clip.cpp 153 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
#include "ggml-cpu.h"
10
11
#include "ggml-alloc.h"
#include "ggml-backend.h"
12
#include "gguf.h"
13
14
15
16
17
18
19
20
21
22
23
24

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
25
#include <unordered_set>
26
27
28
29
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
30
#include <array>
31
#include <numeric>
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

46
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
47

48
//#define CLIP_DEBUG_FUNCTIONS
49
50
51
52
53

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
54
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
73
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

163
164
165
166
167
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

168
169
170
171
172
173
174
175
struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
    int32_t hidden_size;
    int32_t n_intermediate;
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;
176
    int32_t proj_scale_factor = 0; // idefics3
177

178
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
179

180
181
    float eps = 1e-6;
    float rope_theta = 0.0;
182

183
    std::vector<int32_t> image_grid_pinpoints;
184
    int32_t image_crop_resolution;
185
    std::unordered_set<int32_t> vision_feature_layer;
186
187
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
188
189
190
191
};

struct clip_layer {
    // attention
192
193
194
195
196
197
    struct ggml_tensor * k_w = nullptr;
    struct ggml_tensor * k_b = nullptr;
    struct ggml_tensor * q_w = nullptr;
    struct ggml_tensor * q_b = nullptr;
    struct ggml_tensor * v_w = nullptr;
    struct ggml_tensor * v_b = nullptr;
198

199
200
    struct ggml_tensor * o_w = nullptr;
    struct ggml_tensor * o_b = nullptr;
201
202

    // layernorm 1
203
204
    struct ggml_tensor * ln_1_w = nullptr;
    struct ggml_tensor * ln_1_b = nullptr;
205
206

    // ff
207
208
209
210
    struct ggml_tensor * ff_i_w = nullptr; // legacy naming
    struct ggml_tensor * ff_i_b = nullptr; // legacy naming
    struct ggml_tensor * ff_o_w = nullptr; // legacy naming
    struct ggml_tensor * ff_o_b = nullptr; // legacy naming
211

212
213
214
215
216
217
218
219
220
    struct ggml_tensor * ff_up_w = nullptr;
    struct ggml_tensor * ff_up_b = nullptr;
    struct ggml_tensor * ff_gate_w = nullptr;
    struct ggml_tensor * ff_gate_b = nullptr;
    struct ggml_tensor * ff_down_w = nullptr;
    struct ggml_tensor * ff_down_b = nullptr;

    struct ggml_tensor * ff_g_w = NULL;
    struct ggml_tensor * ff_g_b = NULL;
221
222

    // layernorm 2
223
224
    struct ggml_tensor * ln_2_w = nullptr;
    struct ggml_tensor * ln_2_b = nullptr;
225
226
227
228
229
230
};

struct clip_vision_model {
    struct clip_hparams hparams;

    // embeddings
231
232
233
234
235
    struct ggml_tensor * class_embedding = nullptr;
    struct ggml_tensor * patch_embeddings_0 = nullptr;
    struct ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    struct ggml_tensor * patch_bias = nullptr;
    struct ggml_tensor * position_embeddings = nullptr;
236

237
238
    struct ggml_tensor * pre_ln_w = nullptr;
    struct ggml_tensor * pre_ln_b = nullptr;
239
240
241
242
243
244
245
246
247

    std::vector<clip_layer> layers;

    struct ggml_tensor * post_ln_w;
    struct ggml_tensor * post_ln_b;

    struct ggml_tensor * projection;

    // LLaVA projection
248
249
250
251
    struct ggml_tensor * mm_0_w = nullptr;
    struct ggml_tensor * mm_0_b = nullptr;
    struct ggml_tensor * mm_2_w = nullptr;
    struct ggml_tensor * mm_2_b = nullptr;
252

253
    struct ggml_tensor * image_newline = nullptr;
254
255

    // Yi type models with mlp+normalization projection
256
257
258
259
260
261
    struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    struct ggml_tensor * mm_1_b = nullptr;
    struct ggml_tensor * mm_3_w = nullptr;
    struct ggml_tensor * mm_3_b = nullptr;
    struct ggml_tensor * mm_4_w = nullptr;
    struct ggml_tensor * mm_4_b = nullptr;
262

263
    //GLMV-Edge projection
264
265
    struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
    struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
266

267
    // MobileVLM projection
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    struct ggml_tensor * mm_model_mlp_1_w = nullptr;
    struct ggml_tensor * mm_model_mlp_1_b = nullptr;
    struct ggml_tensor * mm_model_mlp_3_w = nullptr;
    struct ggml_tensor * mm_model_mlp_3_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
292
293

    // MobileVLM_V2 projection
294
295
296
297
298
299
    struct ggml_tensor * mm_model_mlp_0_w = nullptr;
    struct ggml_tensor * mm_model_mlp_0_b = nullptr;
    struct ggml_tensor * mm_model_mlp_2_w = nullptr;
    struct ggml_tensor * mm_model_mlp_2_b = nullptr;
    struct ggml_tensor * mm_model_peg_0_w = nullptr;
    struct ggml_tensor * mm_model_peg_0_b = nullptr;
300
301

    // MINICPMV projection
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    struct ggml_tensor * mm_model_pos_embed_k = nullptr;
    struct ggml_tensor * mm_model_query = nullptr;
    struct ggml_tensor * mm_model_proj = nullptr;
    struct ggml_tensor * mm_model_kv_proj = nullptr;
    struct ggml_tensor * mm_model_attn_q_w = nullptr;
    struct ggml_tensor * mm_model_attn_q_b = nullptr;
    struct ggml_tensor * mm_model_attn_k_w = nullptr;
    struct ggml_tensor * mm_model_attn_k_b = nullptr;
    struct ggml_tensor * mm_model_attn_v_w = nullptr;
    struct ggml_tensor * mm_model_attn_v_b = nullptr;
    struct ggml_tensor * mm_model_attn_o_w = nullptr;
    struct ggml_tensor * mm_model_attn_o_b = nullptr;
    struct ggml_tensor * mm_model_ln_q_w = nullptr;
    struct ggml_tensor * mm_model_ln_q_b = nullptr;
    struct ggml_tensor * mm_model_ln_kv_w = nullptr;
    struct ggml_tensor * mm_model_ln_kv_b = nullptr;
    struct ggml_tensor * mm_model_ln_post_w = nullptr;
    struct ggml_tensor * mm_model_ln_post_b = nullptr;

