llama-model.h 13.3 KB
Newer Older
1
2
3
4
#pragma once

#include "llama.h"
#include "llama-arch.h"
5
#include "llama-graph.h"
6
#include "llama-hparams.h"
7
#include "llama-memory.h"
8
9
#include "llama-vocab.h"

10
11
12
#include <memory>
#include <string>
#include <unordered_map>
13
14
15
#include <vector>
#include <stdexcept>

16
17
struct llama_cparams;
struct llama_ubatch;
18
19
struct llama_model_loader;

20
21
// available models
enum llm_type {
22
23
24
25
26
27
28
29
30
31
32
    LLM_TYPE_UNKNOWN,
    LLM_TYPE_14M,
    LLM_TYPE_17M,
    LLM_TYPE_22M,
    LLM_TYPE_33M,
    LLM_TYPE_60M,
    LLM_TYPE_70M,
    LLM_TYPE_80M,
    LLM_TYPE_109M,
    LLM_TYPE_137M,
    LLM_TYPE_160M,
33
    LLM_TYPE_190M,
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    LLM_TYPE_220M,
    LLM_TYPE_250M,
    LLM_TYPE_270M,
    LLM_TYPE_335M,
    LLM_TYPE_410M,
    LLM_TYPE_450M,
    LLM_TYPE_770M,
    LLM_TYPE_780M,
    LLM_TYPE_0_5B,
    LLM_TYPE_1B,
    LLM_TYPE_1_3B,
    LLM_TYPE_1_4B,
    LLM_TYPE_1_5B,
    LLM_TYPE_1_6B,
48
    LLM_TYPE_1_8B,
49
50
    LLM_TYPE_2B,
    LLM_TYPE_2_8B,
51
    LLM_TYPE_2_9B,
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    LLM_TYPE_3B,
    LLM_TYPE_4B,
    LLM_TYPE_6B,
    LLM_TYPE_6_9B,
    LLM_TYPE_7B,
    LLM_TYPE_8B,
    LLM_TYPE_9B,
    LLM_TYPE_11B,
    LLM_TYPE_12B,
    LLM_TYPE_13B,
    LLM_TYPE_14B,
    LLM_TYPE_15B,
    LLM_TYPE_16B,
    LLM_TYPE_20B,
    LLM_TYPE_22B,
    LLM_TYPE_30B,
    LLM_TYPE_32B,
    LLM_TYPE_34B,
    LLM_TYPE_35B,
    LLM_TYPE_40B,
    LLM_TYPE_65B,
    LLM_TYPE_70B,
    LLM_TYPE_90B,
    LLM_TYPE_236B,
    LLM_TYPE_314B,
    LLM_TYPE_671B,
    LLM_TYPE_SMALL,
    LLM_TYPE_MEDIUM,
    LLM_TYPE_LARGE,
    LLM_TYPE_XL,
    LLM_TYPE_A1_7B,
    LLM_TYPE_A2_7B,
    LLM_TYPE_8x7B,
    LLM_TYPE_8x22B,
    LLM_TYPE_16x12B,
    LLM_TYPE_16x3_8B,
    LLM_TYPE_10B_128x3_66B,
    LLM_TYPE_57B_A14B,
    LLM_TYPE_27B,
91
92
93
    LLM_TYPE_290B,
    LLM_TYPE_17B_16E, // llama4 Scout
    LLM_TYPE_17B_128E, // llama4 Maverick
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
};

struct llama_layer_posnet {
    // resnet
    struct ggml_tensor * norm1   = nullptr;
    struct ggml_tensor * norm1_b = nullptr;

    struct ggml_tensor * conv1   = nullptr;
    struct ggml_tensor * conv1_b = nullptr;

    struct ggml_tensor * norm2   = nullptr;
    struct ggml_tensor * norm2_b = nullptr;

    struct ggml_tensor * conv2   = nullptr;
    struct ggml_tensor * conv2_b = nullptr;

    // attention
    struct ggml_tensor * attn_norm   = nullptr;
    struct ggml_tensor * attn_norm_b = nullptr;

    struct ggml_tensor * attn_q   = nullptr;
    struct ggml_tensor * attn_q_b = nullptr;

    struct ggml_tensor * attn_k   = nullptr;
    struct ggml_tensor * attn_k_b = nullptr;

    struct ggml_tensor * attn_v   = nullptr;
    struct ggml_tensor * attn_v_b = nullptr;

    struct ggml_tensor * attn_o   = nullptr;
    struct ggml_tensor * attn_o_b = nullptr;

