backend.go 9.13 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
package ml

import (
	"bytes"
5
	"context"
Michael Yang's avatar
Michael Yang committed
6
7
	"encoding/binary"
	"fmt"
8
	"math"
Michael Yang's avatar
Michael Yang committed
9
	"os"
Michael Yang's avatar
Michael Yang committed
10
	"slices"
Michael Yang's avatar
Michael Yang committed
11
12
13
	"strconv"
	"strings"

14
15
	"github.com/ollama/ollama/fs"
)
Michael Yang's avatar
Michael Yang committed
16
17

type Backend interface {
18
	Config() fs.Config
Michael Yang's avatar
Michael Yang committed
19
20
	Get(name string) Tensor
	NewContext() Context
21
	NewContextSize(size int) Context
Michael Yang's avatar
Michael Yang committed
22
23
}

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
	CacheConfig() CacheConfig
}

// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
	// CachePadding specifies the multiple for the number of tokens of cache history
	// that will be returned from cache Get for k, v and mask. The capacity of the
	// cache itself will also be increased to a multiple of this size if needed.
	CachePadding int

	// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
	// and return the permuted version via Get. This uses the cache copy operation
	// to avoid a Contiguous call on the permuted tensor.
	PermutedV bool
43
44
45
46
47
48
49
50

	// MaskDType specifies the data type for generating the mask. If unset it will
	// default to DTypeF32.
	MaskDType DType

	// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
	// Any position that does not correspond to an actual token will be filled with -Inf.
	MaskBatchPadding int
51
52
}

53
54
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
55
56
57
58
	// Progress is a callback function that allows reporting percentage completion
	// of model loading
	Progress func(float32)

59
60
	// NumThreads sets the number of threads to use if running on the CPU
	NumThreads int
Michael Yang's avatar
Michael Yang committed
61

62
63
64
65
66
67
68
69
	// MainGPU is the index of the primary GPU to use
	MainGPU int

	// NumGPULayers is the number of layers to offload to GPUs
	NumGPULayers int

	// TensorSplit is the fraction of the model to offload to each GPU
	TensorSplit []float32
70
71
72

	// FlashAttention indicates that we should use a fused flash attention kernel
	FlashAttention bool
73
74
}

75
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
76

77
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
Michael Yang's avatar
Michael Yang committed
78
79
80
81
82
83
84
	if _, ok := backends[name]; ok {
		panic("backend: backend already registered")
	}

	backends[name] = f
}

85
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
Michael Yang's avatar
Michael Yang committed
86
	if backend, ok := backends["ggml"]; ok {
87
		return backend(ctx, f, params)
Michael Yang's avatar
Michael Yang committed
88
89
90
91
92
93
	}

	return nil, fmt.Errorf("unsupported backend")
}

type Context interface {
94
	Empty(dtype DType, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
95
96
97
98
	Zeros(dtype DType, shape ...int) Tensor
	FromFloatSlice(s []float32, shape ...int) (Tensor, error)
	FromIntSlice(s []int32, shape ...int) (Tensor, error)

Michael Yang's avatar
arange  
Michael Yang committed
99
100
101
	// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
	Arange(start, stop, step float32, dtype DType) Tensor

102
	Forward(...Tensor) Context
103
	Compute(...Tensor)
104
105
106
107
108
109
110

	// Reserve is analogous to Compute but rather than executing a
	// graph, simply preallocates memory. Typically called with a
	// worst case graph to ensure all resources are available for
	// for future inference.
	Reserve() error

111
	MaxGraphNodes() int
112
	Close()
113

114
115
	// Input returns a context appropriate for creating tensors that are
	// inputs to the model (which includes things like output locations)
116
117
118
119
	Input() Context

	// Layer returns a context appropriate for creating intermediate tensors
	Layer(int) Context
Michael Yang's avatar
Michael Yang committed
120
121
122
}

type Tensor interface {
123
124
	Dim(n int) int
	Stride(n int) int
Michael Yang's avatar
Michael Yang committed
125

126
	Shape() []int
Michael Yang's avatar
Michael Yang committed
127
128
129
130
131
	DType() DType

	Bytes() []byte
	Floats() []float32

132
	Neg(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
133
134
135
	Add(ctx Context, t2 Tensor) Tensor
	Mul(ctx Context, t2 Tensor) Tensor
	Mulmat(ctx Context, t2 Tensor) Tensor
136
	MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
137
	MulmatID(ctx Context, t2, ids Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
138
139
140
141
142
143

	Softmax(ctx Context) Tensor
	LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
	RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
	Scale(ctx Context, s float64) Tensor

Michael Yang's avatar
Michael Yang committed
144
	AvgPool2D(ctx Context, k, s int, p float32) Tensor
Michael Yang's avatar
Michael Yang committed
145
	Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
146

Patrick Devine's avatar
Patrick Devine committed
147
	RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
148
	IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
149

150
151
	Sin(ctx Context) Tensor
	Cos(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
152
153
154
	Tanh(ctx Context) Tensor
	GELU(ctx Context) Tensor
	SILU(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
155
	Sigmoid(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
156