    // gemma3
    struct ggml_tensor * mm_input_proj_w = nullptr;
    struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
324
325
326

    // pixtral
    struct ggml_tensor * token_embd_img_break = nullptr;
327
328
329
330
};

struct clip_ctx {
    bool has_llava_projector = false;
331
    int minicpmv_version = 0;
332
333
334
335

    struct clip_vision_model vision_model;
    projector_type proj_type = PROJECTOR_TYPE_MLP;

336
    int32_t max_feature_layer; // unused in newer models like gemma3
337
338
339
    float image_mean[3];
    float image_std[3];
    bool use_gelu = false;
340
    bool use_silu = false;
341

342
343
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
344
345
346

    std::vector<uint8_t> buf_compute_meta;

347
348
349
350
351
352
353
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    ggml_backend_t backend;
    ggml_backend_t backend_cpu;
    ggml_backend_buffer_ptr buf;

354
    int max_nodes = 8192;
355
    ggml_backend_sched_ptr sched;
356

357
    clip_image_size load_image_size;
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    clip_ctx(clip_context_params & ctx_params) {
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
        backend     = ctx_params.use_gpu
                        ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
                        : nullptr;

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
388
389
};

390
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) {
391
392
393
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

394
395
    int image_size_width  = img.nx;
    int image_size_height = img.ny;
396

397
398
399
400
401
402
403
    const int patch_size  = hparams.patch_size;
    const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int hidden_size = hparams.hidden_size;
    const int n_head      = hparams.n_head;
    const int d_head      = hidden_size / n_head;
    const int n_layer     = hparams.n_layer;
    const float eps       = hparams.eps;
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ggml_context_ptr ctx0_ptr(ggml_init(params));
    auto ctx0 = ctx0_ptr.get();

    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    // input raw
    struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
    inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
    inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
    inp = ggml_add(ctx0, inp, model.patch_bias);

    // position embeddings
    struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);

    // loop over layers
    for (int il = 0; il < n_layer; il++) {
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

        // layernorm1
        {
            cur = ggml_norm(ctx0, cur, eps);
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
        }

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);

            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // layernorm2
        {
            cur = ggml_norm(ctx0, cur, eps);
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        // siglip uses gelu
        cur = ggml_gelu(ctx0, cur);

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
    if (model.post_ln_w) {
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
    }

    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        const int batch_size = 1;
        const int mm_tokens_per_image = 256; // default value for gemma3
        const int tokens_per_side = sqrt(mm_tokens_per_image);
        const int patches_per_image = sqrt(num_patches);
        const int kernel_size = patches_per_image / tokens_per_side;

        embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
        embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);

        // doing a pool2d to reduce the number of output tokens to 256
        embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
        embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
        embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));

        // apply norm before projection
        embeddings = ggml_rms_norm(ctx0, embeddings, eps);
        embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);

        // apply projection
        embeddings = ggml_mul_mat(ctx0,
            ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
            embeddings);
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

    } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
        // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578

        ggml_tensor * cur = embeddings;
        const int scale_factor = model.hparams.proj_scale_factor;
        const int n_embd = cur->ne[0];
        const int seq    = cur->ne[1];
        const int bsz    = 1; // batch size, always 1 for now since we don't support batching
        const int height = std::sqrt(seq);
        const int width  = std::sqrt(seq);
        GGML_ASSERT(scale_factor != 0);
        cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
        cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
            n_embd * scale_factor * scale_factor,
            height / scale_factor,
            width / scale_factor,
            bsz);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
        cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
            n_embd * scale_factor * scale_factor,
            seq / (scale_factor * scale_factor),
            bsz);

        cur = ggml_mul_mat(ctx0, model.projection, cur);
        embeddings = cur;
    } else {
        GGML_ABORT("SigLIP: Unsupported projector type");
559
560
561
562
563
564
565
566
    }

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
// implementation of the 2D RoPE without adding a new op in ggml
// this is not efficient (use double the memory), but works on all backends
// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
static ggml_tensor * build_rope_2d(
    ggml_context * ctx0,
    ggml_tensor * cur,
    ggml_tensor * pos_h,
    ggml_tensor * pos_w,
    const float freq_base
) {
    const int64_t n_dim  = cur->ne[0];
    const int64_t n_head = cur->ne[1];
    const int64_t n_pos  = cur->ne[2];

    // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
    // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
    // first half of cur will use 1e-0, 1e-2 (even)
    // second half of cur will use 1e-1, 1e-3 (odd)
    // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
    //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
    // then for the second half, we use freq_scale to shift the inv_freq
    //  ^ why? replace (2i) with (2i+1) in the above equation
    const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);

    // first half
    ggml_tensor * first;
    {
        first = ggml_view_3d(ctx0, cur,
            n_dim/2, n_head, n_pos,
            ggml_row_size(cur->type, n_dim),
            ggml_row_size(cur->type, n_dim*n_head),
            0);
        first = ggml_rope_ext(
            ctx0,
            first,
            pos_h,      // positions
            nullptr,    // freq factors
            n_dim/2,    // n_dims
            0, 0, freq_base,
            1.0f, 0.0f, 1.0f, 0.0f, 0.0f
        );
    }