    // normalize
    struct ggml_tensor * norm   = nullptr;
    struct ggml_tensor * norm_b = nullptr;
};

struct llama_layer_convnext {
    struct ggml_tensor * dw   = nullptr;
    struct ggml_tensor * dw_b = nullptr;

    struct ggml_tensor * norm   = nullptr;
    struct ggml_tensor * norm_b = nullptr;

    struct ggml_tensor * pw1   = nullptr;
    struct ggml_tensor * pw1_b = nullptr;

    struct ggml_tensor * pw2   = nullptr;
    struct ggml_tensor * pw2_b = nullptr;

    struct ggml_tensor * gamma = nullptr;
};

struct llama_layer {
    // normalization
    struct ggml_tensor * attn_norm       = nullptr;
    struct ggml_tensor * attn_norm_b     = nullptr;
    struct ggml_tensor * attn_norm_2     = nullptr;
    struct ggml_tensor * attn_norm_2_b   = nullptr;
    struct ggml_tensor * attn_q_norm     = nullptr;
    struct ggml_tensor * attn_q_norm_b   = nullptr;
    struct ggml_tensor * attn_k_norm     = nullptr;
    struct ggml_tensor * attn_k_norm_b   = nullptr;
    struct ggml_tensor * attn_out_norm   = nullptr;
    struct ggml_tensor * attn_out_norm_b = nullptr;
    struct ggml_tensor * attn_q_a_norm   = nullptr;
    struct ggml_tensor * attn_kv_a_norm  = nullptr;
    struct ggml_tensor * attn_sub_norm   = nullptr;
    struct ggml_tensor * attn_post_norm  = nullptr;
    struct ggml_tensor * ffn_sub_norm    = nullptr;
    struct ggml_tensor * attn_norm_cross = nullptr;
    struct ggml_tensor * attn_norm_enc   = nullptr;

    // attention
    struct ggml_tensor * wq        = nullptr;
    struct ggml_tensor * wk        = nullptr;
    struct ggml_tensor * wv        = nullptr;
    struct ggml_tensor * wo        = nullptr;
    struct ggml_tensor * wqkv      = nullptr;
    struct ggml_tensor * wq_a      = nullptr;
    struct ggml_tensor * wq_b      = nullptr;
    struct ggml_tensor * wkv_a_mqa = nullptr;
    struct ggml_tensor * wkv_b     = nullptr;
    struct ggml_tensor * wq_cross  = nullptr;
    struct ggml_tensor * wk_cross  = nullptr;
    struct ggml_tensor * wv_cross  = nullptr;
    struct ggml_tensor * wo_cross  = nullptr;
    struct ggml_tensor * wq_enc    = nullptr;
    struct ggml_tensor * wk_enc    = nullptr;
    struct ggml_tensor * wv_enc    = nullptr;
    struct ggml_tensor * wo_enc    = nullptr;

    // attention bias
    struct ggml_tensor * bq   = nullptr;
    struct ggml_tensor * bk   = nullptr;
    struct ggml_tensor * bv   = nullptr;
    struct ggml_tensor * bo   = nullptr;
    struct ggml_tensor * bqkv = nullptr;

    // relative position bias
    struct ggml_tensor * attn_rel_b       = nullptr;
    struct ggml_tensor * attn_rel_b_enc   = nullptr;
    struct ggml_tensor * attn_rel_b_cross = nullptr;

    // normalization
    struct ggml_tensor * ffn_norm         = nullptr;
    struct ggml_tensor * ffn_norm_b       = nullptr;
    struct ggml_tensor * ffn_post_norm    = nullptr;
    struct ggml_tensor * layer_out_norm   = nullptr;
    struct ggml_tensor * layer_out_norm_b = nullptr;
    struct ggml_tensor * ffn_norm_exps    = nullptr;
    struct ggml_tensor * ffn_norm_enc     = nullptr;

    // ff
    struct ggml_tensor * ffn_gate     = nullptr; // w1
    struct ggml_tensor * ffn_down     = nullptr; // w2
    struct ggml_tensor * ffn_up       = nullptr; // w3
    struct ggml_tensor * ffn_gate_enc = nullptr;
    struct ggml_tensor * ffn_down_enc = nullptr;
    struct ggml_tensor * ffn_up_enc   = nullptr;

