llama-model.h 16.7 KB
Newer Older
1
2
3
4
#pragma once

#include "llama.h"
#include "llama-arch.h"
5
#include "llama-graph.h"
6
#include "llama-hparams.h"
7
#include "llama-memory.h"
8
9
#include "llama-vocab.h"

Daniel Hiltgen's avatar
Daniel Hiltgen committed
10
#include <map>
11
12
13
#include <memory>
#include <string>
#include <unordered_map>
14
15
#include <vector>

16
17
struct llama_cparams;
struct llama_ubatch;
18
19
struct llama_model_loader;

20
21
// available models
enum llm_type {
22
23
24
25
26
27
28
29
30
31
    LLM_TYPE_UNKNOWN,
    LLM_TYPE_14M,
    LLM_TYPE_17M,
    LLM_TYPE_22M,
    LLM_TYPE_33M,
    LLM_TYPE_60M,
    LLM_TYPE_70M,
    LLM_TYPE_80M,
    LLM_TYPE_109M,
    LLM_TYPE_137M,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
32
    LLM_TYPE_140M,
33
    LLM_TYPE_160M,
34
    LLM_TYPE_190M,
35
36
    LLM_TYPE_220M,
    LLM_TYPE_250M,
37
    LLM_TYPE_256M,
38
39
    LLM_TYPE_270M,
    LLM_TYPE_335M,
40
    LLM_TYPE_350M,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
41
    LLM_TYPE_360M,
42
43
    LLM_TYPE_410M,
    LLM_TYPE_450M,
44
    LLM_TYPE_475M,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
45
    LLM_TYPE_558M,
46
    LLM_TYPE_700M,
47
48
    LLM_TYPE_770M,
    LLM_TYPE_780M,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
49
    LLM_TYPE_950M,
50
    LLM_TYPE_0_3B,
51
    LLM_TYPE_0_5B,
52
    LLM_TYPE_0_6B,
53
    LLM_TYPE_1B,
54
    LLM_TYPE_1_2B,
55
56
57
58
    LLM_TYPE_1_3B,
    LLM_TYPE_1_4B,
    LLM_TYPE_1_5B,
    LLM_TYPE_1_6B,
59
    LLM_TYPE_1_7B,
60
    LLM_TYPE_1_8B,
61
    LLM_TYPE_2B,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
62
    LLM_TYPE_2_6B,
63
    LLM_TYPE_2_8B,
64
    LLM_TYPE_2_9B,
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    LLM_TYPE_3B,
    LLM_TYPE_4B,
    LLM_TYPE_6B,
    LLM_TYPE_6_9B,
    LLM_TYPE_7B,
    LLM_TYPE_8B,
    LLM_TYPE_9B,
    LLM_TYPE_11B,
    LLM_TYPE_12B,
    LLM_TYPE_13B,
    LLM_TYPE_14B,
    LLM_TYPE_15B,
    LLM_TYPE_16B,
    LLM_TYPE_20B,
    LLM_TYPE_22B,
80
    LLM_TYPE_27B,
81
82
83
84
    LLM_TYPE_30B,
    LLM_TYPE_32B,
    LLM_TYPE_34B,
    LLM_TYPE_35B,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
85
    LLM_TYPE_36B,
86
87
88
    LLM_TYPE_40B,
    LLM_TYPE_65B,
    LLM_TYPE_70B,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
89
    LLM_TYPE_120B,
90
    LLM_TYPE_142B,
91
    LLM_TYPE_236B,
92
    LLM_TYPE_290B,
93
    LLM_TYPE_314B,
94
    LLM_TYPE_405B,
95
96
97
98
99
100
101
102
103
104
105
106
107
    LLM_TYPE_671B,
    LLM_TYPE_SMALL,
    LLM_TYPE_MEDIUM,
    LLM_TYPE_LARGE,
    LLM_TYPE_XL,
    LLM_TYPE_A1_7B,
    LLM_TYPE_A2_7B,
    LLM_TYPE_8x7B,
    LLM_TYPE_8x22B,
    LLM_TYPE_16x12B,
    LLM_TYPE_16x3_8B,
    LLM_TYPE_10B_128x3_66B,
    LLM_TYPE_57B_A14B,
108
109
    LLM_TYPE_17B_16E, // llama4 Scout
    LLM_TYPE_17B_128E, // llama4 Maverick
110
    LLM_TYPE_A13B,
111
    LLM_TYPE_8B_A1B, // lfm2moe
112
    LLM_TYPE_21B_A3B, // Ernie MoE small
113
    LLM_TYPE_30B_A3B,
114
    LLM_TYPE_106B_A12B, // GLM-4.5-Air
115
    LLM_TYPE_235B_A22B,
116
117
118
119
    LLM_TYPE_300B_A47B, // Ernie MoE big
    LLM_TYPE_355B_A32B, // GLM-4.5
    LLM_TYPE_E2B,
    LLM_TYPE_E4B,
120
121
};

