memory.go 12.7 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
package llm

import (
4
	"fmt"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5
	"log/slog"
6
	"os"
7
8
	"strconv"
	"strings"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
9
10

	"github.com/ollama/ollama/api"
11
	"github.com/ollama/ollama/discover"
12
	"github.com/ollama/ollama/envconfig"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
13
	"github.com/ollama/ollama/format"
Michael Yang's avatar
Michael Yang committed
14
	"github.com/ollama/ollama/fs/ggml"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
15
16
17
)

// This algorithm looks for a complete fit to determine if we need to unload other models
Michael Yang's avatar
Michael Yang committed
18
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
19
	// Split up the GPUs by type and try them
20
	var estimatedVRAM uint64
Daniel Hiltgen's avatar
Daniel Hiltgen committed
21
22
	for _, gpus := range allGpus.ByLibrary() {
		var layerCount int
Michael Yang's avatar
Michael Yang committed
23
		estimate := EstimateGPULayers(gpus, f, projectors, opts)
24
		layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
Daniel Hiltgen's avatar
Daniel Hiltgen committed
25
		if opts.NumGPU < 0 {
Michael Yang's avatar
Michael Yang committed
26
			if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
27
28
29
30
31
32
33
34
35
36
37
				return true, estimatedVRAM
			}
		} else {
			if layerCount > 0 && layerCount >= opts.NumGPU {
				return true, estimatedVRAM
			}
		}
	}
	return false, estimatedVRAM
}

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
type MemoryEstimate struct {
	// How many layers we predict we can load
	Layers int

	// The size of the graph which occupies the main GPU
	Graph uint64

	// How much VRAM will be allocated given the number of layers we predict
	VRAMSize uint64

	// The total size of the model if loaded into VRAM.  If all layers are loaded, VRAMSize == TotalSize
	TotalSize uint64

	// For multi-GPU scenarios, this provides the tensor split parameter
	TensorSplit string

	// For multi-GPU scenarios, this is the size in bytes per GPU
	GPUSizes []uint64
56
57
58
59
60
61
62
63
64
65
66
67

	// internal fields for logging purposes
	inferenceLibrary    string
	layersRequested     int
	layersModel         int
	availableList       []string
	kv                  uint64
	allocationsList     []string
	memoryWeights       uint64
	memoryLayerOutput   uint64
	graphFullOffload    uint64
	graphPartialOffload uint64
68
69

	projectorWeights, projectorGraph uint64
70
71
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
72
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
73
// The GPUs provided must all be the same Library
Michael Yang's avatar
Michael Yang committed
74
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
75
76
77
78
79
80
81
82
83
84
	// Graph size for a partial offload, applies to all GPUs
	var graphPartialOffload uint64

	// Graph size when all layers are offloaded, applies to all GPUs
	var graphFullOffload uint64

	// Final graph offload once we know full or partial
	var graphOffload uint64

	// Projectors loaded into GPU0 only
85
86
	var projectorWeights uint64
	var projectorGraph uint64
87
88
89
90

	// Conditional output size on GPU 0
	var memoryLayerOutput uint64

Daniel Hiltgen's avatar
Daniel Hiltgen committed
91
92
	// The sizes of a layer
	var layerSize uint64
Daniel Hiltgen's avatar
Daniel Hiltgen committed
93

94
95
96
97
98
99
100
101
102
	// The sum of all the layer sizes (just for logging)
	var memoryWeights uint64

	// True if all the layers are loaded
	var fullyLoaded bool

	// Overflow that didn't fit into the GPU
	var overflow uint64

103
	overhead := envconfig.GpuOverhead()
104
105
106
107
108
	availableList := make([]string, len(gpus))
	for i, gpu := range gpus {
		availableList[i] = format.HumanBytes2(gpu.FreeMemory)
	}
	slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
109
110

	for _, projector := range projectors {
111
112
113
		weight, graph := projectorMemoryRequirements(projector)
		projectorWeights += weight
		projectorGraph += graph
Daniel Hiltgen's avatar
Daniel Hiltgen committed
114
115
116
117
118

		// multimodal models require at least 2048 context
		opts.NumCtx = max(opts.NumCtx, 2048)
	}