    // second half
    ggml_tensor * second;
    {
        second = ggml_view_3d(ctx0, cur,
            n_dim/2, n_head, n_pos,
            ggml_row_size(cur->type, n_dim),
            ggml_row_size(cur->type, n_dim*n_head),
            n_dim/2 * ggml_element_size(cur));
        second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
        second = ggml_rope_ext(
            ctx0,
            second,
            pos_w,      // positions
            nullptr,    // freq factors
            n_dim/2,    // n_dims
            0, 0, freq_base,
            freq_scale_odd,
            0.0f, 1.0f, 0.0f, 0.0f
        );
    }

    cur = ggml_concat(ctx0, first, second, 0);
    return cur;
}

static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) {
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    GGML_ASSERT(ctx->proj_type == PROJECTOR_TYPE_PIXTRAL);

    int image_size_width  = img.nx;
    int image_size_height = img.ny;

    const int patch_size  = hparams.patch_size;
    const int n_patches_x = image_size_width  / patch_size;
    const int n_patches_y = image_size_height / patch_size;
    const int num_patches = n_patches_x * n_patches_y;
    const int hidden_size = hparams.hidden_size;
    const int n_head      = hparams.n_head;
    const int d_head      = hidden_size / n_head;
    const int n_layer     = hparams.n_layer;
    const float eps       = hparams.eps;

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ggml_context_ptr ctx0_ptr(ggml_init(params));
    auto ctx0 = ctx0_ptr.get();

    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    // input raw
    struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

    // 2D input positions
    struct ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
    ggml_set_name(pos_h, "pos_h");
    ggml_set_input(pos_h);
    struct ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
    ggml_set_name(pos_w, "pos_w");
    ggml_set_input(pos_w);

    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
    inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
    inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));

    struct ggml_tensor * embeddings = inp;

    // pre-layer norm
    embeddings = ggml_mul(ctx0, ggml_rms_norm(ctx0, embeddings, eps), model.pre_ln_w);

    // loop over layers
    for (int il = 0; il < n_layer; il++) {
        struct ggml_tensor * cur = embeddings;

        // pre-attention norm
        cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_1_w);

        // self-attention
        {
            struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
            Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta);
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));

            struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur);

            K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
            K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta);
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));

            struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur);

            V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);

            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);

            cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur);
        }

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // pre-ffn norm
        cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_2_w);

        // feed-forward
        {
            ggml_tensor * gate_proj = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
            ggml_tensor * up_proj   = ggml_mul_mat(ctx0, model.layers[il].ff_up_w,   cur);
            gate_proj = ggml_silu(ctx0, gate_proj); // pixtral uses silu
            cur = ggml_mul(ctx0, up_proj, gate_proj);
            cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
        }

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // LlavaMultiModalProjector (with GELU activation)
    {
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

        embeddings = ggml_gelu(ctx0, embeddings);
        embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
    }

    // arrangement of the [IMG_BREAK] token
    {
        // not efficient, but works
        // the trick is to view the embeddings as a 3D tensor with shape [hidden_size, n_patches_per_row, n_rows]
        // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
        // after the concatenation, we have a tensor with shape [hidden_size, n_patches_per_row + 1, n_rows]

        const int n_embd_text     = embeddings->ne[0];
        const int n_tokens_output = num_patches + n_patches_y - 1; // one [IMG_BREAK] per row, except the last row

        ggml_tensor * cur = ggml_reshape_3d(ctx0, embeddings, n_embd_text, n_patches_x, n_patches_y);
        ggml_tensor * tok = ggml_new_tensor_3d(ctx0, embeddings->type, n_embd_text, 1, n_patches_y);
        tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
        tok = ggml_add(ctx0, tok, model.token_embd_img_break);
        cur = ggml_concat(ctx0, cur, tok, 1);
        embeddings = ggml_view_2d(ctx0, cur,
            n_embd_text, n_tokens_output,
            ggml_row_size(cur->type, n_embd_text), 0);
    }

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}

static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

    const bool use_window_attn = hparams.n_wa_pattern > 0;

    const int n_wa_pattern         = hparams.n_wa_pattern;
    const int patch_size           = hparams.patch_size;
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int patches_w            = image_size_width / patch_size;
    const int patches_h            = image_size_height / patch_size;
    const int num_positions        = num_patches + (model.class_embedding ? 1 : 0);
    const int num_position_ids     = num_positions * 4; // m-rope requires 4 dim per position
    const int hidden_size          = hparams.hidden_size;
    const int n_head               = hparams.n_head;
    const int d_head               = hidden_size / n_head;
    const int n_layer              = hparams.n_layer;
    const float eps                = hparams.eps;

    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};

    const int batch_size = imgs.entries.size();
    GGML_ASSERT(batch_size == 1);

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ggml_context_ptr ctx0_ptr(ggml_init(params));
    auto ctx0 = ctx0_ptr.get();

    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);

    GGML_ASSERT(image_size_width  % (patch_size * 2) == 0);
    GGML_ASSERT(image_size_height % (patch_size * 2) == 0);

    auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
    inp = ggml_add(ctx0, inp, inp_1);

    inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
    inp = ggml_reshape_4d(
        ctx0, inp,
        hidden_size * 2, patches_w / 2, patches_h, batch_size);
    inp = ggml_reshape_4d(
        ctx0, inp,
        hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
    inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
    inp = ggml_reshape_3d(
        ctx0, inp,
        hidden_size, patches_w * patches_h, batch_size);

    if (model.patch_bias) {
        // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
        inp = ggml_add(ctx0, inp, model.patch_bias);
    }
    struct ggml_tensor * embeddings     = inp;
    struct ggml_tensor * window_mask    = nullptr;
    struct ggml_tensor * window_idx     = nullptr;
    struct ggml_tensor * inv_window_idx = nullptr;

    struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
    ggml_set_name(positions, "positions");
    ggml_set_input(positions);

    // pre-layernorm
    if (model.pre_ln_w) {
        embeddings = ggml_rms_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "pre_ln");

        embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w);
    }

    if (use_window_attn) {
        // handle window attention inputs
        inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
        ggml_set_name(inv_window_idx, "inv_window_idx");
        ggml_set_input(inv_window_idx);
        // mask for window attention
        window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions);
        ggml_set_name(window_mask, "window_mask");
        ggml_set_input(window_mask);

        // embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
        GGML_ASSERT(batch_size == 1);
        embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4);
        embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
        embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size);
    }

    // loop over layers
    for (int il = 0; il < n_layer; il++) {
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

        // rmsnorm1
        cur = ggml_rms_norm(ctx0, cur, eps);
        cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w);

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
            Q = ggml_rope_multi(
                ctx0, Q, positions, nullptr,
                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
            Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
            K = ggml_rope_multi(
                ctx0, K, positions, nullptr,
                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
            K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
            V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
            if (full_attn) {
                KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
            } else {
                KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f);
            }

            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // rms norm2
        cur = ggml_rms_norm(ctx0, cur, eps);
        cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w);

        // mlp
        // ffn_up
        auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b);

        auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur);
        cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b);
        // TODO : only 2 of these 3 are actually used, should we remove one of them?
        if (ctx->use_gelu) {
            cur_gate = ggml_gelu_inplace(ctx0, cur_gate);
        } else if (ctx->use_silu) {
            cur_gate = ggml_silu_inplace(ctx0, cur_gate);
        } else {
            cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate);
        }
        cur = ggml_mul(ctx0, cur_gate, cur_up);

        // ffn_down
        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
    if (model.post_ln_w) {
        embeddings = ggml_rms_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
982
983
    }

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);

    embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
    embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

    // GELU activation
    embeddings = ggml_gelu(ctx0, embeddings);

    // Second linear layer
    embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
    embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

    if (use_window_attn) {
        window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
        ggml_set_name(window_idx, "window_idx");
        ggml_set_input(window_idx);

        // embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
        GGML_ASSERT(batch_size == 1);
        embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
        embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
        embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size);
    }

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}

static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
1015
1016
1017
1018
1019
1020
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;
1021
1022

    if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
1023
1024
1025
        LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
        image_size_width  = load_image_size.width;
        image_size_height = load_image_size.height;
1026
        if (is_inf) {
1027
1028
            image_size_width  = imgs.entries[0]->nx;
            image_size_height = imgs.entries[0]->ny;
1029
1030
        }
    }
1031
1032

    else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
1033
1034
1035
        // use the image's native resolution when image is avaible
        if (is_inf) {
        // if (imgs->data->nx && imgs->data->ny) {
1036
1037
            image_size_width  = imgs.entries[0]->nx;
            image_size_height = imgs.entries[0]->ny;
1038
1039
        }
    }
1040

1041
1042
    const int patch_size           = hparams.patch_size;
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
1043
1044
    const int patches_w            = image_size_width / patch_size;
    const int patches_h            = image_size_height / patch_size;
1045
    const int num_positions        = num_patches + (model.class_embedding ? 1 : 0);
1046
    const int num_position_ids     = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions;
1047
1048
1049
1050
    const int hidden_size          = hparams.hidden_size;
    const int n_head               = hparams.n_head;
    const int d_head               = hidden_size / n_head;
    const float eps                = hparams.eps;
1051
    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
1052

1053
    const int batch_size = imgs.entries.size();
1054

1055
1056
1057
    if (ctx->has_llava_projector
            || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
            || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
1058
1059
1060
1061
1062
1063
1064
1065
1066
        GGML_ASSERT(batch_size == 1);
    }

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

1067
1068
1069
    ggml_context_ptr ctx0_ptr(ggml_init(params));
    auto ctx0 = ctx0_ptr.get();

1070
1071
1072
1073
1074
1075
    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

1076
    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
1077

1078
1079
    if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
        GGML_ASSERT(image_size_width  % (patch_size * 2) == 0);
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        GGML_ASSERT(image_size_height % (patch_size * 2) == 0);

        auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_add(ctx0, inp, inp_1);
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
        inp = ggml_reshape_4d(
            ctx0, inp,
            hidden_size * 2, patches_w / 2, patches_h, batch_size);
        inp = ggml_reshape_4d(
            ctx0, inp,
            hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
        inp = ggml_reshape_3d(
            ctx0, inp,
            hidden_size, patches_w * patches_h, batch_size);
    }
    else {
        inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
    }
1100

1101
    if (model.patch_bias) {
1102
1103
1104
1105
1106
1107
        // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
        inp = ggml_add(ctx0, inp, model.patch_bias);
    }
    struct ggml_tensor * embeddings = inp;
    struct ggml_tensor * pos_embed = nullptr;

1108
1109
1110
1111
1112
1113
1114
1115
    // concat class_embeddings and patch_embeddings
    if (model.class_embedding) {
        embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
        embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros
        embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
                embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
        embeddings = ggml_acc(ctx0, embeddings, inp,
                embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
1116
1117
    }

1118
    struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
1119
1120
1121
    ggml_set_name(positions, "positions");
    ggml_set_input(positions);

1122
    if (ctx->proj_type != PROJECTOR_TYPE_QWEN2VL) { // qwen2vl does NOT use learned position embeddings
1123
1124
1125
        embeddings =
            ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
    }
1126

1127
    if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
1128
1129
        int pos_w = image_size_width/patch_size;
        int pos_h = image_size_height/patch_size;
1130
1131
        int n_output_dim = clip_n_mmproj_embd(ctx);
        pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, pos_w * pos_h, 1);
1132
1133
1134
1135
1136
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);
    }

    // pre-layernorm
1137
    if (model.pre_ln_w) {
1138
1139
1140
1141
1142
1143
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "pre_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
    }

1144
1145
1146
    std::vector<struct ggml_tensor *> embedding_stack;
    const auto & vision_feature_layer = hparams.vision_feature_layer;

1147
    // loop over layers
1148
    for (int il = 0; il < ctx->max_feature_layer; il++) {
1149
1150
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

