common.cpp 60.7 KB
Newer Older
1
2
3
4
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif

5
6
7
#include "ggml.h"
#include "gguf.h"

8
#include "common.h"
9
#include "log.h"
10
#include "llama.h"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
11
#include "sampling.h"
12
13
14

#include <algorithm>
#include <cinttypes>
15
#include <climits>
16
17
#include <cmath>
#include <codecvt>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
18
#include <chrono>
19
20
21
#include <cstdarg>
#include <cstring>
#include <ctime>
22
#include <filesystem>
23
24
25
26
27
28
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <string>
29
#include <thread>
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <unordered_set>
#include <vector>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <locale>
#include <windows.h>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
45
#include <string.h>
46
47
48
49
50
51
52
53
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
54
55
56
57
58
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif

59
60
61
62
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
63
64
65
66
67
68
69
70
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}

common_time_meas::~common_time_meas() {
    if (t_start_us >= 0) {
        t_acc += ggml_time_us() - t_start_us;
    }
}

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//
// CPU utils
//

int32_t cpu_get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    unsigned int n_threads_win = std::thread::hardware_concurrency();
    unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;

    DWORD buffer_size = 0;
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
        if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
            return default_threads;
        }
    }

    std::vector<char> buffer(buffer_size);
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
        return default_threads;
    }

    int32_t num_physical_cores = 0;
    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
    while (buffer_size > 0) {
        if (info->Relationship == RelationProcessorCore) {
            num_physical_cores += info->Processor.GroupCount;
        }
        buffer_size -= info->Size;
        info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
    }

    return num_physical_cores > 0 ? num_physical_cores : default_threads;
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
                  unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
    __asm__("movq\t%%rbx,%%rsi\n\t"
            "cpuid\n\t"
            "xchgq\t%%rbx,%%rsi"
            : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
            : "0"(leaf), "2"(subleaf));
}

static int pin_cpu(int cpu) {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);
    return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}

static bool is_hybrid_cpu(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(7, 0, &eax, &ebx, &ecx, &edx);
    return !!(edx & (1u << 15));
}

static bool is_running_on_efficiency_core(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
    int intel_atom = 0x20;
    int core_type = (eax & 0xff000000u) >> 24;
    return core_type == intel_atom;
}

static int cpu_count_math_cpus(int n_cpu) {
    int result = 0;
    for (int cpu = 0; cpu < n_cpu; ++cpu) {
        if (pin_cpu(cpu)) {
174
            return -1;
175
        }
176
177
        if (is_running_on_efficiency_core()) {
            continue; // efficiency cores harm lockstep threading
178
        }
179
180
        ++cpu; // hyperthreading isn't useful for linear algebra
        ++result;
181
    }
182
183
184
185
186
187
188
189
190
191
192
193
194
    return result;
}

#endif // __x86_64__ && __linux__

/**
 * Returns number of CPUs on system that are useful for math.
 */
int32_t cpu_get_num_math() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
    int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
    if (n_cpu < 1) {
        return cpu_get_num_physical_cores();
195
    }
196
197
198
199
200
201
202
203
    if (is_hybrid_cpu()) {
        cpu_set_t affinity;
        if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
            int result = cpu_count_math_cpus(n_cpu);
            pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
            if (result > 0) {
                return result;
            }
204
205
        }
    }
206
207
208
209
210
211
212
213
214
215
#endif
    return cpu_get_num_physical_cores();
}

// Helper for setting process priority

#if defined(_WIN32)

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
216
217
        return true;
    }
218
219
220

    DWORD p = NORMAL_PRIORITY_CLASS;
    switch (prio) {
221
        case GGML_SCHED_PRIO_LOW:      p = BELOW_NORMAL_PRIORITY_CLASS; break;
222
223
224
225
        case GGML_SCHED_PRIO_NORMAL:   p = NORMAL_PRIORITY_CLASS;       break;
        case GGML_SCHED_PRIO_MEDIUM:   p = ABOVE_NORMAL_PRIORITY_CLASS; break;
        case GGML_SCHED_PRIO_HIGH:     p = HIGH_PRIORITY_CLASS;         break;
        case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS;     break;
226
    }
227
228
229
230

    if (!SetPriorityClass(GetCurrentProcess(), p)) {
        LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
        return false;
231
    }
232
233
234
235
236
237
238
239
240
241

    return true;
}

#else // MacOS and POSIX
#include <sys/types.h>
#include <sys/resource.h>

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
242
243
        return true;
    }
244
245
246

    int p = 0;
    switch (prio) {
247
        case GGML_SCHED_PRIO_LOW:      p =  5;  break;
248
249
250
251
        case GGML_SCHED_PRIO_NORMAL:   p =  0;  break;
        case GGML_SCHED_PRIO_MEDIUM:   p = -5;  break;
        case GGML_SCHED_PRIO_HIGH:     p = -10; break;
        case GGML_SCHED_PRIO_REALTIME: p = -20; break;
252
    }
253
254
255
256

    if (!setpriority(PRIO_PROCESS, 0, p)) {
        LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
        return false;
257
    }
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    return true;
}