Michael Yang's avatar
Michael Yang committed
119
	layers := f.Tensors().GroupLayers()
Michael Yang's avatar
typo  
Michael Yang committed
120
121
	// add one layer worth of memory as a buffer
	if blk0, ok := layers["blk.0"]; ok {
Michael Yang's avatar
Michael Yang committed
122
		layerSize = blk0.Size()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
123
124
	} else {
		slog.Warn("model missing blk.0 layer size")
Michael Yang's avatar
typo  
Michael Yang committed
125
	}
Michael Yang's avatar
Michael Yang committed
126

127
	var kvct string
Michael Yang's avatar
Michael Yang committed
128
129
130
	if envconfig.FlashAttention() &&
		discover.GetGPUInfo().FlashAttentionSupported() &&
		f.SupportsFlashAttention() {
131
		requested := strings.ToLower(envconfig.KvCacheType())
Michael Yang's avatar
Michael Yang committed
132
		if requested != "" && f.SupportsKVCacheType(requested) {
133
134
135
136
			kvct = requested
		}
	}

Michael Yang's avatar
Michael Yang committed
137
	kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
138
139

	// KV is proportional to the number of layers
Michael Yang's avatar
Michael Yang committed
140
	layerSize += kv / f.KV().BlockCount()
141

Daniel Hiltgen's avatar
Daniel Hiltgen committed
142
	if graphPartialOffload == 0 {
Michael Yang's avatar
Michael Yang committed
143
		graphPartialOffload = f.KV().GQA() * kv / 6
Daniel Hiltgen's avatar
Daniel Hiltgen committed
144
145
146
147
148
	}
	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
	}

149
150
151
	// on metal there's no partial offload overhead
	if gpus[0].Library == "metal" {
		graphPartialOffload = graphFullOffload
Daniel Hiltgen's avatar
Daniel Hiltgen committed
152
153
154
	} else if len(gpus) > 1 {
		// multigpu should always use the partial graph size
		graphFullOffload = graphPartialOffload
155
156
	}

157
	if layer, ok := layers["output_norm"]; ok {
Michael Yang's avatar
Michael Yang committed
158
		memoryLayerOutput += layer.Size()
159
160
	}
	if layer, ok := layers["output"]; ok {
Michael Yang's avatar
Michael Yang committed
161
		memoryLayerOutput += layer.Size()
162
	} else if layer, ok := layers["token_embd"]; ok {
Michael Yang's avatar
Michael Yang committed
163
		memoryLayerOutput += layer.Size()
Michael Yang's avatar
Michael Yang committed
164
165
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
166
	// Output layer handled at the end if we have space
167
	gpuZeroOverhead := projectorWeights + projectorGraph
168
169

	// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
Michael Yang's avatar
Michael Yang committed
170
	var layerCount int
171
172
173
174
	layerCounts := make([]int, len(gpus))
	gpuAllocations := make([]uint64, len(gpus))
	type gs struct {
		i int
175
		g *discover.GpuInfo
176
177
178
179
180
181
182
183
	}
	gpusWithSpace := []gs{}
	for i := range gpus {
		var gzo uint64
		if len(gpusWithSpace) == 0 {
			gzo = gpuZeroOverhead
		}
		// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
184
		if gpus[i].FreeMemory < overhead+gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
			slog.Debug("gpu has too little memory to allocate any layers",
				"id", gpus[i].ID,
				"library", gpus[i].Library,
				"variant", gpus[i].Variant,
				"compute", gpus[i].Compute,
				"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
				"name", gpus[i].Name,
				"total", format.HumanBytes2(gpus[i].TotalMemory),
				"available", format.HumanBytes2(gpus[i].FreeMemory),
				"minimum_memory", gpus[i].MinimumMemory,
				"layer_size", format.HumanBytes2(layerSize),
				"gpu_zer_overhead", format.HumanBytes2(gzo),
				"partial_offload", format.HumanBytes2(graphPartialOffload),
				"full_offload", format.HumanBytes2(graphFullOffload),
			)
200
201
202
			continue
		}
		gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
Daniel Hiltgen's avatar
Daniel Hiltgen committed
203
		gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
204
205
206
207
208
209
210
211
	}

	var gpuZeroID int
	if len(gpusWithSpace) > 0 {
		gpuZeroID = gpusWithSpace[0].i
		gpuAllocations[gpuZeroID] += gpuZeroOverhead
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
212
	// For all the layers, find where they can fit on the GPU(s)
Michael Yang's avatar
Michael Yang committed
213
	for i := range int(f.KV().BlockCount()) {
214
215
		// Some models have inconsistent layer sizes
		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
Michael Yang's avatar
Michael Yang committed
216
217
			layerSize = blk.Size()
			layerSize += kv / f.KV().BlockCount()
218
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
219
		memoryWeights += layerSize
Daniel Hiltgen's avatar
Daniel Hiltgen committed
220