1151
1152
1153
1154
1155
1156
        // If this is an embedding feature layer, save the output.
        // NOTE: 0 index here refers to the input to the encoder.
        if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
            embedding_stack.push_back(embeddings);
        }

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        //const size_t nb_q_w = model.layers[il].q_w->nb[0];

        // layernorm1
        {
            cur = ggml_norm(ctx0, cur, eps);

            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
                           model.layers[il].ln_1_b);
        }

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
1174
            if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
1175
1176
1177
1178
                Q = ggml_rope_multi(
                    ctx0, Q, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            }
1179
1180
1181
1182
1183
1184
1185
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
            Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
1186
            if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
1187
1188
1189
1190
                K = ggml_rope_multi(
                    ctx0, K, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            }
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
            K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
            V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
1202
            KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // layernorm2
        {
            cur = ggml_norm(ctx0, cur, eps);

            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        if (ctx->use_gelu) {
            cur = ggml_gelu_inplace(ctx0, cur);
1230
1231
        } else if (ctx->use_silu) {
            cur = ggml_silu_inplace(ctx0, cur);
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        } else {
            cur = ggml_gelu_quick_inplace(ctx0, cur);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
1246
    if (model.post_ln_w) {
1247
1248
1249
1250
1251
1252
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
    }

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
    // final layer is a vision feature layer
    if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
        embedding_stack.push_back(embeddings);
    }

    // If feature layers are explicitly set, stack them (if we have multiple)
    if (!embedding_stack.empty()) {
        embeddings = embedding_stack[0];
        for (size_t i = 1; i < embedding_stack.size(); i++) {
            embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
        }
    }

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    // llava projector
    if (ctx->has_llava_projector) {
        embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);

        struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
        ggml_set_name(patches, "patches");
        ggml_set_input(patches);

        // shape [1, 576, 1024]
        // ne is whcn, ne = [1024, 576, 1, 1]
        embeddings = ggml_get_rows(ctx0, embeddings, patches);

        // print_tensor_info(embeddings, "embeddings");

        // llava projector
        if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

            embeddings = ggml_gelu(ctx0, embeddings);
1286
1287
1288
1289
            if (model.mm_2_w) {
                embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
            }
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
            // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
            // First LayerNorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                model.mm_1_b);

            // GELU activation
            embeddings = ggml_gelu(ctx0, embeddings);

            // Second linear layer
            embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

            // Second LayerNorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                model.mm_4_b);
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
            // MobileVLM projector
            int n_patch = 24;
            struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
            mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
            mlp_1 = ggml_gelu(ctx0, mlp_1);
            struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
            mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
            // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

            // block 1
            struct ggml_tensor * block_1 = nullptr;
            {
                // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
                mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
                mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
                // stride = 1, padding = 1, bias is nullptr
1329
                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376

                // layer norm
                // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                // hardswish
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                // pointwise conv
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                block_1 = ggml_relu(ctx0, block_1);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                block_1 = ggml_hardsigmoid(ctx0, block_1);
                // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                int w = block_1->ne[0], h = block_1->ne[1];
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                // residual
                block_1 = ggml_add(ctx0, mlp_3, block_1);
            }

            // block_2
            {
                // stride = 2
1377
                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                // layer norm
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                // hardswish
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                // not sure the parameters is right for globalAvgPooling
                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                // pointwise conv
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                block_1 = ggml_relu(ctx0, block_1);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                block_1 = ggml_hardsigmoid(ctx0, block_1);

                // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                int w = block_1->ne[0], h = block_1->ne[1];
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
            }
            embeddings = block_1;
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
        {
            int n_patch = 24;
            struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
            mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
            mlp_0 = ggml_gelu(ctx0, mlp_0);
            struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
            mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
            // mlp_2 ne = [2048, 576, 1, 1]
            // // AVG Pool Layer 2*2, strides = 2
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
            // mlp_2 ne = [576, 2048, 1, 1]
            mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
            // mlp_2 ne [24, 24, 2048, 1]
            mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
            // weight ne = [3, 3, 2048, 1]
1438
            struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
            peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
            peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
            peg_0 = ggml_add(ctx0, peg_0, mlp_2);
            peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
            embeddings = peg_0;
        }
        else {
            GGML_ABORT("fatal error");
        }
    }
    // minicpmv projector
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
        struct ggml_tensor * q = model.mm_model_query;
        { // layernorm
            q = ggml_norm(ctx0, q, eps);
            q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
        }
        struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
        { // layernorm
            v = ggml_norm(ctx0, v, eps);
            v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
        }
        struct ggml_tensor * k;
        { // position
            // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
            k = ggml_add(ctx0, v, pos_embed);
        }

        { // attention
            int hidden_size = clip_n_mmproj_embd(ctx);
            const int d_head = 128;
            int n_head = hidden_size/d_head;
            int num_query = 96;
            if (ctx->minicpmv_version == 2) {
                num_query = 96;
1475
            }
1476
1477
            else if (ctx->minicpmv_version == 3) {
                num_query = 64;
1478
            }
1479
1480
            else if (ctx->minicpmv_version == 4) {
                num_query = 64;
1481
1482
            }

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
            struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
            struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
            struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
            // permute
            Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
            Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
            K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
            K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
            V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
            V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
            KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
1502

1503
            embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
1504
        }
1505
1506
1507
        { // layernorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
1508
        }
1509
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
1510
    }
1511

1512
    // glm projector
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
    else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
        size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
        embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
        embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
        embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
        embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
        embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
        embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
        // GLU
        {
            embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
            embeddings = ggml_gelu_inplace(ctx0, embeddings);
            struct ggml_tensor * x = embeddings;
            embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
            x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
            embeddings = ggml_silu_inplace(ctx0, embeddings);
            embeddings = ggml_mul(ctx0, embeddings,x);
            embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
1533
        }
1534
    }
1535
1536

    else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
        embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);

        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
    }
1549
1550
1551
1552
1553
1554
1555