#endif

//
// CLI argument parsing
//


void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
    int32_t n_set = 0;

    if (cpuparams.n_threads < 0) {
        // Assuming everything about cpuparams is invalid
        if (role_model != nullptr) {
            cpuparams = *role_model;
        } else {
            cpuparams.n_threads = cpu_get_num_math();
        }
278
    }
279
280
281
282
283

    for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
        if (cpuparams.cpumask[i]) {
            n_set++;
        }
284
    }
285
286
287
288

    if (n_set && n_set < cpuparams.n_threads) {
        // Not enough set bits, may experience performance issues.
        LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
289
    }
290
291
292
293
294
295
296
}

bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    size_t dash_loc = range.find('-');
    if (dash_loc == std::string::npos) {
        LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
        return false;
297
    }
298
299
300
301
302
303
304
305
306
307
308
309

    size_t start_i;
    size_t end_i;

    if (dash_loc == 0) {
        start_i = 0;
    } else {
        start_i = std::stoull(range.substr(0, dash_loc));
        if (start_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("Start index out of bounds!\n");
            return false;
        }
310
    }
311
312
313
314
315
316
317
318

    if (dash_loc == range.length() - 1) {
        end_i = GGML_MAX_N_THREADS - 1;
    } else {
        end_i = std::stoull(range.substr(dash_loc + 1));
        if (end_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("End index out of bounds!\n");
            return false;
319
320
321
        }
    }

322
323
324
325
326
    for (size_t i = start_i; i <= end_i; i++) {
        boolmask[i] = true;
    }

    return true;
327
328
}

329
330
331
332
333
334
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    // Discard potential 0x prefix
    size_t start_i = 0;
    if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
        start_i = 2;
    }
335

336
337
    size_t num_digits = mask.length() - start_i;
    if (num_digits > 128) num_digits = 128;
338

339
    size_t end_i = num_digits + start_i;
340

341
342
343
344
345
346
347
348
349
350
351
352
353
    for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
        char c = mask.at(i);
        int8_t id = c;

        if ((c >= '0' && c <= '9')) {
            id -= '0';
        } else if (c >= 'a' && c <= 'f') {
            id -= 'a' - 10;
        } else if (c >= 'A' && c <= 'F') {
            id -= 'A' - 10;
        } else {
            LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
            return false;
354
355
        }

356
357
358
359
360
361
362
363
364
        boolmask[  n  ] = boolmask[  n  ] || ((id & 8) != 0);
        boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
        boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
        boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
    }

    return true;
}

365
void common_init() {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
366
    llama_log_set(common_log_default_callback, NULL);
367

368
369
370
371
372
#ifdef NDEBUG
    const char * build_type = "";
#else
    const char * build_type = " (debug)";
#endif
373

374
    LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
375
376
}

377
std::string common_params_get_system_info(const common_params & params) {
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    std::ostringstream os;

    os << "system_info: n_threads = " << params.cpuparams.n_threads;
    if (params.cpuparams_batch.n_threads != -1) {
        os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
    }
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
    os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
#else
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
#endif

    return os.str();
}

//
// String utils
//

399
400
401
402
403
404
405
406
407
408
409
410
411
std::string string_format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), size);
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
}

std::string string_strip(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && std::isspace(str[start])) {
        start++;
    }
    while (end > start && std::isspace(str[end - 1])) {
        end--;
    }
    return str.substr(start, end - start);
}

std::string string_get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
    if (search.empty()) {
        return;
    }
    std::string builder;
    builder.reserve(s.length());
    size_t pos = 0;
    size_t last_pos = 0;
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
        builder.append(s, last_pos, pos - last_pos);
        builder.append(replace);
        last_pos = pos + search.length();
    }
    builder.append(s, last_pos, std::string::npos);
    s = std::move(builder);
}

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
    return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}

bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
    bool has_suffix = string_ends_with(str, suffix);
    if (has_suffix) {
        str = str.substr(0, str.size() - suffix.size());
    }
    return has_suffix;
}

size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
    if (!str.empty() && !stop.empty()) {
        const char text_last_char = str.back();
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
            if (stop[char_index] == text_last_char) {
                const auto current_partial = stop.substr(0, char_index + 1);
                if (string_ends_with(str, current_partial)) {
                    return str.size() - char_index - 1;
                }
            }
        }
    }

    return std::string::npos;
}

487
488
std::string regex_escape(const std::string & s) {
    static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
489
    return std::regex_replace(s, special_chars, "\\$&");
490
491
}

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
    std::ostringstream result;
    for (size_t i = 0; i < values.size(); ++i) {
        if (i > 0) {
            result << separator;
        }
        result << values[i];
    }
    return result.str();
}

std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
    std::vector<std::string> parts;
    size_t start = 0;
    size_t end = str.find(delimiter);

    while (end != std::string::npos) {
        parts.push_back(str.substr(start, end - start));
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    parts.push_back(str.substr(start));

    return parts;
}

std::string string_repeat(const std::string & str, size_t n) {
    if (n == 0) {
        return "";
    }

    std::string result;
    result.reserve(str.length() * n);

    for (size_t i = 0; i < n; ++i) {
        result += str;
    }

    return result;
}

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
std::string string_from(bool value) {
    return value ? "true" : "false";
}

std::string string_from(const std::vector<int> & values) {
    std::stringstream buf;

    buf << "[ ";
    bool first = true;
    for (auto e : values) {
        if (first) {
            first = false;
        } else {
            buf << ", ";
        }
        buf << std::to_string(e);
    }
    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (const auto & token : tokens) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