122
123
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
struct llama_layer_posnet {
    // resnet
    struct ggml_tensor * norm1   = nullptr;
    struct ggml_tensor * norm1_b = nullptr;

    struct ggml_tensor * conv1   = nullptr;
    struct ggml_tensor * conv1_b = nullptr;

    struct ggml_tensor * norm2   = nullptr;
    struct ggml_tensor * norm2_b = nullptr;

    struct ggml_tensor * conv2   = nullptr;
    struct ggml_tensor * conv2_b = nullptr;

    // attention
    struct ggml_tensor * attn_norm   = nullptr;
    struct ggml_tensor * attn_norm_b = nullptr;

    struct ggml_tensor * attn_q   = nullptr;
    struct ggml_tensor * attn_q_b = nullptr;

    struct ggml_tensor * attn_k   = nullptr;
    struct ggml_tensor * attn_k_b = nullptr;

    struct ggml_tensor * attn_v   = nullptr;
    struct ggml_tensor * attn_v_b = nullptr;

    struct ggml_tensor * attn_o   = nullptr;
    struct ggml_tensor * attn_o_b = nullptr;

    // normalize
    struct ggml_tensor * norm   = nullptr;
    struct ggml_tensor * norm_b = nullptr;
};

struct llama_layer_convnext {
    struct ggml_tensor * dw   = nullptr;
    struct ggml_tensor * dw_b = nullptr;

    struct ggml_tensor * norm   = nullptr;
    struct ggml_tensor * norm_b = nullptr;

    struct ggml_tensor * pw1   = nullptr;
    struct ggml_tensor * pw1_b = nullptr;

    struct ggml_tensor * pw2   = nullptr;
    struct ggml_tensor * pw2_b = nullptr;

    struct ggml_tensor * gamma = nullptr;
};

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
struct llama_layer_shortconv {
    struct ggml_tensor * in_proj  = nullptr;
    struct ggml_tensor * conv     = nullptr;
    struct ggml_tensor * out_proj = nullptr;
};

struct llama_layer_nextn {
    struct ggml_tensor * eh_proj          = nullptr;
    struct ggml_tensor * embed_tokens     = nullptr;
    struct ggml_tensor * enorm            = nullptr;
    struct ggml_tensor * hnorm            = nullptr;
    struct ggml_tensor * shared_head_head = nullptr;
    struct ggml_tensor * shared_head_norm = nullptr;
};

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
struct llama_layer {
    // normalization
    struct ggml_tensor * attn_norm       = nullptr;
    struct ggml_tensor * attn_norm_b     = nullptr;
    struct ggml_tensor * attn_norm_2     = nullptr;
    struct ggml_tensor * attn_norm_2_b   = nullptr;
    struct ggml_tensor * attn_q_norm     = nullptr;
    struct ggml_tensor * attn_q_norm_b   = nullptr;
    struct ggml_tensor * attn_k_norm     = nullptr;
    struct ggml_tensor * attn_k_norm_b   = nullptr;
    struct ggml_tensor * attn_out_norm   = nullptr;
    struct ggml_tensor * attn_out_norm_b = nullptr;
    struct ggml_tensor * attn_q_a_norm   = nullptr;
    struct ggml_tensor * attn_kv_a_norm  = nullptr;
    struct ggml_tensor * attn_sub_norm   = nullptr;
    struct ggml_tensor * attn_post_norm  = nullptr;
    struct ggml_tensor * ffn_sub_norm    = nullptr;
    struct ggml_tensor * attn_norm_cross = nullptr;
    struct ggml_tensor * attn_norm_enc   = nullptr;
209
210
211
212
    struct ggml_tensor * ssm_norm        = nullptr;
    struct ggml_tensor * ssm_dt_norm     = nullptr;
    struct ggml_tensor * ssm_b_norm      = nullptr;
    struct ggml_tensor * ssm_c_norm      = nullptr;
213
214
215
216
217
218
219
220
221
222
223