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}

1556
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
    ggml_cgraph * res;
    switch (ctx->proj_type) {
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
            {
                GGML_ASSERT(imgs.entries.size() == 1);
                res = clip_image_build_graph_siglip(ctx, *imgs.entries[0]);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                GGML_ASSERT(imgs.entries.size() == 1);
                res = clip_image_build_graph_pixtral(ctx, *imgs.entries[0]);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
            {
                res = clip_image_build_graph_qwen25vl(ctx, imgs);
            } break;
        default:
            {
                // TODO: we should have one build_* function per model
                res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
            } break;
1579
    }
1580
    return res;
1581
}
1582

1583
1584
1585
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
1586

1587
1588
    clip_ctx & ctx_clip;
    std::string fname;
1589

1590
    size_t model_size = 0; // in bytes
1591
1592
1593
1594
1595
1596
1597
1598
1599

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
    clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
1600

1601
1602
1603
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
1604
1605
        }

1606
        ctx_meta.reset(meta);
1607

1608
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
1609

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
1623
1624
        }

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
                struct ggml_tensor * cur = ggml_get_tensor(meta, name);
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
1636
1637
1638
1639
            }
        }
    }

1640
    void load_hparams() {
1641
1642
        auto & hparams = ctx_clip.vision_model.hparams;

1643
        // projector type
1644
        std::string proj_type;
1645
1646
1647
1648
1649
1650
1651
        {
            get_string(KEY_PROJ_TYPE, proj_type, false);
            if (!proj_type.empty()) {
                ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
            }
            if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
1652
1653
1654
            }
        }

1655
1656
1657
1658
1659
1660
1661
        // other hparams
        {
            get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);

            get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
            get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);

1662
1663
1664
1665
1666
1667
1668
1669
1670
            get_u32(KEY_N_EMBD,         hparams.hidden_size);
            get_u32(KEY_N_HEAD,         hparams.n_head);
            get_u32(KEY_N_FF,           hparams.n_intermediate);
            get_u32(KEY_N_BLOCK,        hparams.n_layer);
            get_u32(KEY_PROJ_DIM,       hparams.projection_dim);
            get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
            get_u32(KEY_IMAGE_SIZE,     hparams.image_size);
            get_u32(KEY_PATCH_SIZE,     hparams.patch_size);
            get_u32(KEY_IMAGE_CROP_RESOLUTION,    hparams.image_crop_resolution, false);
1671
            get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
1672

1673
1674
1675
1676
1677
            ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
                                        || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
                                        || ctx_clip.proj_type == PROJECTOR_TYPE_LDP
                                        || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;

1678
1679
1680
1681
1682
1683
1684
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
1685

1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
            {
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
                    ctx_clip.image_mean[i] = mean_data[i];
                    ctx_clip.image_std[i]  = std_data[i];
                }
1697
1698
            }

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
1710

1711
            // Calculate the deepest feature layer based on hparams and projector type
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
            // NOTE: This is only used by build_graph_legacy()
            {
                // Get the index of the second to last layer; this is the default for models that have a llava projector
                int n_layer = hparams.n_layer - 1;
                int deepest_feature_layer = -1;

                if (ctx_clip.proj_type == PROJECTOR_TYPE_MINICPMV
                        || ctx_clip.proj_type == PROJECTOR_TYPE_GLM_EDGE
                        || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN2VL
                        || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN25VL) {
                    n_layer += 1;
                }

                // If we set explicit vision feature layers, only go up to the deepest one
                // NOTE: only used by granite-vision models for now
                for (const auto & feature_layer : hparams.vision_feature_layer) {
                    if (feature_layer > deepest_feature_layer) {
                        deepest_feature_layer = feature_layer;
                    }
                }
                ctx_clip.max_feature_layer = deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
            }

            // model-specific params
            switch (ctx_clip.proj_type) {
                case PROJECTOR_TYPE_MINICPMV:
                    {
                        if (ctx_clip.minicpmv_version == 0) {
                            ctx_clip.minicpmv_version = 2; // default to 2 if not set
                        }
                    } break;
                case PROJECTOR_TYPE_IDEFICS3:
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
                    {
                        hparams.rope_theta = 10000.0f;
                    } break;
                case PROJECTOR_TYPE_QWEN25VL:
                    {
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
                    } break;
                default:
                    break;
            }
1758

1759
1760
            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
            LOG_INF("%s: has_llava_proj:     %d\n", __func__, ctx_clip.has_llava_projector);
1761
            LOG_INF("%s: minicpmv_version:   %d\n", __func__, ctx_clip.minicpmv_version);
1762
1763
1764
1765
            LOG_INF("%s: proj_scale_factor:  %d\n", __func__, hparams.proj_scale_factor);
            LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
            LOG_INF("%s: use_silu:           %d\n", __func__, ctx_clip.use_silu);
            LOG_INF("%s: use_gelu:           %d\n", __func__, ctx_clip.use_gelu);
1766
1767
1768
1769
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
1770

1771
1772
1773
    void load_tensors() {
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
1774

1775
1776
1777
1778
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
1779
1780
        }

1781
1782
1783
1784
1785
1786
1787
1788
1789
        // create data context
        struct ggml_init_params params = {
            /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
1790
1791
        }

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
            struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
                struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
1807

1808
        auto & vision_model = ctx_clip.vision_model;
1809

1810
        vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
1811

1812
1813
        vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
        vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"),   false);
1814

1815
1816
        vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
        vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"),   false);
1817

1818
1819
1820
        vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
1821

1822
        vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
1823

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
        // layers
        vision_model.layers.resize(vision_model.hparams.n_layer);
        for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
            auto & layer = vision_model.layers[il];
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      "v", il, "weight"));
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "weight"));
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      "v", il, "weight"));
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        "v", il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        "v", il, "weight"), false);
            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      "v", il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      "v", il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        "v", il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        "v", il, "bias"), false);
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855

            // new naming
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   "v", il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   "v", il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"),   false);