569
        auto detokenized = common_token_to_piece(ctx, token);
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

        buf << "'" << detokenized << "'"
            << ":" << std::to_string(token);
    }

    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (int i = 0; i < batch.n_tokens; ++i) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

593
        auto detokenized = common_token_to_piece(ctx, batch.token[i]);
594

595
596
597
598
599
600
        buf << "\n"          << std::to_string(i)
            << ", token '"   << detokenized << "'"
            << ", pos "      << std::to_string(batch.pos[i])
            << ", n_seq_id " << std::to_string(batch.n_seq_id[i])
            << ", seq_id "   << std::to_string(batch.seq_id[i][0])
            << ", logits "   << std::to_string(batch.logits[i]);
601
602
603
604
605
606
607
    }

    buf << " ]";

    return buf.str();
}

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
void string_process_escapes(std::string & input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                case 'x':
                    // Handle \x12, etc
                    if (input_idx + 2 < input_len) {
                        const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
                        char *err_p = nullptr;
                        const long val = std::strtol(x, &err_p, 16);
                        if (err_p == x + 2) {
                            input_idx += 2;
                            input[output_idx++] = char(val);
                            break;
                        }
                    }
                    // fall through
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
    const char * sep = strchr(data, '=');
    if (sep == nullptr || sep - data >= 128) {
648
        LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        return false;
    }
    llama_model_kv_override kvo;
    std::strncpy(kvo.key, data, sep - data);
    kvo.key[sep - data] = 0;
    sep++;
    if (strncmp(sep, "int:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
        kvo.val_i64 = std::atol(sep);
    } else if (strncmp(sep, "float:", 6) == 0) {
        sep += 6;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
        kvo.val_f64 = std::atof(sep);
    } else if (strncmp(sep, "bool:", 5) == 0) {
        sep += 5;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
        if (std::strcmp(sep, "true") == 0) {
            kvo.val_bool = true;
        } else if (std::strcmp(sep, "false") == 0) {
            kvo.val_bool = false;
        } else {
671
            LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
672
673
674
675
676
677
            return false;
        }
    } else if (strncmp(sep, "str:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
        if (strlen(sep) > 127) {
678
            LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
679
680
681
682
683
            return false;
        }
        strncpy(kvo.val_str, sep, 127);
        kvo.val_str[127] = '\0';
    } else {
684
        LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
685
686
687
688
689
690
691
692
693
694
695
696
        return false;
    }
    overrides.emplace_back(std::move(kvo));
    return true;
}

//
// Filesystem utils
//

// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
697
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
698
699
700
701
702
703
704
705
706
707
708
709
710
    if (!filename.length()) {
        // Empty filename invalid
        return false;
    }
    if (filename.length() > 255) {
        // Limit at common largest possible filename on Linux filesystems
        // to avoid unnecessary further validation
        // (On systems with smaller limits it will be caught by the OS)
        return false;
    }

    std::u32string filename_utf32;
    try {
711
712
713
714
#if defined(__clang__)
        // disable C++17 deprecation warning for std::codecvt_utf8
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
715
716
717
#elif defined(__GNUC__)
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wdeprecated-declarations"
718
#endif
719

720
        std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
721
722
723

#if defined(__clang__)
#    pragma clang diagnostic pop
724
725
#elif defined(__GNUC__)
#    pragma GCC diagnostic pop
726
727
#endif

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
        filename_utf32 = converter.from_bytes(filename);

        // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
        // or invalid encodings were encountered. Reject such attempts
        std::string filename_reencoded = converter.to_bytes(filename_utf32);
        if (filename_reencoded != filename) {
            return false;
        }
    } catch (const std::exception &) {
        return false;
    }

    // Check for forbidden codepoints:
    // - Control characters
    // - Unicode equivalents of illegal characters
    // - UTF-16 surrogate pairs
    // - UTF-8 replacement character
    // - Byte order mark (BOM)
    // - Illegal characters: / \ : * ? " < > |
    for (char32_t c : filename_utf32) {
        if (c <= 0x1F // Control characters (C0)
            || c == 0x7F // Control characters (DEL)
            || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
            || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
            || c == 0x2215 // Division Slash (forward slash equivalent)
            || c == 0x2216 // Set Minus (backslash equivalent)
            || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
            || c == 0xFFFD // Replacement Character (UTF-8)
            || c == 0xFEFF // Byte Order Mark (BOM)
757
            || c == ':' || c == '*' // Illegal characters
758
759
760
            || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
            return false;
        }
761
762
763
764
        if (!allow_subdirs && (c == '/' || c == '\\')) {
            // Subdirectories not allowed, reject path separators
            return false;
        }
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    }

    // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
    // Unicode and other whitespace is not affected, only 0x20 space
    if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
        return false;
    }

    // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
    if (filename.find("..") != std::string::npos) {
        return false;
    }