    // ff MoE
    struct ggml_tensor * ffn_gate_inp  = nullptr;
    struct ggml_tensor * ffn_gate_exps = nullptr;
    struct ggml_tensor * ffn_down_exps = nullptr;
    struct ggml_tensor * ffn_up_exps   = nullptr;

    // ff shared expert (shexp)
    struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
    struct ggml_tensor * ffn_gate_shexp     = nullptr;
    struct ggml_tensor * ffn_down_shexp     = nullptr;
    struct ggml_tensor * ffn_up_shexp       = nullptr;

    // ff bias
    struct ggml_tensor * ffn_gate_b = nullptr;
    struct ggml_tensor * ffn_down_b = nullptr; // b2
    struct ggml_tensor * ffn_up_b   = nullptr; // b3
    struct ggml_tensor * ffn_act    = nullptr;
    struct ggml_tensor * ffn_exp_probs_b = nullptr;

    // mamba proj
    struct ggml_tensor * ssm_in  = nullptr;
    struct ggml_tensor * ssm_x   = nullptr;
    struct ggml_tensor * ssm_dt  = nullptr;
    struct ggml_tensor * ssm_out = nullptr;

    // mamba
    struct ggml_tensor * ssm_conv1d = nullptr;
    struct ggml_tensor * ssm_a      = nullptr;
    struct ggml_tensor * ssm_d      = nullptr;

    // mamba bias
    struct ggml_tensor * ssm_conv1d_b = nullptr;
    struct ggml_tensor * ssm_dt_b     = nullptr;

    // rwkv
    struct ggml_tensor * time_mix_w1         = nullptr;
    struct ggml_tensor * time_mix_w2         = nullptr;
    struct ggml_tensor * time_mix_lerp_x     = nullptr;
    struct ggml_tensor * time_mix_lerp_w     = nullptr;
    struct ggml_tensor * time_mix_lerp_k     = nullptr;
    struct ggml_tensor * time_mix_lerp_v     = nullptr;
    struct ggml_tensor * time_mix_lerp_r     = nullptr;
    struct ggml_tensor * time_mix_lerp_g     = nullptr;
258
259
260
261
262
263
264
265
266
267
268
269
270
    struct ggml_tensor * time_mix_lerp_fused = nullptr;

    struct ggml_tensor * time_mix_first        = nullptr;
    struct ggml_tensor * time_mix_decay        = nullptr;
    struct ggml_tensor * time_mix_decay_w1     = nullptr;
    struct ggml_tensor * time_mix_decay_w2     = nullptr;
    struct ggml_tensor * time_mix_key          = nullptr;
    struct ggml_tensor * time_mix_key_b        = nullptr;
    struct ggml_tensor * time_mix_value        = nullptr;
    struct ggml_tensor * time_mix_value_b      = nullptr;
    struct ggml_tensor * time_mix_receptance   = nullptr;
    struct ggml_tensor * time_mix_receptance_b = nullptr;
    struct ggml_tensor * time_mix_gate         = nullptr;
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
    // rwkv7
    struct ggml_tensor * time_mix_w0         = nullptr;
    struct ggml_tensor * time_mix_a0         = nullptr;
    struct ggml_tensor * time_mix_a1         = nullptr;
    struct ggml_tensor * time_mix_a2         = nullptr;
    struct ggml_tensor * time_mix_v0         = nullptr;
    struct ggml_tensor * time_mix_v1         = nullptr;
    struct ggml_tensor * time_mix_v2         = nullptr;
    struct ggml_tensor * time_mix_g1         = nullptr;
    struct ggml_tensor * time_mix_g2         = nullptr;
    struct ggml_tensor * time_mix_k_k        = nullptr;
    struct ggml_tensor * time_mix_k_a        = nullptr;
    struct ggml_tensor * time_mix_r_k        = nullptr;

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    struct ggml_tensor * time_mix_ln     = nullptr;
    struct ggml_tensor * time_mix_ln_b   = nullptr;
    struct ggml_tensor * time_mix_output = nullptr;

    struct ggml_tensor * channel_mix_lerp_k = nullptr;
    struct ggml_tensor * channel_mix_lerp_r = nullptr;

    struct ggml_tensor * channel_mix_key        = nullptr;
    struct ggml_tensor * channel_mix_receptance = nullptr;
    struct ggml_tensor * channel_mix_value      = nullptr;

    // long rope factors
    struct ggml_tensor * rope_long  = nullptr;
    struct ggml_tensor * rope_short = nullptr;
    struct ggml_tensor * rope_freqs = nullptr;