            // legacy naming (the in and out is reversed! don't ask me why)
            layer.ff_i_w = layer.ff_down_w;
            layer.ff_o_w = layer.ff_up_w;
            layer.ff_g_w = layer.ff_gate_w;
            layer.ff_i_b = layer.ff_down_b;
            layer.ff_o_b = layer.ff_up_b;
            layer.ff_g_b = layer.ff_gate_b;
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
        }

        switch (ctx_clip.proj_type) {
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
                    vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
                    // Yi-type llava
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    // missing in Yi-type llava
                    vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    // Yi-type llava
                    vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (vision_model.mm_3_w) {
                        // TODO: this is a hack to support Yi-type llava
                        ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
                    }
                    vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
                    vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
                    vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
                } break;
1920
            case PROJECTOR_TYPE_MINICPMV:
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
                {
                    // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
                    vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
                    vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
                    vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
                    vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
                    vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
                    vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
                } break;
1953
1954
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
                {
                    vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
            case PROJECTOR_TYPE_GEMMA3:
                {
                    vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
                } break;
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
            case PROJECTOR_TYPE_IDEFICS3:
                {
                    vision_model.projection = get_tensor(TN_MM_PROJECTOR);
                } break;
            case PROJECTOR_TYPE_PIXTRAL:
                {
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                    vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                    // [IMG_BREAK] token embedding
                    vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
                } break;
1979
1980
1981
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
1982

1983
1984
1985
        // load data
        {
            std::vector<uint8_t> read_buf;
1986
1987

#ifdef _WIN32
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
1998
#if __GLIBCXX__
1999
2000
2001
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
2002
#else // MSVC
2003
2004
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
2005
#endif
2006
            free(wbuf);
2007
#else
2008
            auto fin = std::ifstream(fname, std::ios::binary);
2009
2010
#endif
            if (!fin) {
2011
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
2012
            }
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
                struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
2035
2036
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
2037
            close(fd);
2038
#else
2039
            fin.close();
2040
#endif
2041
2042
2043

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
2044
2045
    }

2046
    void alloc_compute_meta() {
2047
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
2048
2049
2050
2051
2052

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
        clip_image_size image_size;
2053
2054
2055
2056
2057
        image_size.width  = ctx_clip.vision_model.hparams.image_size;
        image_size.height = ctx_clip.vision_model.hparams.image_size;
        img->nx = image_size.width;
        img->ny = image_size.height;
        img->buf.resize(image_size.width * image_size.height * 3);
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
        batch.entries.push_back(std::move(img));

        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
2070
            }
2071
2072
        }
    }
2073

2074
2075
2076
2077
2078
2079
2080
2081
    void get_bool(const std::string & key, bool & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
2082

2083
2084
2085
2086
2087
2088
2089
2090
    void get_i32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
2091

2092
2093
2094
2095
2096
    void get_u32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2097
        }
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

    void get_f32(const std::string & key, float & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

    void get_string(const std::string & key, std::string & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2115
        }
2116
2117
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
2118

2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
};
2133

2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
    return clip_init(fname, clip_context_params{
        /* use_gpu */   true,
        /* verbosity */ static_cast<ggml_log_level>(verbosity),
    });
}

struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
    g_logger_state.verbosity_thold = ctx_params.verbosity;
    clip_ctx * ctx_clip = new clip_ctx(ctx_params);

    try {
        clip_model_loader loader(fname, *ctx_clip);
        loader.load_hparams();
        loader.load_tensors();
        loader.alloc_compute_meta();
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
        delete ctx_clip;
        return nullptr;
2155
2156
    }

2157
    return ctx_clip;
2158
2159
2160
}

void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
2161
    ctx_clip->load_image_size = *load_image_size; // copy
2162
2163
}

2164
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
2165
    return &ctx_clip->load_image_size;
2166
2167
}

2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
2220
    }
2221
    return batch->entries[idx]->ny;
2222
}
2223
2224
2225
2226
2227

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
2228
    }
2229
    return batch->entries[idx].get();
2230
2231
}

2232
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
2233
2234
2235
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
2236
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
2237
2238
2239
2240
2241
2242
}

bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
    if (!data) {
2243
        LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
2244
2245
        return false;
    }
2246
    clip_build_img_from_pixels(data, nx, ny, img);
2247
2248
2249
2250
2251
2252
2253
2254
    stbi_image_free(data);
    return true;
}

bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
    if (!data) {
2255
        LOG_ERR("%s: failed to decode image bytes\n", __func__);
2256
2257
        return false;
    }
2258
    clip_build_img_from_pixels(data, nx, ny, img);
2259
2260
2261
2262
2263
    stbi_image_free(data);
    return true;
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
2264
2265
2266
2267
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
2268

2269
2270
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
2271
        int c = i % 3; // rgb
2272
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
2273
2274
2275
    }
}

2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
    // Bilinear resize function
    static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
2313

2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
    static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
        float C[5];
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
2372
2373
2374
                }
            }
        }
2375
2376

        return true;
2377
2378
    }

2379
2380
2381
2382
2383
2384
    // llava-1.6 type of resize_and_pad
    // if the ratio is not 1:1, padding with pad_color will be applied
    // pad_color is single channel, default is 0 (black)
    static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        int target_width  = target_resolution.width;
        int target_height = target_resolution.height;
2385

2386
2387
        float scale_w = static_cast<float>(target_width) / image.nx;
        float scale_h = static_cast<float>(target_height) / image.ny;
2388

2389
        int new_width, new_height;
2390

2391
2392
2393
2394
2395
2396
2397
        if (scale_w < scale_h) {
            new_width  = target_width;
            new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
        } else {
            new_height = target_height;
            new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
        }
2398

2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
        clip_image_u8 resized_image;
        bicubic_resize(image, resized_image, new_width, new_height);

        clip_image_u8 padded_image;
        padded_image.nx = target_width;
        padded_image.ny = target_height;
        padded_image.buf.resize(3 * target_width * target_height);