    // Reject "."
    if (filename == ".") {
        return false;
    }

    return true;
}

786
787
788
#include <iostream>


789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
    if (str.empty()) {
        return std::wstring();
    }

    int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);

    if (size <= 0) {
        return std::wstring();
    }

    std::wstring wstr(size, 0);
    MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);

    return wstr;
}
#endif

808
809
810
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
811
    std::wstring wpath = utf8_to_wstring(path);
812
813
814
815
816
817
818
819
820
821
822
823
824

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);

825
826
827
828
829
830
831
832
833
        pos_slash += 1;

        // skip the drive letter, in some systems it can return an access denied error
        if (subpath.length() == 2 && subpath[1] == ':') {
            continue;
        }

        const bool success = CreateDirectoryW(subpath.c_str(), NULL);

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

884
885
886
887
888
bool fs_is_directory(const std::string & path) {
    std::filesystem::path dir(path);
    return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}

889
890
891
892
893
894
895
896
897
898
899
900
std::string fs_get_cache_directory() {
    std::string cache_directory = "";
    auto ensure_trailing_slash = [](std::string p) {
        // Make sure to add trailing slash
        if (p.back() != DIRECTORY_SEPARATOR) {
            p += DIRECTORY_SEPARATOR;
        }
        return p;
    };
    if (getenv("LLAMA_CACHE")) {
        cache_directory = std::getenv("LLAMA_CACHE");
    } else {
901
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
902
903
        if (std::getenv("XDG_CACHE_HOME")) {
            cache_directory = std::getenv("XDG_CACHE_HOME");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
904
        } else if (std::getenv("HOME")) {
905
            cache_directory = std::getenv("HOME") + std::string("/.cache/");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
906
907
908
909
910
911
912
913
914
915
916
917
        } else {
#if defined(__linux__)
            /* no $HOME is defined, fallback to getpwuid */
            struct passwd *pw = getpwuid(getuid());
            if ((!pw) || (!pw->pw_dir)) {
                throw std::runtime_error("Failed to find $HOME directory");
            }

            cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
            throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
918
919
920
921
922
        }
#elif defined(__APPLE__)
        cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
        cache_directory = std::getenv("LOCALAPPDATA");
923
924
#elif defined(__EMSCRIPTEN__)
        GGML_ABORT("not implemented on this platform");
925
926
927
#else
#  error Unknown architecture
#endif
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
        cache_directory = ensure_trailing_slash(cache_directory);
        cache_directory += "llama.cpp";
    }
    return ensure_trailing_slash(cache_directory);
}

std::string fs_get_cache_file(const std::string & filename) {
    GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
    std::string cache_directory = fs_get_cache_directory();
    const bool success = fs_create_directory_with_parents(cache_directory);
    if (!success) {
        throw std::runtime_error("failed to create cache directory: " + cache_directory);
    }
    return cache_directory + filename;
}

944
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    std::vector<common_file_info> files;
    if (path.empty()) return files;

    std::filesystem::path dir(path);
    if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
        return files;
    }

    for (const auto & entry : std::filesystem::directory_iterator(dir)) {
        try {
            // Only include regular files (skip directories)
            const auto & p = entry.path();
            if (std::filesystem::is_regular_file(p)) {
                common_file_info info;
959
960
961
                info.path   = p.string();
                info.name   = p.filename().string();
                info.is_dir = false;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
962
963
964
965
966
967
                try {
                    info.size = static_cast<size_t>(std::filesystem::file_size(p));
                } catch (const std::filesystem::filesystem_error &) {
                    info.size = 0;
                }
                files.push_back(std::move(info));
968
969
970
971
972
973
974
            } else if (include_directories && std::filesystem::is_directory(p)) {
                common_file_info info;
                info.path   = p.string();
                info.name   = p.filename().string();
                info.size   = 0; // Directories have no size
                info.is_dir = true;
                files.push_back(std::move(info));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
975
976
977
978
979
980
981
982
983
984
            }
        } catch (const std::filesystem::filesystem_error &) {
            // skip entries we cannot inspect
            continue;
        }
    }

    return files;
}

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
//
// TTY utils
//

bool tty_can_use_colors() {
    // Check NO_COLOR environment variable (https://no-color.org/)
    if (const char * no_color = std::getenv("NO_COLOR")) {
        if (no_color[0] != '\0') {
            return false;
        }
    }

    // Check TERM environment variable
    if (const char * term = std::getenv("TERM")) {
        if (std::strcmp(term, "dumb") == 0) {
            return false;
        }
    }

    // Check if stdout and stderr are connected to a terminal
    // We check both because log messages can go to either
    bool stdout_is_tty = isatty(fileno(stdout));
    bool stderr_is_tty = isatty(fileno(stderr));

    return stdout_is_tty || stderr_is_tty;
}
1011
1012
1013
1014

//
// Model utils
//
1015

1016
1017
// TODO: move to common/sampling
static void common_init_sampler_from_model(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1018
1019
1020
1021
1022
1023
    const llama_model * model,
    common_params_sampling & sparams) {

    const uint64_t config = sparams.user_sampling_config;

    auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
1024
1025
1026
        if (config & user_config) {
            return;
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1027
1028
1029
1030
1031

        char buf[64] = {0};
        if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
            char * end = nullptr;
            int32_t v = strtol(buf, &end, 10);
1032
1033
1034
            if (end && end != buf) {
                dst = v;
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1035
1036
1037
1038
        }
    };

    auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
1039
1040
1041
        if (config & user_config) {
            return;
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1042
1043
1044
1045
1046

        char buf[128] = {0};
        if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
            char * end = nullptr;
            float v = strtof(buf, &end);
1047
1048
1049
            if (end && end != buf) {
                dst = v;
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        }
    };