    // attention
    struct ggml_tensor * wq        = nullptr;
    struct ggml_tensor * wk        = nullptr;
    struct ggml_tensor * wv        = nullptr;
    struct ggml_tensor * wo        = nullptr;
    struct ggml_tensor * wqkv      = nullptr;
    struct ggml_tensor * wq_a      = nullptr;
    struct ggml_tensor * wq_b      = nullptr;
    struct ggml_tensor * wkv_a_mqa = nullptr;
    struct ggml_tensor * wkv_b     = nullptr;
224
225
    struct ggml_tensor * wk_b      = nullptr;
    struct ggml_tensor * wv_b      = nullptr;
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    struct ggml_tensor * wq_cross  = nullptr;
    struct ggml_tensor * wk_cross  = nullptr;
    struct ggml_tensor * wv_cross  = nullptr;
    struct ggml_tensor * wo_cross  = nullptr;
    struct ggml_tensor * wq_enc    = nullptr;
    struct ggml_tensor * wk_enc    = nullptr;
    struct ggml_tensor * wv_enc    = nullptr;
    struct ggml_tensor * wo_enc    = nullptr;

    // attention bias
    struct ggml_tensor * bq   = nullptr;
    struct ggml_tensor * bk   = nullptr;
    struct ggml_tensor * bv   = nullptr;
    struct ggml_tensor * bo   = nullptr;
    struct ggml_tensor * bqkv = nullptr;

    // relative position bias
    struct ggml_tensor * attn_rel_b       = nullptr;
    struct ggml_tensor * attn_rel_b_enc   = nullptr;
    struct ggml_tensor * attn_rel_b_cross = nullptr;

    // normalization
    struct ggml_tensor * ffn_norm         = nullptr;
    struct ggml_tensor * ffn_norm_b       = nullptr;
    struct ggml_tensor * ffn_post_norm    = nullptr;
    struct ggml_tensor * layer_out_norm   = nullptr;
    struct ggml_tensor * layer_out_norm_b = nullptr;
    struct ggml_tensor * ffn_norm_exps    = nullptr;
    struct ggml_tensor * ffn_norm_enc     = nullptr;

    // ff
    struct ggml_tensor * ffn_gate     = nullptr; // w1
    struct ggml_tensor * ffn_down     = nullptr; // w2
    struct ggml_tensor * ffn_up       = nullptr; // w3
    struct ggml_tensor * ffn_gate_enc = nullptr;
    struct ggml_tensor * ffn_down_enc = nullptr;
    struct ggml_tensor * ffn_up_enc   = nullptr;

    // ff MoE
265
266
267
268
269
270
271
272
    struct ggml_tensor * ffn_gate_inp    = nullptr;
    struct ggml_tensor * ffn_gate_exps   = nullptr;
    struct ggml_tensor * ffn_down_exps   = nullptr;
    struct ggml_tensor * ffn_up_exps     = nullptr;
    struct ggml_tensor * ffn_gate_inp_b  = nullptr;
    struct ggml_tensor * ffn_gate_exps_b = nullptr;
    struct ggml_tensor * ffn_down_exps_b = nullptr;
    struct ggml_tensor * ffn_up_exps_b   = nullptr;
273
274
275
276
277
278
279

    // ff shared expert (shexp)
    struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
    struct ggml_tensor * ffn_gate_shexp     = nullptr;
    struct ggml_tensor * ffn_down_shexp     = nullptr;
    struct ggml_tensor * ffn_up_shexp       = nullptr;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
280
281
282
283
284
    // ff adjugate experts (chexps)
    struct ggml_tensor * ffn_gate_chexps     = nullptr;
    struct ggml_tensor * ffn_down_chexps     = nullptr;
    struct ggml_tensor * ffn_up_chexps       = nullptr;

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    // ff bias
    struct ggml_tensor * ffn_gate_b = nullptr;
    struct ggml_tensor * ffn_down_b = nullptr; // b2
    struct ggml_tensor * ffn_up_b   = nullptr; // b3
    struct ggml_tensor * ffn_act    = nullptr;
    struct ggml_tensor * ffn_exp_probs_b = nullptr;

    // mamba proj
    struct ggml_tensor * ssm_in  = nullptr;
    struct ggml_tensor * ssm_x   = nullptr;
    struct ggml_tensor * ssm_dt  = nullptr;
    struct ggml_tensor * ssm_out = nullptr;

    // mamba
    struct ggml_tensor * ssm_conv1d = nullptr;
    struct ggml_tensor * ssm_a      = nullptr;
    struct ggml_tensor * ssm_d      = nullptr;

    // mamba bias
    struct ggml_tensor * ssm_conv1d_b = nullptr;
    struct ggml_tensor * ssm_dt_b     = nullptr;

