convert.go 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
package convert

import (
	"bytes"
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"io"
	"log/slog"
	"os"
	"path/filepath"
	"regexp"
	"slices"

16
	"github.com/d4l3k/go-bfloat16"
17
	"github.com/mitchellh/mapstructure"
18
	"github.com/x448/float16"
19
20
	"google.golang.org/protobuf/proto"

21
22
	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
)

type Params struct {
	Architectures    []string `json:"architectures"`
	VocabSize        int      `json:"vocab_size"`
	HiddenSize       int      `json:"hidden_size"`       // n_embd
	HiddenLayers     int      `json:"num_hidden_layers"` // n_layer
	ContextSize      int      `json:"max_position_embeddings"`
	IntermediateSize int      `json:"intermediate_size"`
	AttentionHeads   int      `json:"num_attention_heads"` // n_head
	KeyValHeads      int      `json:"num_key_value_heads"`
	NormEPS          float64  `json:"rms_norm_eps"`
	RopeFreqBase     float64  `json:"rope_theta"`
	BoSTokenID       int      `json:"bos_token_id"`
	EoSTokenID       int      `json:"eos_token_id"`
38
39
40
41
42
43
44
45
46
	HeadDimension    int      `json:"head_dim"`
	PaddingTokenID   int      `json:"pad_token_id"`

	ByteOrder
}

type ByteOrder interface {
	binary.ByteOrder
	binary.AppendByteOrder
47
48
49
50
51
52
53
54
}

type MetaData struct {
	Type    string `mapstructure:"dtype"`
	Shape   []int  `mapstructure:"shape"`
	Offsets []int  `mapstructure:"data_offsets"`
}

55
56
57
58
59
60
61
62
63
64
65
66
67
68
type ModelArch interface {
	GetTensors() error
	LoadVocab() error
	WriteGGUF() (string, error)
}

type ModelData struct {
	Path    string
	Name    string
	Params  *Params
	Vocab   *Vocab
	Tensors []llm.Tensor
}

69
func ReadSafeTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
70
71
	f, err := os.Open(fn)
	if err != nil {
72
		return nil, 0, err
73
74
75
76
	}
	defer f.Close()

	var jsonSize uint64
77
78
79
	if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
		return nil, 0, err
	}
80
81
82
83

	buf := make([]byte, jsonSize)
	_, err = io.ReadFull(f, buf)
	if err != nil {
84
		return nil, 0, err
85
86
87
88
89
90
	}

	d := json.NewDecoder(bytes.NewBuffer(buf))
	d.UseNumber()
	var parsed map[string]interface{}
	if err = d.Decode(&parsed); err != nil {
91
		return nil, 0, err
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
	}

	var keys []string
	for k := range parsed {
		keys = append(keys, k)
	}

	slices.Sort(keys)

	slog.Info("converting layers")

	var tensors []llm.Tensor
	for _, k := range keys {
		vals := parsed[k].(map[string]interface{})
		var data MetaData
		if err = mapstructure.Decode(vals, &data); err != nil {
108
			return nil, 0, err
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
		}

		var size uint64
		var kind uint32
		switch len(data.Shape) {
		case 0:
			// metadata
			continue
		case 1:
			// convert to float32
			kind = 0
			size = uint64(data.Shape[0] * 4)
		case 2:
			// convert to float16
			kind = 1
			size = uint64(data.Shape[0] * data.Shape[1] * 2)
		}

		ggufName, err := GetTensorName(k)
		if err != nil {
			slog.Error("%v", err)
130
			return nil, 0, err
131
132
		}

Michael Yang's avatar
Michael Yang committed
133
134
135
		shape := []uint64{0, 0, 0, 0}
		for i := range data.Shape {
			shape[i] = uint64(data.Shape[i])
136
137
138
		}

		t := llm.Tensor{
139
140
141
142
			Name:   ggufName,
			Kind:   kind,
			Offset: offset,
			Shape:  shape[:],
143
		}
144
145

		t.WriterTo = safetensorWriterTo{
146
147
148
149
150
151
152
			t:        &t,
			params:   params,
			bo:       params.ByteOrder,
			filename: fn,
			start:    uint64(data.Offsets[0]),
			end:      uint64(data.Offsets[1]),
			padding:  8 + jsonSize,
153
154
		}

155
156
157
158
159
160
161
		slog.Debug(fmt.Sprintf("%v", t))
		tensors = append(tensors, t)
		offset += size
	}
	return tensors, offset, nil
}

162
func GetSafeTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
163
164
165
	var tensors []llm.Tensor
	files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
	if err != nil {
166
		return nil, err
167
168
169
170
171
172
	}

	var offset uint64
	for _, f := range files {
		var t []llm.Tensor
		var err error
173
		t, offset, err = ReadSafeTensors(f, offset, params)
174
175
		if err != nil {
			slog.Error("%v", err)
176
			return nil, err
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
		}
		tensors = append(tensors, t...)
	}
	return tensors, nil
}

func GetParams(dirpath string) (*Params, error) {
	f, err := os.Open(filepath.Join(dirpath, "config.json"))
	if err != nil {
		return nil, err
	}
	defer f.Close()

	var params Params

	d := json.NewDecoder(f)
	err = d.Decode(&params)
	if err != nil {
		return nil, err
	}