    // Sampling sequence
    if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
        char buf[512] = {0};
        if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
            const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
            if (!sampler_names.empty()) {
                sparams.samplers = common_sampler_types_from_names(sampler_names, true);
            }
        }
    }

    get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K),           sparams.top_k,           common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P),           sparams.top_p,           common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P),           sparams.min_p,           common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD),   sparams.xtc_threshold,   common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP),            sparams.temp,            common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
    get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N),  sparams.penalty_last_n,  common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT),  sparams.penalty_repeat,  common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
    get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT),        sparams.mirostat,        common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU),    sparams.mirostat_tau,    common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA),    sparams.mirostat_eta,    common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
struct common_init_result::impl {
    impl() = default;
    ~impl() = default;

    llama_model_ptr   model;
    llama_context_ptr context;

    std::vector<llama_adapter_lora_ptr> lora;

    std::vector<common_sampler_ptr> samplers;
};

common_init_result::common_init_result(common_params & params) :
    pimpl(new impl{}) {
1091
    auto mparams = common_model_params_to_llama(params);
1092
1093
1094
1095
1096
1097
1098
1099
    auto cparams = common_context_params_to_llama(params);

    if (params.fit_params) {
        LOG_INF("%s: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)\n", __func__);
        llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
            params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
            params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
    }
1100

1101
    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
1102
    if (model == NULL) {
1103
        return;
1104
1105
    }

1106
    pimpl->model.reset(model);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1107

1108
1109
    const llama_vocab * vocab = llama_model_get_vocab(model);

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    // updates params.sampling
    // TODO: fix naming
    common_init_sampler_from_model(model, params.sampling);

    if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
        LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
        params.sampling.ignore_eos = false;
    }

    // initialize once
    for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
        if (llama_vocab_is_eog(vocab, i)) {
            LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(vocab, i).c_str(), -INFINITY);
            params.sampling.logit_bias_eog.push_back({i, -INFINITY});
        }
    }

    if (params.sampling.ignore_eos) {
        // add EOG biases to the active set of logit biases
        params.sampling.logit_bias.insert(
                params.sampling.logit_bias.end(),
                params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
    }

    //if (params.sampling.penalty_last_n == -1) {
    //    LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
    //    params.sampling.penalty_last_n = llama_n_ctx(lctx);
    //}

    //if (params.sampling.dry_penalty_last_n == -1) {
    //    LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
    //    params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
    //}

    pimpl->samplers.resize(cparams.n_seq_max);

    for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
        pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
    }
1149

1150
    llama_context * lctx = llama_init_from_model(model, cparams);
1151
    if (lctx == NULL) {
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
        return;
    }

    pimpl->context.reset(lctx);
}

llama_model * common_init_result::model() {
    return pimpl->model.get();
}

llama_context * common_init_result::context() {
    return pimpl->context.get();
}

common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
    return pimpl->samplers[seq_id].get();
}

std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
    return pimpl->lora;
}

void common_init_result::free_context() {
    pimpl->context.reset();
}

common_init_result_ptr common_init_from_params(common_params & params) {
    common_init_result_ptr res(new common_init_result(params));

    llama_model * model = res->model();
    if (model == NULL) {
        LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
        return res;
    }

    llama_context * lctx = res->context();
    if (lctx == NULL) {
        LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
        return res;
1192
1193
    }

1194
1195
    const llama_vocab * vocab = llama_model_get_vocab(model);

1196
    if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
1197
        LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
1198
        params.ctx_shift = false;
1199
1200
    }

1201
1202
    if (!params.control_vectors.empty()) {
        if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
1203
        if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_model_n_layer(model);
1204

1205
        const auto cvec = common_control_vector_load(params.control_vectors);
1206
        if (cvec.n_embd == -1) {
1207
            return res;
1208
1209
        }

1210
1211
1212
1213
1214
1215
1216
        int err = llama_apply_adapter_cvec(
                lctx,
                cvec.data.data(),
                cvec.data.size(),
                cvec.n_embd,
                params.control_vector_layer_start,
                params.control_vector_layer_end);
1217
        if (err) {
1218
            return res;
1219
1220
1221
        }
    }

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
    if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
        bool ok = true;

        if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have a  BOS token, reranking will not work\n", __func__);
            ok = false;
        }

        bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
        bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1232
        bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
1233

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1234
1235
        if (!has_eos && !has_sep && !has_rerank_prompt) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
1236
1237
1238
1239
1240
1241
            ok = false;
        } else if (!has_eos) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
        }

        if (!ok) {
1242
            return res;
1243
1244
1245
        }
    }

1246
1247
    // load and optionally apply lora adapters
    for (auto & la : params.lora_adapters) {
1248
1249
        llama_adapter_lora_ptr lora;
        lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
1250
        if (lora == nullptr) {
1251
            LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
1252
            return res;
1253
        }
1254

