt, v := range tDataF32 {
				tDataF16 := float16.Fromfloat32(v)
				tempBuf[cnt] = uint16(tDataF16)
			}
			if err := binary.Write(w, binary.LittleEndian, tempBuf); err != nil {
				return 0, err
			}
		}
		if finished {
			break
		}
	}
	return 0, nil
}

func getArchFromParams(params *Params) (string, error) {
	var arch string
	switch len(params.Architectures) {
	case 0:
		return "", fmt.Errorf("No architecture specified to convert")
	case 1:
		switch params.Architectures[0] {
		case "MistralForCausalLM":
			arch = "llama"
		case "GemmaForCausalLM":
			arch = "gemma"
		default:
			return "", fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
		}
	default:
		return "", fmt.Errorf("Multimodal models are not yet supported")
	}

	return arch, nil
}

553
func WriteGGUF(name string, tensors []llm.Tensor, params *Params, vocab *Vocab) (string, error) {
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
	arch, err := getArchFromParams(params)
	if err != nil {
		return "", err
	}

	kv := llm.KV{
		"general.architecture": arch,
		"general.name":         name,
	}

	switch arch {
	case "llama":
		kv["llama.context_length"] = uint32(params.ContextSize)
		kv["llama.embedding_length"] = uint32(params.HiddenSize)
		kv["llama.block_count"] = uint32(params.HiddenLayers)
		kv["llama.feed_forward_length"] = uint32(params.IntermediateSize)
		kv["llama.rope.dimension_count"] = uint32(params.HiddenSize / params.AttentionHeads)
		slog.Debug(fmt.Sprintf("rope dim count = %d", kv["llama.rope.dimension_count"]))
		kv["llama.attention.head_count"] = uint32(params.AttentionHeads)
		kv["llama.attention.head_count_kv"] = uint32(params.KeyValHeads)
		kv["llama.attention.layer_norm_rms_epsilon"] = float32(params.NormEPS)
		kv["llama.rope.freq_base"] = float32(params.RopeFreqBase)
	case "gemma":
		kv["gemma.context_length"] = uint32(params.ContextSize)
		kv["gemma.embedding_length"] = uint32(params.HiddenSize)
		kv["gemma.block_count"] = uint32(params.HiddenLayers)
		kv["gemma.feed_forward_length"] = uint32(params.IntermediateSize)
		kv["gemma.attention.head_count"] = uint32(params.AttentionHeads)
		kv["gemma.attention.head_count_kv"] = uint32(params.KeyValHeads)
		kv["gemma.attention.layer_norm_rms_epsilon"] = float32(params.NormEPS)
		kv["gemma.attention.key_length"] = uint32(params.HeadDimension)
		kv["gemma.attention.value_length"] = uint32(params.HeadDimension)
	}

	kv["general.file_type"] = uint32(1)
	kv["tokenizer.ggml.model"] = "llama"

	kv["tokenizer.ggml.tokens"] = vocab.Tokens
	kv["tokenizer.ggml.scores"] = vocab.Scores
	kv["tokenizer.ggml.token_type"] = vocab.Types

	kv["tokenizer.ggml.bos_token_id"] = uint32(params.BoSTokenID)
	kv["tokenizer.ggml.eos_token_id"] = uint32(params.EoSTokenID)

	switch arch {
	case "llama":
		kv["tokenizer.ggml.unknown_token_id"] = uint32(0)
	case "gemma":
		kv["tokenizer.ggml.padding_token_id"] = uint32(params.PaddingTokenID)
		kv["tokenizer.ggml.unknown_token_id"] = uint32(3)
	}

	kv["tokenizer.ggml.add_bos_token"] = true
	kv["tokenizer.ggml.add_eos_token"] = false
608
609
610
611
612
613
614

	f, err := os.CreateTemp("", "ollama-gguf")
	if err != nil {
		return "", err
	}
	defer f.Close()

615
616
	m := llm.NewGGUFV3(params.ByteOrder)
	if err := m.Encode(f, kv, tensors); err != nil {
617
618
619
620
621
		return "", err
	}

	return f.Name(), nil
}