198
	params.ByteOrder = binary.LittleEndian
199
200
201
202
203
204
205
206
207
208
209
	return &params, nil
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
}

210
func LoadSentencePieceTokens(dirpath string, vocabSize int) (*Vocab, error) {
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
235
236
237
238
239
240
241
242
		switch t {
		case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
		case sentencepiece.ModelProto_SentencePiece_CONTROL:
		case sentencepiece.ModelProto_SentencePiece_UNUSED:
		case sentencepiece.ModelProto_SentencePiece_BYTE:
		default:
			t = sentencepiece.ModelProto_SentencePiece_NORMAL
		}
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

290
291
	if vocabSize > len(v.Tokens) {
		missingTokens := vocabSize - len(v.Tokens)
292
293
294
295
296
297
298
299
		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
		for cnt := 0; cnt < missingTokens; cnt++ {
			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
			v.Scores = append(v.Scores, -1)
			v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
		}
	}

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
	return v, nil
}

func GetTensorName(n string) (string, error) {
	tMap := map[string]string{
		"model.embed_tokens.weight":                           "token_embd.weight",
		"model.layers.(\\d+).input_layernorm.weight":          "blk.$1.attn_norm.weight",
		"model.layers.(\\d+).mlp.down_proj.weight":            "blk.$1.ffn_down.weight",
		"model.layers.(\\d+).mlp.gate_proj.weight":            "blk.$1.ffn_gate.weight",
		"model.layers.(\\d+).mlp.up_proj.weight":              "blk.$1.ffn_up.weight",
		"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
		"model.layers.(\\d+).self_attn.k_proj.weight":         "blk.$1.attn_k.weight",
		"model.layers.(\\d+).self_attn.o_proj.weight":         "blk.$1.attn_output.weight",
		"model.layers.(\\d+).self_attn.q_proj.weight":         "blk.$1.attn_q.weight",
		"model.layers.(\\d+).self_attn.v_proj.weight":         "blk.$1.attn_v.weight",
		"lm_head.weight":    "output.weight",
		"model.norm.weight": "output_norm.weight",
	}

	v, ok := tMap[n]
	if ok {
		return v, nil
	}

	// quick hack to rename the layers to gguf format
	for k, v := range tMap {
		re := regexp.MustCompile(k)
		newName := re.ReplaceAllString(n, v)
		if newName != n {
			return newName, nil
		}
	}

	return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}

336
337
338
type safetensorWriterTo struct {
	t *llm.Tensor

339
340
	params *Params
	bo     ByteOrder
341
342
343
344

	filename string

	start, end, padding uint64
345
	handler             func(w io.Writer, r safetensorWriterTo, f *os.File) error
346
347
348
349
350
351
352
353
354
355
356
357
358
}

func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
	f, err := os.Open(r.filename)
	if err != nil {
		return 0, err
	}
	defer f.Close()

	if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
		return 0, err
	}

359
360
361
	// use the handler if one is present
	if r.handler != nil {
		return 0, r.handler(w, r, f)
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
	}

	remaining := r.end - r.start

	bufSize := uint64(10240)
	var finished bool
	for {
		data := make([]byte, min(bufSize, remaining))

		b, err := io.ReadFull(f, data)
		remaining -= uint64(b)

		if err == io.EOF || remaining <= 0 {
			finished = true
		} else if err != nil {
			return 0, err
		}

		// convert bfloat16 -> ieee float32
		tDataF32 := bfloat16.DecodeFloat32(data)

		switch r.t.Kind {
		case 0:
			if err := binary.Write(w, r.bo, tDataF32); err != nil {
				return 0, err
			}
		case 1:
			// convert float32 -> float16
			tempBuf := make([]uint16, len(data)/2)
			for cnt, v := range tDataF32 {
				tDataF16 := float16.Fromfloat32(v)
				tempBuf[cnt] = uint16(tDataF16)
			}
			if err := binary.Write(w, binary.LittleEndian, tempBuf); err != nil {
				return 0, err
			}
		}
		if finished {
			break
		}
	}
	return 0, nil
}

406
func GetModelArchFromParams(name, dirPath string, params *Params) (ModelArch, error) {
407
408
	switch len(params.Architectures) {
	case 0:
409
		return nil, fmt.Errorf("No architecture specified to convert")
410
411
412
	case 1:
		switch params.Architectures[0] {
		case "MistralForCausalLM":
413
414
415
416
417
418
419
			return &MistralModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
				},
			}, nil
420
		case "GemmaForCausalLM":
421
422
423
424
425
426
427
			return &GemmaModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
				},
			}, nil
428
		default:
429
			return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
430
		}
431
432
	}

433
	return nil, fmt.Errorf("Unknown error")
434
}