glm4-moe.cpp 5.83 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include "models.h"

llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
    const int64_t n_embd_head = hparams.n_embd_head_v;

    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

    ggml_tensor * cur;
    ggml_tensor * inpL;

    inpL = build_inp_embd(model.tok_embd);

    // inp_pos - contains the positions
    ggml_tensor * inp_pos = build_inp_pos();

    auto * inp_attn = build_attn_inp_kv();

    ggml_tensor * inp_out_ids = build_inp_out_ids();

    // Only process up to last layer (skip final NextN layer)
    // Final layer tensors are loaded but not processed in forward pass
    const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
    for (int il = 0; il < n_transformer_layers; ++il) {
        ggml_tensor * inpSA = inpL;

        // Pre-attention norm
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "attn_norm", il);

        // self-attention
        {
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
            if (model.layers[il].bq) {
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
            }
            cb(Qcur, "Qcur", il);

            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
            if (model.layers[il].bk) {
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
            }
            cb(Kcur, "Kcur", il);

            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
            if (model.layers[il].bv) {
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
            }
            cb(Vcur, "Vcur", il);

            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);

            // Apply Q/K norm if available (GLM-4.5 355B variant)
            if (model.layers[il].attn_q_norm) {
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
                cb(Qcur, "Qcur_normed", il);
            }
            if (model.layers[il].attn_k_norm) {
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
                cb(Kcur, "Kcur_normed", il);
            }
            Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                    );

            Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                    );

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            cur = build_attn(inp_attn,
                    model.layers[il].wo, NULL,
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
        }
        if (il == n_transformer_layers - 1 && inp_out_ids) {
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
        }
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
        cb(ffn_inp, "ffn_inp", il);

        // Post-attention norm
        cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "post_attn_norm", il);

        // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
        if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
            // Dense FFN layer
            cur = build_ffn(cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
            cb(cur, "ffn_out", il);
        } else {
            // Process routed experts using existing MoE infrastructure
            ggml_tensor * routed_out = build_moe_ffn(cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    model.layers[il].ffn_exp_probs_b,
                    n_expert, n_expert_used,
                    LLM_FFN_SILU, hparams.expert_weights_norm,
                    true, hparams.expert_weights_scale,
                    (llama_expert_gating_func_type) hparams.expert_gating_func,
                    il);
            cb(routed_out, "ffn_moe_out", il);

            // Process shared expert on original input
            ggml_tensor * shared_out = build_ffn(cur,
                    model.layers[il].ffn_up_shexp,   NULL, NULL,
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
                    model.layers[il].ffn_down_shexp, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
            cb(shared_out, "ffn_shexp_out", il);

            // Final output: routed_output + shared_output
            cur = ggml_add(ctx0, routed_out, shared_out);
            cb(cur, "ffn_out", il);
        }
        cur = ggml_add(ctx0, cur, ffn_inp);

        cur = build_cvec(cur, il);
        cb(cur, "l_out", il);

        // input for next layer
        inpL = cur;
    }
    cur = inpL;
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);

    cb(cur, "result_norm", -1);
    res->t_embd = cur;

    // lm_head
    cur = build_lora_mm(model.output, cur);

    cb(cur, "result_output", -1);
    res->t_logits = cur;

    ggml_build_forward_expand(gf, cur);
}