    // rwkv
    struct ggml_tensor * time_mix_w1         = nullptr;
    struct ggml_tensor * time_mix_w2         = nullptr;
    struct ggml_tensor * time_mix_lerp_x     = nullptr;
    struct ggml_tensor * time_mix_lerp_w     = nullptr;
    struct ggml_tensor * time_mix_lerp_k     = nullptr;
    struct ggml_tensor * time_mix_lerp_v     = nullptr;
    struct ggml_tensor * time_mix_lerp_r     = nullptr;
    struct ggml_tensor * time_mix_lerp_g     = nullptr;
316
317
318
319
320
321
322
323
324
325
326
327
328
    struct ggml_tensor * time_mix_lerp_fused = nullptr;

    struct ggml_tensor * time_mix_first        = nullptr;
    struct ggml_tensor * time_mix_decay        = nullptr;
    struct ggml_tensor * time_mix_decay_w1     = nullptr;
    struct ggml_tensor * time_mix_decay_w2     = nullptr;
    struct ggml_tensor * time_mix_key          = nullptr;
    struct ggml_tensor * time_mix_key_b        = nullptr;
    struct ggml_tensor * time_mix_value        = nullptr;
    struct ggml_tensor * time_mix_value_b      = nullptr;
    struct ggml_tensor * time_mix_receptance   = nullptr;
    struct ggml_tensor * time_mix_receptance_b = nullptr;
    struct ggml_tensor * time_mix_gate         = nullptr;
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
    // rwkv7
    struct ggml_tensor * time_mix_w0         = nullptr;
    struct ggml_tensor * time_mix_a0         = nullptr;
    struct ggml_tensor * time_mix_a1         = nullptr;
    struct ggml_tensor * time_mix_a2         = nullptr;
    struct ggml_tensor * time_mix_v0         = nullptr;
    struct ggml_tensor * time_mix_v1         = nullptr;
    struct ggml_tensor * time_mix_v2         = nullptr;
    struct ggml_tensor * time_mix_g1         = nullptr;
    struct ggml_tensor * time_mix_g2         = nullptr;
    struct ggml_tensor * time_mix_k_k        = nullptr;
    struct ggml_tensor * time_mix_k_a        = nullptr;
    struct ggml_tensor * time_mix_r_k        = nullptr;

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    struct ggml_tensor * time_mix_ln     = nullptr;
    struct ggml_tensor * time_mix_ln_b   = nullptr;
    struct ggml_tensor * time_mix_output = nullptr;

    struct ggml_tensor * channel_mix_lerp_k = nullptr;
    struct ggml_tensor * channel_mix_lerp_r = nullptr;

    struct ggml_tensor * channel_mix_key        = nullptr;
    struct ggml_tensor * channel_mix_receptance = nullptr;
    struct ggml_tensor * channel_mix_value      = nullptr;

    // long rope factors
    struct ggml_tensor * rope_long  = nullptr;
    struct ggml_tensor * rope_short = nullptr;
    struct ggml_tensor * rope_freqs = nullptr;

    // bitnet scale
    struct ggml_tensor * wq_scale       = nullptr;
    struct ggml_tensor * wk_scale       = nullptr;
    struct ggml_tensor * wv_scale       = nullptr;
    struct ggml_tensor * wo_scale       = nullptr;
    struct ggml_tensor * ffn_gate_scale = nullptr;
    struct ggml_tensor * ffn_up_scale   = nullptr;
    struct ggml_tensor * ffn_down_scale = nullptr;

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    // altup & laurel
    struct ggml_tensor * per_layer_inp_gate   = nullptr;
    struct ggml_tensor * per_layer_proj       = nullptr;
    struct ggml_tensor * per_layer_post_norm  = nullptr;
    struct ggml_tensor * altup_correct_coef   = nullptr;
    struct ggml_tensor * altup_correct_scale  = nullptr;
    struct ggml_tensor * altup_predict_coef   = nullptr;
    struct ggml_tensor * altup_router         = nullptr;
    struct ggml_tensor * altup_router_norm    = nullptr;
    struct ggml_tensor * laurel_l             = nullptr;
    struct ggml_tensor * laurel_r             = nullptr;
    struct ggml_tensor * laurel_post_norm     = nullptr;

    // openai-moe
    struct ggml_tensor * attn_sinks = nullptr;

385
386
387
388
389
390
    // xIELU activation parameters for Apertus
    struct ggml_tensor * ffn_act_alpha_n = nullptr;
    struct ggml_tensor * ffn_act_alpha_p = nullptr;
    struct ggml_tensor * ffn_act_beta    = nullptr;
    struct ggml_tensor * ffn_act_eps     = nullptr;

