glm4-moe.cpp 6.76 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
4
5
6
7
#include "models.h"

llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
    const int64_t n_embd_head = hparams.n_embd_head_v;

    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

8
9
10
    int sections[4];
    std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
11
12
13
14
15
    ggml_tensor * cur;
    ggml_tensor * inpL;

    inpL = build_inp_embd(model.tok_embd);

16
17
18
19
20
21
    bool use_mrope = hparams.use_mrope();
    if (ubatch.embd && !use_mrope) {
        // unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
        GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    // inp_pos - contains the positions
    ggml_tensor * inp_pos = build_inp_pos();

    auto * inp_attn = build_attn_inp_kv();

    ggml_tensor * inp_out_ids = build_inp_out_ids();

    // Only process up to last layer (skip final NextN layer)
    // Final layer tensors are loaded but not processed in forward pass
    const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
    for (int il = 0; il < n_transformer_layers; ++il) {
        ggml_tensor * inpSA = inpL;

        // Pre-attention norm
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "attn_norm", il);

        // self-attention
        {
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
            if (model.layers[il].bq) {
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
            }
            cb(Qcur, "Qcur", il);

            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
            if (model.layers[il].bk) {
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
            }
            cb(Kcur, "Kcur", il);

            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
            if (model.layers[il].bv) {
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
            }
            cb(Vcur, "Vcur", il);

            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);

            // Apply Q/K norm if available (GLM-4.5 355B variant)
            if (model.layers[il].attn_q_norm) {
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
                cb(Qcur, "Qcur_normed", il);
            }
            if (model.layers[il].attn_k_norm) {
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
                cb(Kcur, "Kcur_normed", il);
            }
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

            if (use_mrope) {
                Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
                            n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow);

                Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
                            n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow);
            } else {
                // Normal RoPE
                Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
                                    rope_type, n_ctx_orig, freq_base, freq_scale,
                                    ext_factor, attn_factor, beta_fast, beta_slow);

                Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
                                    rope_type, n_ctx_orig, freq_base, freq_scale,
                                    ext_factor, attn_factor, beta_fast, beta_slow);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            cur = build_attn(inp_attn,
                    model.layers[il].wo, NULL,
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
        }
        if (il == n_transformer_layers - 1 && inp_out_ids) {
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
        }
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
        cb(ffn_inp, "ffn_inp", il);

        // Post-attention norm
        cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "post_attn_norm", il);

        // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
        if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
            // Dense FFN layer
            cur = build_ffn(cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
            cb(cur, "ffn_out", il);
        } else {
            // Process routed experts using existing MoE infrastructure
            ggml_tensor * routed_out = build_moe_ffn(cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    model.layers[il].ffn_exp_probs_b,
                    n_expert, n_expert_used,
                    LLM_FFN_SILU, hparams.expert_weights_norm,
                    true, hparams.expert_weights_scale,
                    (llama_expert_gating_func_type) hparams.expert_gating_func,
                    il);
            cb(routed_out, "ffn_moe_out", il);

            // Process shared expert on original input
            ggml_tensor * shared_out = build_ffn(cur,
                    model.layers[il].ffn_up_shexp,   NULL, NULL,
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
                    model.layers[il].ffn_down_shexp, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
            cb(shared_out, "ffn_shexp_out", il);

            // Final output: routed_output + shared_output
            cur = ggml_add(ctx0, routed_out, shared_out);
            cb(cur, "ffn_out", il);
        }
        cur = ggml_add(ctx0, cur, ffn_inp);

        cur = build_cvec(cur, il);
        cb(cur, "l_out", il);

        // input for next layer
        inpL = cur;
    }
    cur = inpL;
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);

    cb(cur, "result_norm", -1);
    res->t_embd = cur;

    // lm_head
    cur = build_lora_mm(model.output, cur);

    cb(cur, "result_output", -1);
    res->t_logits = cur;

    ggml_build_forward_expand(gf, cur);
}