157
	Reshape(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
158
159
160
	View(ctx Context, offset int, shape ...int) Tensor
	Permute(ctx Context, shape ...int) Tensor
	Contiguous(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
161
	Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Michael Yang's avatar
Michael Yang committed
162

163
164
	Pad(ctx Context, shape ...int) Tensor
	Unpad(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
165
166

	Stack(ctx Context, dim int, s ...Tensor) Tensor
167
168
169

	// Repeat repeats the tensor n times along dimension dim
	Repeat(ctx Context, dim, n int) Tensor
Michael Yang's avatar
Michael Yang committed
170
171
172
	Concat(ctx Context, t2 Tensor, dim int) Tensor
	Rows(ctx Context, t2 Tensor) Tensor
	Copy(ctx Context, t2 Tensor) Tensor
173
	Duplicate(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
174
175

	TopK(ctx Context, k int) Tensor
Michael Yang's avatar
Michael Yang committed
176
177
}

178
179
180
181
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
182
183
184
185
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
//	if mask != nil {
//		kq = kq.Add(ctx, mask)
//	}
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
	ScaledDotProductAttention(ctx Context, key, value, mask Tensor, scale float64) Tensor
}

Michael Yang's avatar
Michael Yang committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
type number interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
		~float32 | ~float64 |
		~complex64 | ~complex128
}

func mul[T number](s ...T) T {
	p := T(1)
	for _, v := range s {
		p *= v
	}

	return p
}

218
type DumpOptions func(*dumpOptions)
Michael Yang's avatar
Michael Yang committed
219

220
221
222
223
224
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
func DumpWithPrecision(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Precision = n
	}
Michael Yang's avatar
Michael Yang committed
225
226
}

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// beginning and end of each dimension will be printed.
func DumpWithThreshold(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Threshold = n
	}
}

// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
func DumpWithEdgeItems(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.EdgeItems = n
	}
}

type dumpOptions struct {
	Precision, Threshold, EdgeItems int
}

func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
	opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
	for _, optsFunc := range optsFuncs {
		optsFunc(&opts)
	}

	if mul(t.Shape()...) <= opts.Threshold {
		opts.EdgeItems = math.MaxInt
Michael Yang's avatar
Michael Yang committed
255
256
257
258
	}

	switch t.DType() {
	case DTypeF32:
259
260
		return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Jesse Gross's avatar
Jesse Gross committed
261
		})
262
	case DTypeF16, DTypeQ80, DTypeQ40:
263
		f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
Jesse Gross's avatar
Jesse Gross committed
264
		f32 = t.Copy(ctx, f32)
265
266
		return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Michael Yang's avatar
Michael Yang committed
267
268
		})
	case DTypeI32:
269
		return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
Michael Yang's avatar
Michael Yang committed
270
271
272
273
274
275
276
			return strconv.FormatInt(int64(i), 10)
		})
	default:
		return "<unsupported>"
	}
}

Jesse Gross's avatar
Jesse Gross committed
277
278
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
	if t.Bytes() == nil {
279
		ctx.Forward(t).Compute(t)
Michael Yang's avatar
Michael Yang committed
280
281
282
283
284
285
286
287
	}

	s := make(S, mul(t.Shape()...))
	if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
		panic(err)
	}

	shape := t.Shape()
Michael Yang's avatar
Michael Yang committed
288
	slices.Reverse(shape)
Michael Yang's avatar
Michael Yang committed
289
290

	var sb strings.Builder
291
292
	var f func([]int, int)
	f = func(dims []int, stride int) {
Michael Yang's avatar
Michael Yang committed
293
		prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
Michael Yang's avatar
Michael Yang committed
294
295
		sb.WriteString("[")
		defer func() { sb.WriteString("]") }()
296
		for i := 0; i < dims[0]; i++ {
Michael Yang's avatar
Michael Yang committed
297
			if i >= items && i < dims[0]-items {
Michael Yang's avatar
Michael Yang committed
298
				sb.WriteString("..., ")
Michael Yang's avatar
Michael Yang committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
				// skip to next printable element
				skip := dims[0] - 2*items
				if len(dims) > 1 {
					stride += mul(append(dims[1:], skip)...)
					fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
				}
				i += skip - 1
			} else if len(dims) > 1 {
				f(dims[1:], stride)
				stride += mul(dims[1:]...)
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
				}
			} else {
Michael Yang's avatar
Michael Yang committed
313
314
315
316
317
318
				text := fn(s[stride+i])
				if len(text) > 0 && text[0] != '-' {
					sb.WriteString(" ")
				}

				sb.WriteString(text)
Michael Yang's avatar
Michael Yang committed
319
				if i < dims[0]-1 {
Michael Yang's avatar
Michael Yang committed
320
					sb.WriteString(", ")
Michael Yang's avatar
Michael Yang committed
321
322
323
324
325
326
327
328
329
330
331
332
				}
			}
		}
	}
	f(shape, 0)

	return sb.String()
}

type DType int

const (
Jesse Gross's avatar
Jesse Gross committed
333
334
335
	DTypeOther DType = iota
	DTypeF32
	DTypeF16
336
337
	DTypeQ80
	DTypeQ40
Michael Yang's avatar
Michael Yang committed
338
339
	DTypeI32
)