391
392
393
394
395
    struct ggml_tensor * bskcn_tv = nullptr;

    struct llama_layer_posnet posnet;

    struct llama_layer_convnext convnext;
396
397
398
399

    struct llama_layer_shortconv shortconv;

    struct llama_layer_nextn nextn;
400
401
402
};

struct llama_model {
403
    llm_type type = LLM_TYPE_UNKNOWN;
404
405
406
407
408
409
410
    llm_arch arch = LLM_ARCH_UNKNOWN;

    std::string name = "n/a";

    llama_hparams hparams = {};
    llama_vocab   vocab;

411
412
413
    // for classifier models
    std::vector<std::string> classifier_labels;

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    struct ggml_tensor * tok_embd   = nullptr;
    struct ggml_tensor * type_embd  = nullptr;
    struct ggml_tensor * pos_embd   = nullptr;
    struct ggml_tensor * tok_norm   = nullptr;
    struct ggml_tensor * tok_norm_b = nullptr;

    struct ggml_tensor * output_norm     = nullptr;
    struct ggml_tensor * output_norm_b   = nullptr;
    struct ggml_tensor * output          = nullptr;
    struct ggml_tensor * output_b        = nullptr;
    struct ggml_tensor * output_norm_enc = nullptr;

    // classifier
    struct ggml_tensor * cls       = nullptr;
    struct ggml_tensor * cls_b     = nullptr;
    struct ggml_tensor * cls_out   = nullptr;
    struct ggml_tensor * cls_out_b = nullptr;

    struct ggml_tensor * conv1d   = nullptr;
    struct ggml_tensor * conv1d_b = nullptr;

435
436
437
438
439
440
441
    // gemma3n altup
    struct ggml_tensor * tok_embd_per_layer   = nullptr;
    struct ggml_tensor * altup_proj           = nullptr;
    struct ggml_tensor * altup_unembd_proj    = nullptr;
    struct ggml_tensor * per_layer_model_proj = nullptr;
    struct ggml_tensor * per_layer_proj_norm  = nullptr;

442
443
    std::vector<llama_layer> layers;

444
445
446
447
448
449
    //Dense linear projections for SentenceTransformers models like embeddinggemma
    // For Sentence Transformers models structure see
    // https://sbert.net/docs/sentence_transformer/usage/custom_models.html#structure-of-sentence-transformer-models
    struct ggml_tensor * dense_2_out_layers = nullptr;
    struct ggml_tensor * dense_3_out_layers = nullptr;

450
451
    llama_model_params params;

452
453
454
455
456
457
    // gguf metadata
    std::unordered_map<std::string, std::string> gguf_kv;

    // list of devices used in this model
    std::vector<ggml_backend_dev_t> devices;

458
459
    // for quantize-stats only
    std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
460

461
462
    int64_t t_load_us  = 0;
    int64_t t_start_us = 0;
463

464
465
    explicit llama_model(const struct llama_model_params & params);
    ~llama_model();
466

467
468
469
470
471
    void load_stats  (llama_model_loader & ml);
    void load_arch   (llama_model_loader & ml);
    void load_hparams(llama_model_loader & ml);
    void load_vocab  (llama_model_loader & ml);
    bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
472

473
474
    std::string arch_name() const;
    std::string type_name() const;
475

476
    std::string desc() const;
477

Daniel Hiltgen's avatar
Daniel Hiltgen committed
478
    size_t size() const; // file size
479
    size_t n_tensors() const;
480
    size_t n_devices() const;
481

Daniel Hiltgen's avatar
Daniel Hiltgen committed
482
483
    std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const;

484
485
    // total number of parameters in the model
    uint64_t n_elements() const;
486

487
    void print_info() const;
488

489
490
    ggml_backend_dev_t dev_layer(int il) const;
    ggml_backend_dev_t dev_output() const;
491

492
    ggml_backend_buffer_type_t select_buft(int il) const;
493

494
495
    bool has_tensor_overrides() const;

496
497
    const struct ggml_tensor * get_tensor(const char * name) const;

498
499
500
501
    float get_rope_freq_base (const llama_cparams & cparams, int il) const;
    float get_rope_freq_scale(const llama_cparams & cparams, int il) const;

    ggml_tensor * get_rope_factors(const llama_cparams & cparams, int il) const;
502
503

    // note: can mutate `cparams`
504
    // TODO: move this to new llm_arch_model_i interface
505
    llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
506
507

    // TODO: move this to new llm_arch_model_i interface
508
    ggml_cgraph * build_graph(const llm_graph_params & params) const;
509

510
511
512
private:
    struct impl;
    std::unique_ptr<impl> pimpl;
513
514
515
};

const char * llm_type_name(llm_type type);
516
517
518
519

// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model);