221
222
223
224
225
226
227
228
229
		if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
			// Stop allocating on GPU(s) once we hit the users target NumGPU
			continue
		}

		// distribute the layers across the GPU(s) that have space
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[i%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
230
			if g.g.FreeMemory > overhead+used+layerSize {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
231
				gpuAllocations[g.i] += layerSize
232
				layerCounts[g.i]++
Michael Yang's avatar
typo  
Michael Yang committed
233
				layerCount++
234
235
236
				break
			} else {
				gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
Michael Yang's avatar
typo  
Michael Yang committed
237
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
238
		}
239
	}
Michael Yang's avatar
Michael Yang committed
240
	if layerCount >= int(f.KV().BlockCount()) {
241
242
		fullyLoaded = true
	} else {
Michael Yang's avatar
Michael Yang committed
243
		for i := layerCount; i < int(f.KV().BlockCount()); i++ {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
244
			overflow += layerSize
245
246
		}
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
247
248

	// Determine if we need to consider output then find where it fits
249
	if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
250
251
252
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[layerCount%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
253
			if g.g.FreeMemory > overhead+used+memoryLayerOutput {
254
255
256
257
258
259
				gpuAllocations[g.i] += memoryLayerOutput
				layerCounts[g.i]++
				layerCount++
				break
			}
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
260

Michael Yang's avatar
Michael Yang committed
261
		if layerCount < int(f.KV().BlockCount())+1 {
262
263
264
			fullyLoaded = false
			overflow += memoryLayerOutput
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
265
266
	}

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
	// Add the applicable (full or partial) graph allocations
	for i := range gpus {
		if layerCounts[i] <= 0 {
			continue
		}
		if fullyLoaded {
			gpuAllocations[i] += graphFullOffload
		} else {
			gpuAllocations[i] += graphPartialOffload
		}
	}
	if fullyLoaded {
		graphOffload = graphFullOffload
	} else {
		graphOffload = graphPartialOffload
Daniel Hiltgen's avatar
Daniel Hiltgen committed
282
283
	}

284
285
286
287
	// Summaries for the log
	var memoryRequiredPartial, memoryRequiredTotal uint64
	for i := range gpuAllocations {
		memoryRequiredPartial += gpuAllocations[i]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
288
	}
289
	memoryRequiredTotal = memoryRequiredPartial + overflow
Daniel Hiltgen's avatar
Daniel Hiltgen committed
290

291
292
293
294
295
296
297
298
299
300
301
302
	tensorSplit := ""
	if len(gpus) > 1 {
		splits := make([]string, len(gpus))
		for i, count := range layerCounts {
			splits[i] = strconv.Itoa(count)
		}
		tensorSplit = strings.Join(splits, ",")
	}
	allocationsList := []string{}
	for _, a := range gpuAllocations {
		allocationsList = append(allocationsList, format.HumanBytes2(a))
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
303

304
305
306
307
308
309
310
311
312
	estimate := MemoryEstimate{
		TotalSize: memoryRequiredTotal,
		Layers:    0,
		Graph:     0,
		VRAMSize:  0,
		GPUSizes:  []uint64{},

		inferenceLibrary:    gpus[0].Library,
		layersRequested:     opts.NumGPU,
Michael Yang's avatar
Michael Yang committed
313
		layersModel:         int(f.KV().BlockCount()) + 1,
314
315
316
317
318
319
320
		availableList:       availableList,
		kv:                  kv,
		allocationsList:     allocationsList,
		memoryWeights:       memoryWeights,
		memoryLayerOutput:   memoryLayerOutput,
		graphFullOffload:    graphFullOffload,
		graphPartialOffload: graphPartialOffload,
321
322
		projectorWeights:    projectorWeights,
		projectorGraph:      projectorGraph,
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
	}

	if gpus[0].Library == "cpu" {
		return estimate
	}
	if layerCount == 0 {
		slog.Debug("insufficient VRAM to load any model layers")
		return estimate
	}
	estimate.Layers = layerCount
	estimate.Graph = graphOffload
	estimate.VRAMSize = memoryRequiredPartial
	estimate.TotalSize = memoryRequiredTotal
	estimate.TensorSplit = tensorSplit
	estimate.GPUSizes = gpuAllocations
	return estimate
}