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1255
        char buf[1024];
1256
        la.ptr = lora.get();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1257
1258
1259
1260
        llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
        la.task_name = buf;
        llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
        la.prompt_prefix = buf;
1261
        res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
1262
    }
1263

1264
    if (!params.lora_init_without_apply) {
1265
        common_set_adapter_lora(lctx, params.lora_adapters);
1266
1267
1268
    }

    if (params.warmup) {
1269
        LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
1270

1271
1272
        llama_set_warmup(lctx, true);

1273
        std::vector<llama_token> tmp;
1274
1275
1276
        llama_token bos = llama_vocab_bos(vocab);
        llama_token eos = llama_vocab_eos(vocab);

1277
        // some models (e.g. T5) don't have a BOS token
1278
        if (bos != LLAMA_TOKEN_NULL) {
1279
1280
            tmp.push_back(bos);
        }
1281
1282
1283
1284
1285
1286
        if (eos != LLAMA_TOKEN_NULL) {
            tmp.push_back(eos);
        }
        if (tmp.empty()) {
            tmp.push_back(0);
        }
1287
1288

        if (llama_model_has_encoder(model)) {
1289
            llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
1290
            llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
1291
            if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
1292
1293
1294
1295
1296
1297
                decoder_start_token_id = bos;
            }
            tmp.clear();
            tmp.push_back(decoder_start_token_id);
        }
        if (llama_model_has_decoder(model)) {
1298
            llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
1299
        }
1300
        llama_memory_clear(llama_get_memory(lctx), true);
1301
        llama_synchronize(lctx);
1302
        llama_perf_context_reset(lctx);
1303
        llama_set_warmup(lctx, false);
1304
1305
    }

1306
    return res;
1307
1308
}

1309
1310
common_init_result::~common_init_result() = default;

1311
1312
1313
1314
1315
1316
1317
1318
std::string get_model_endpoint() {
    const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
    // We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
    const char * hf_endpoint_env = getenv("HF_ENDPOINT");
    const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
    std::string model_endpoint = "https://huggingface.co/";
    if (endpoint_env) {
        model_endpoint = endpoint_env;
1319
1320
1321
        if (model_endpoint.back() != '/') {
            model_endpoint += '/';
        }
1322
1323
1324
1325
    }
    return model_endpoint;
}

1326
1327
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
    llama_clear_adapter_lora(ctx);
1328
    for (auto & la : lora) {
1329
        if (la.scale != 0.0f) {
1330
            llama_set_adapter_lora(ctx, la.ptr, la.scale);
1331
1332
1333
1334
        }
    }
}

1335
struct llama_model_params common_model_params_to_llama(common_params & params) {
1336
1337
    auto mparams = llama_model_default_params();

1338
1339
1340
    if (!params.devices.empty()) {
        mparams.devices = params.devices.data();
    }
1341

1342
1343
1344
    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
1345

1346
1347
1348
1349
1350
1351
    mparams.main_gpu        = params.main_gpu;
    mparams.split_mode      = params.split_mode;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;
    mparams.check_tensors   = params.check_tensors;
1352
    mparams.use_extra_bufts = !params.no_extra_bufts;
1353
    mparams.no_host         = params.no_host;
1354

1355
1356
1357
1358
1359
1360
1361
    if (params.kv_overrides.empty()) {
        mparams.kv_overrides = NULL;
    } else {
        GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
        mparams.kv_overrides = params.kv_overrides.data();
    }

1362
1363
1364
1365
1366
1367
1368
    if (params.tensor_buft_overrides.empty()) {
        mparams.tensor_buft_overrides = NULL;
    } else {
        GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
        mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
    }

1369
1370
1371
    mparams.progress_callback           = params.load_progress_callback;
    mparams.progress_callback_user_data = params.load_progress_callback_user_data;

1372
1373
1374
    return mparams;
}

1375
struct llama_context_params common_context_params_to_llama(const common_params & params) {
1376
1377
1378
1379
1380
1381
1382
1383
    auto cparams = llama_context_default_params();

    cparams.n_ctx             = params.n_ctx;
    cparams.n_seq_max         = params.n_parallel;
    cparams.n_batch           = params.n_batch;
    cparams.n_ubatch          = params.n_ubatch;
    cparams.n_threads         = params.cpuparams.n_threads;
    cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ?
1384
                                params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    cparams.embeddings        = params.embedding;
    cparams.rope_scaling_type = params.rope_scaling_type;
    cparams.rope_freq_base    = params.rope_freq_base;
    cparams.rope_freq_scale   = params.rope_freq_scale;
    cparams.yarn_ext_factor   = params.yarn_ext_factor;
    cparams.yarn_attn_factor  = params.yarn_attn_factor;
    cparams.yarn_beta_fast    = params.yarn_beta_fast;
    cparams.yarn_beta_slow    = params.yarn_beta_slow;
    cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
    cparams.pooling_type      = params.pooling_type;
    cparams.attention_type    = params.attention_type;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1396
    cparams.flash_attn_type   = params.flash_attn_type;
1397
1398
1399
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
    cparams.offload_kqv       = !params.no_kv_offload;
1400
    cparams.no_perf           = params.no_perf;
1401
    cparams.op_offload        = !params.no_op_offload;
1402
1403
    cparams.swa_full          = params.swa_full;
    cparams.kv_unified        = params.kv_unified;
1404