    // bitnet scale
    struct ggml_tensor * wq_scale       = nullptr;
    struct ggml_tensor * wk_scale       = nullptr;
    struct ggml_tensor * wv_scale       = nullptr;
    struct ggml_tensor * wo_scale       = nullptr;
    struct ggml_tensor * ffn_gate_scale = nullptr;
    struct ggml_tensor * ffn_up_scale   = nullptr;
    struct ggml_tensor * ffn_down_scale = nullptr;

    struct ggml_tensor * bskcn_tv = nullptr;

313
    // cross attention
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    struct ggml_tensor * cross_attn_k_norm = nullptr;
    struct ggml_tensor * cross_attn_k_proj = nullptr;
    struct ggml_tensor * cross_attn_o_proj = nullptr;
    struct ggml_tensor * cross_attn_q_norm = nullptr;
    struct ggml_tensor * cross_attn_q_proj = nullptr;
    struct ggml_tensor * cross_attn_v_proj = nullptr;
    struct ggml_tensor * cross_attn_attn_gate = nullptr;
    struct ggml_tensor * cross_attn_mlp_gate = nullptr;

    struct llama_layer_posnet posnet;

    struct llama_layer_convnext convnext;
};

struct llama_model {
329
    llm_type type = LLM_TYPE_UNKNOWN;
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    llm_arch arch = LLM_ARCH_UNKNOWN;

    std::string name = "n/a";

    llama_hparams hparams = {};
    llama_vocab   vocab;

    struct ggml_tensor * tok_embd   = nullptr;
    struct ggml_tensor * type_embd  = nullptr;
    struct ggml_tensor * pos_embd   = nullptr;
    struct ggml_tensor * tok_norm   = nullptr;
    struct ggml_tensor * tok_norm_b = nullptr;

    struct ggml_tensor * output_norm     = nullptr;
    struct ggml_tensor * output_norm_b   = nullptr;
    struct ggml_tensor * output          = nullptr;
    struct ggml_tensor * output_b        = nullptr;
    struct ggml_tensor * output_norm_enc = nullptr;

    // classifier
    struct ggml_tensor * cls       = nullptr;
    struct ggml_tensor * cls_b     = nullptr;
    struct ggml_tensor * cls_out   = nullptr;
    struct ggml_tensor * cls_out_b = nullptr;

    struct ggml_tensor * conv1d   = nullptr;
    struct ggml_tensor * conv1d_b = nullptr;

    std::vector<llama_layer> layers;

360
361
    llama_model_params params;

362
363
364
365
366
367
    // gguf metadata
    std::unordered_map<std::string, std::string> gguf_kv;

    // list of devices used in this model
    std::vector<ggml_backend_dev_t> devices;

368
369
    // for quantize-stats only
    std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
370

371
372
    int64_t t_load_us  = 0;
    int64_t t_start_us = 0;
373

374
375
    explicit llama_model(const struct llama_model_params & params);
    ~llama_model();
376

377
378
379
380
381
    void load_stats  (llama_model_loader & ml);
    void load_arch   (llama_model_loader & ml);
    void load_hparams(llama_model_loader & ml);
    void load_vocab  (llama_model_loader & ml);
    bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
382

383
384
    std::string arch_name() const;
    std::string type_name() const;
385

386
    std::string desc() const;
387

388
    size_t size() const;
389
    size_t n_tensors() const;
390
    size_t n_devices() const;
391

392
393
    // total number of parameters in the model
    uint64_t n_elements() const;
394

395
    void print_info() const;
396

397
398
    ggml_backend_dev_t dev_layer(int il) const;
    ggml_backend_dev_t dev_output() const;
399

400
    ggml_backend_buffer_type_t select_buft(int il) const;
401

402
403
    bool has_tensor_overrides() const;

404
405
    const struct ggml_tensor * get_tensor(const char * name) const;

406
407
408
409
410
411
412
413
414
    // TODO: move this to new llm_arch_model_i interface
    llama_memory_i * create_memory() const; // TODO: params

    // TODO: move this to new llm_arch_model_i interface
    llm_graph_result_ptr build_graph(
            const llm_graph_params & params,
                       ggml_cgraph * gf,
                    llm_graph_type   type) const;

415
416
417
private:
    struct impl;
    std::unique_ptr<impl> pimpl;
418
419
420
};

const char * llm_type_name(llm_type type);
421
422
423
424

// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model);