Michael Yang's avatar
Michael Yang committed
341
342
343
func (m MemoryEstimate) LogValue() slog.Value {
	attrs := []slog.Attr{
		slog.String("library", m.inferenceLibrary),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
344
345
		slog.Group(
			"layers",
Michael Yang's avatar
Michael Yang committed
346
			// requested number of layers to offload
347
			"requested", m.layersRequested,
348
			// The number of layers the model has (including output)
349
			"model", m.layersModel,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
350
			// estimated number of layers that can be offloaded
351
352
353
			"offload", m.Layers,
			// multi-gpu split for tensors
			"split", m.TensorSplit,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
354
355
356
		),
		slog.Group(
			"memory",
357
			// memory available by GPU for offloading
358
			"available", m.availableList,
Michael Yang's avatar
Michael Yang committed
359
			"gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
360
361
362
			slog.Group(
				"required",
				// memory required for full offloading
363
				"full", format.HumanBytes2(m.TotalSize),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
364
				// memory required to offload layers.estimate layers
365
				"partial", format.HumanBytes2(m.VRAMSize),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
366
				// memory of KV cache
367
				"kv", format.HumanBytes2(m.kv),
368
				// Allocations across the GPUs
369
				"allocations", m.allocationsList,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
370
371
372
373
			),
			slog.Group(
				"weights",
				// memory of the weights
374
				"total", format.HumanBytes2(m.memoryWeights),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
375
				// memory of repeating layers
376
				"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
377
				// memory of non-repeating layers
378
				"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
379
380
381
382
			),
			slog.Group(
				"graph",
				// memory of graph when fully offloaded
383
				"full", format.HumanBytes2(m.graphFullOffload),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
384
				// memory of graph when not fully offloaded
385
				"partial", format.HumanBytes2(m.graphPartialOffload),
Daniel Hiltgen's avatar
Daniel Hiltgen committed
386
387
			),
		),
Michael Yang's avatar
Michael Yang committed
388
389
390
391
392
393
394
395
396
397
398
	}

	if m.projectorWeights > 0 {
		attrs = append(attrs, slog.Group(
			"projector",
			"weights", format.HumanBytes2(m.projectorWeights),
			"graph", format.HumanBytes2(m.projectorGraph),
		))
	}

	return slog.GroupValue(attrs...)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
399
}
400
401
402
403
404
405
406
407

func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
	file, err := os.Open(filename)
	if err != nil {
		return 0, 0
	}
	defer file.Close()

Michael Yang's avatar
Michael Yang committed
408
	ggml, _, err := ggml.Decode(file, 0)
409
410
411
412
	if err != nil {
		return 0, 0
	}

Michael Yang's avatar
Michael Yang committed
413
414
	for _, layer := range ggml.Tensors().GroupLayers() {
		weights += layer.Size()
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
	}

	switch arch := ggml.KV().Architecture(); arch {
	case "mllama":
		kv := func(n string) uint64 {
			if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
				return uint64(v)
			}

			return 0
		}

		imageSize := kv("image_size")

		maxNumTiles := kv("max_num_tiles")
		embeddingLength := kv("embedding_length")
		headCount := kv("attention.head_count")

		numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
Michael Yang's avatar
Michael Yang committed
434
		if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
435
436
437
438
439
440
441
442
443
444
445
446
447
448
			numPatches++
		}

		numPaddedPatches := numPatches + 8 - (numPatches%8)%8

		graphSize = 4 * (8 +
			imageSize*imageSize*kv("num_channels")*maxNumTiles +
			embeddingLength*numPatches*maxNumTiles +
			9*embeddingLength*numPaddedPatches*maxNumTiles +
			numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
	}

	return weights, graphSize
}