1405
1406
    cparams.type_k = params.cache_type_k;
    cparams.type_v = params.cache_type_v;
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

    return cparams;
}

struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
    struct ggml_threadpool_params tpp;

    ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults

    if (params.mask_valid) {
        std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
    }

    tpp.prio       = params.priority;
    tpp.poll       = params.poll;
    tpp.strict_cpu = params.strict_cpu;

    return tpp;
}

//
// Batch utils
//

1431
void common_batch_clear(struct llama_batch & batch) {
1432
1433
1434
    batch.n_tokens = 0;
}

1435
void common_batch_add(
1436
1437
1438
1439
1440
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits) {
1441
1442
    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
    batch.token   [batch.n_tokens] = id;
    batch.pos     [batch.n_tokens] = pos;
    batch.n_seq_id[batch.n_tokens] = seq_ids.size();
    for (size_t i = 0; i < seq_ids.size(); ++i) {
        batch.seq_id[batch.n_tokens][i] = seq_ids[i];
    }
    batch.logits  [batch.n_tokens] = logits;

    batch.n_tokens++;
}

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
//
// Token utils
//

size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}

    return i;
}

size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
    // check for empty sequences
    if (a.empty() || b.empty()) {
        return 0;
    }

    // get the lengths of the input sequences
    size_t a_len = a.size();
    size_t b_len = b.size();

    // initialize the maximum length of the longest common subsequence (LCS)
    size_t max_length = 0;

    // use two rows instead of a 2D matrix to optimize space
    std::vector<size_t> prev_row(b_len + 1, 0);
    std::vector<size_t> curr_row(b_len + 1, 0);

    // iterate through the elements of a
    for (size_t i = 1; i <= a_len; i++) {
        // iterate through the elements of b
        for (size_t j = 1; j <= b_len; j++) {
            // if elements at the current positions match
            if (a[i - 1] == b[j - 1]) {
                // if it's the first element of either sequences, set LCS length to 1
                if (i == 1 || j == 1) {
                    curr_row[j] = 1;
                } else {
                    // increment LCS length by 1 compared to the previous element
                    curr_row[j] = prev_row[j - 1] + 1;
                }

                // update max_length if necessary
                if (curr_row[j] > max_length) {
                    max_length = curr_row[j];
                }
            } else {
                // reset LCS length if elements don't match
                curr_row[j] = 0;
            }
        }

        // update the previous row for the next iteration
        prev_row = curr_row;
    }

    // return the maximum length of the LCS
    return max_length;
}

1514
1515
1516
1517
//
// Vocab utils
//

1518
std::vector<llama_token> common_tokenize(
1519
1520
1521
1522
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
1523
1524
1525
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_tokenize(vocab, text, add_special, parse_special);
1526
1527
}

1528
std::vector<llama_token> common_tokenize(
1529
    const struct llama_vocab * vocab,
1530
1531
1532
1533
1534
1535
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + 2 * add_special;
    std::vector<llama_token> result(n_tokens);
1536
    n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1537
1538
1539
    if (n_tokens == std::numeric_limits<int32_t>::min()) {
        throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
    }
1540
1541
    if (n_tokens < 0) {
        result.resize(-n_tokens);
1542
        int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1543
1544
1545
1546
1547
1548
1549
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

1550
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
1551
1552
1553
1554
1555
1556
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_token_to_piece(vocab, token, special);
}

std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
1557
1558
    std::string piece;
    piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
1559
    const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1560
1561
    if (n_chars < 0) {
        piece.resize(-n_chars);
1562
        int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1563
1564
1565
1566
1567
1568
1569
1570
1571
        GGML_ASSERT(check == -n_chars);
    }
    else {
        piece.resize(n_chars);
    }

    return piece;
}

1572
1573
1574
1575
1576
1577
1578
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_detokenize(vocab, tokens, special);
}

std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
1579
1580
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
1581
    int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1582
1583
    if (n_chars < 0) {
        text.resize(-n_chars);
1584
        n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}

//
// Embedding utils
//

1598
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
1599
1600
1601
1602
1603
1604
1605
1606
    double sum = 0.0;

    switch (embd_norm) {
        case -1: // no normalisation
            sum = 1.0;
            break;
        case 0: // max absolute
            for (int i = 0; i < n; i++) {
1607
1608
1609
                if (sum < std::abs(inp[i])) {
                    sum = std::abs(inp[i]);
                }
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
            }
            sum /= 32760.0; // make an int16 range
            break;
        case 2: // euclidean
            for (int i = 0; i < n; i++) {
                sum += inp[i] * inp[i];
            }
            sum = std::sqrt(sum);
            break;
        default: // p-norm (euclidean is p-norm p=2)
            for (int i = 0; i < n; i++) {
                sum += std::pow(std::abs(inp[i]), embd_norm);
            }
            sum = std::pow(sum, 1.0 / embd_norm);
            break;
    }

    const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;

    for (int i = 0; i < n; i++) {
        out[i] = inp[i] * norm;
    }
}

1634
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
    double sum  = 0.0;
    double sum1 = 0.0;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum  += embd1[i] * embd2[i];
        sum1 += embd1[i] * embd1[i];
        sum2 += embd2[i] * embd2[i];
    }

    // Handle the case where one or both vectors are zero vectors
    if (sum1 == 0.0 || sum2 == 0.0) {
        if (sum1 == 0.0 && sum2 == 0.0) {
            return 1.0f; // two zero vectors are similar
        }
        return 0.0f;
    }

    return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

1660
1661
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
    common_control_vector_data result = { -1, {} };
1662
1663
1664
1665
1666
1667
1668
1669

    ggml_context * ctx = nullptr;
    struct gguf_init_params meta_gguf_params = {
        /* .no_alloc = */ false,
        /* .ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
    if (!ctx_gguf) {
1670
        LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
1671
1672
1673
1674
1675
        return result;
    }

    int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
    if (n_tensors == 0) {
1676
        LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
    }

    for (int i = 0; i < n_tensors; i++) {
        std::string name = gguf_get_tensor_name(ctx_gguf, i);

        int layer_idx = -1;

        // split on '.'
        size_t dotpos = name.find('.');
        if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
            try {
                layer_idx = std::stoi(name.substr(dotpos + 1));
            } catch (...) {
                layer_idx = -1;
            }
        }
        if (layer_idx < 0) {
1694
            LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1695
1696
1697
            result.n_embd = -1;
            break;
        } else if (layer_idx == 0) {
1698
            LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1699
1700
1701
1702
1703
1704
            result.n_embd = -1;
            break;
        }

        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
        if (tensor->type != GGML_TYPE_F32) {
1705
            LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
1706
1707
1708
1709
            result.n_embd = -1;
            break;
        }
        if (ggml_n_dims(tensor) != 1) {
1710
            LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
1711
1712
1713
1714
1715
1716
1717
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result.n_embd = ggml_nelements(tensor);
        } else if (ggml_nelements(tensor) != result.n_embd) {
1718
            LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
            result.n_embd = -1;
            break;
        }

        // extend if necessary - do not store data for layer 0 (it's not used)
        result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);

        const float * src = (const float *) tensor->data;
        float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
        for (int j = 0; j < result.n_embd; j++) {
            dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
        }

    }

    if (result.n_embd == -1) {
1735
        LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
1736
1737
1738
1739
1740
1741
1742
1743
1744
        result.data.clear();
    }

    gguf_free(ctx_gguf);
    ggml_free(ctx);

    return result;
}

1745
1746
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
    common_control_vector_data result = { -1, {} };
1747
1748

    for (const auto & info : load_infos) {
1749
        auto cur = common_control_vector_load_one(info);
1750
1751
1752
1753
1754
1755

        if (cur.n_embd == -1) {
            result.n_embd = -1;
            break;
        }
        if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
1756
            LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result = std::move(cur);
        } else {
            result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f);  // extend if necessary
            for (size_t i = 0; i < cur.data.size(); i++) {
                result.data[i] += cur.data[i];
            }
        }
    }

    if (result.n_embd == -1) {
1772
        LOG_ERR("%s: no valid control vector files passed\n", __func__);
1773
1774
1775
1776
1777
        result.data.clear();
    }

    return result;
}
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
    const int64_t ne_datapoint = llama_n_ctx(ctx);
    const int64_t ndata        = (tokens.size() - ne_datapoint - 1) / stride;
    ggml_opt_dataset_t result = ggml_opt_dataset_init(
        GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);

    llama_token * data   = (llama_token *) ggml_opt_dataset_data(result)->data;
    llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;

    for (int64_t idata = 0; idata < ndata; ++idata) {
        memcpy(data   + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
        memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
    }

    return result;
}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
    ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
    const lr_opt &            d      = *(lr_opt *) userdata;
    result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
    result.sgd.wd = result.adamw.wd = d.wd;
    return result;
}

// TODO make all command line args case-insensitive
static inline bool eq_case_insensitive(char const* a, char const* b) {
    return !
#if defined(_MSC_VER)
        _stricmp
#else
        strcasecmp
#endif // defined(_MSC_VER)
        (a, b);
}

enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
    if (eq_case_insensitive("adamw", n)) {
        return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
    }
    if (eq_case_insensitive("sgd", n)) {
        return GGML_OPT_OPTIMIZER_TYPE_SGD;
    }
    return GGML_OPT_OPTIMIZER_TYPE_COUNT;
}

// TODO simplify to use just log and exp
static float const k_log_2 = std::log(2.f);

void lr_opt::init() {
    if (lr_min > 0 && lr_min < lr0) {
        float nhalf = std::log(lr0 / lr_min) / k_log_2;
        float e     = epochs;
        if (decay_epochs > 0 && decay_epochs < e) {
            e = decay_epochs;
        } else {
            decay_epochs = e;
        }
        scale_epoch = nhalf / e;
    }
}

float lr_opt::get_lr(float epoch) const {
    float r = lr_min <= 0 ? lr0 :
        epoch >= decay_epochs ? lr_min :
        lr0 * std::pow(0.5f, epoch * scale_epoch);
    LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
    return r;
}