        // Fill the padded image with the fill color
        for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
            padded_image.buf[i]     = pad_color[0];
            padded_image.buf[i + 1] = pad_color[1];
            padded_image.buf[i + 2] = pad_color[2];
        }
2413

2414
2415
2416
        // Calculate padding offsets
        int pad_x = (target_width  - new_width)  / 2;
        int pad_y = (target_height - new_height) / 2;
2417

2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
        // Copy the resized image into the center of the padded buffer
        for (int y = 0; y < new_height; ++y) {
            for (int x = 0; x < new_width; ++x) {
                for (int c = 0; c < 3; ++c) {
                    padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
                }
            }
        }
        dst = std::move(padded_image);
    }
2428

2429
2430
2431
2432
    static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);
2433

2434
2435
2436
2437
2438
2439
2440
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
2441
2442
2443
            }
        }
    }
2444

2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than max_dimension, it will be resized to max_dimension
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
        if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
            return {0, 0};
        }

        float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
                                              static_cast<float>(max_dimension) / inp_size.height));

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

        int aligned_width  = GGML_PAD((int)target_width_f,  align_size);
        int aligned_height = GGML_PAD((int)target_height_f, align_size);

        return {aligned_width, aligned_height};
    }

2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
private:
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
2475
2476

/**
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
2488
 *
2489
2490
2491
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
2492
 */
2493
2494
2495
2496
2497
2498
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
2499

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static int get_max_slices(struct clip_ctx * ctx) {
        if (clip_is_minicpmv(ctx)) {
            return 9;
        }
        return 0;
    }

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int max_slice_nums  = get_max_slices(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
        const float log_ratio = log((float)original_width / original_height);
        const float ratio = (float)original_width * original_height / (slice_size * slice_size);
        const int multiple = fmin(ceil(ratio), max_slice_nums);
        const bool has_slices = (multiple > 1);
        const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
                ctx->vision_model.hparams.image_grid_pinpoints,
                original_size);
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
                    if (x == 0) {
                        res.grid_size.width++;
2548
2549
                    }
                }
2550
                res.grid_size.height++;
2551
            }
2552
2553

            return res;
2554
2555
        }

2556
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
2557

2558
2559
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, has_slices);
        res.overview_size = best_size;
2560

2561
2562
2563
2564
        if (!has_slices) {
            // skip slicing logic
            res.refined_size = clip_image_size{0, 0};
            res.grid_size    = clip_image_size{0, 0};
2565

2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
        } else {
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
                    // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
                }
            }
        }
2592

2593
2594
        return res;
    }
2595

2596
2597
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
2598

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
        image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
            image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
        } else {
            image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
        }
2615

2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
            image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
            output.push_back(std::move(img_slice));
2626
        }
2627
2628

        return output;
2629
2630
    }

2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        int original_width = original_size.width;
        int original_height = original_size.height;
        clip_image_size best_fit;
        int max_effective_resolution = 0;
        int min_wasted_resolution = std::numeric_limits<int>::max();

        for (const auto & resolution : possible_resolutions) {
            int width  = resolution.width;
            int height = resolution.height;
            float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
            int downscaled_width  = static_cast<int>(original_width * scale);
            int downscaled_height = static_cast<int>(original_height * scale);
            int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
            int wasted_resolution = (width * height) - effective_resolution;
            // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
                max_effective_resolution = effective_resolution;
                min_wasted_resolution = wasted_resolution;
                best_fit = resolution;
2673
2674
            }
        }
2675
2676

        return best_fit;
2677
2678
    }

2679
2680
2681
2682
2683
    // used by llava 1.6 with custom list of pinpoints
    static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
        std::vector<clip_image_size> possible_resolutions;
        for (size_t i = 0; i < pinpoints.size(); i += 2) {
            possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
2684
        }
2685
        return select_best_resolution(original_size, possible_resolutions);
2686
2687
    }

2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
2730
                }
2731
                ++m;
2732
2733
            }
        }
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
2745
    }
2746
};
2747

2748
// TODO @ngxson : decprecate the load_image_size singleton pattern
2749
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
2750
2751
    const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
    return inst.grid_size.width;
2752
2753
2754
2755
}

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
2756
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
2757
2758
2759
2760
2761
2762
2763
    clip_image_size original_size{img->nx, img->ny};
    bool pad_to_square = true;
    auto & params = ctx->vision_model.hparams;
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
        pad_to_square = false;
    }
2764

2765
    if (clip_is_minicpmv(ctx)) {
2766
2767
2768
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

2769
        for (size_t i = 0; i < imgs.size(); ++i) {
2770
2771
2772
2773
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
            res_imgs->entries.push_back(std::move(res));
2774
        }
2775
2776
        return true;
    }
2777
    else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
2778
2779
        clip_image_u8 resized;
        auto patch_size = clip_get_patch_size(ctx) * 2;
2780
2781
        int nx = ceil((float)img->nx / patch_size) * patch_size;
        int ny = ceil((float)img->ny / patch_size) * patch_size;
2782
        image_manipulation::bicubic_resize(*img, resized, nx, ny);
2783

2784
2785
2786
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        // clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
2787
        // res_imgs->data[0] = *res;
2788
        res_imgs->entries.push_back(std::move(img_f32));
2789
2790
        return true;
    }
2791
2792
2793
    else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
            || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
            || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
2794
        clip_image_u8 resized_image;
2795
        int sz = params.image_size;
2796
        image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
2797
        clip_image_f32_ptr img_f32(clip_image_f32_init());
2798
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
2799
2800
        normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(img_f32));
2801
2802
        return true;
    }
2803
2804
2805
2806
2807
2808
2809
2810
2811
    else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
        clip_image_u8 resized_image;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
        image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(img_f32));
        return true;
    }
2812

2813
2814
2815
    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

2816
    clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
2817
2818
2819
2820
2821

    if (pad_to_square) {
        // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
        // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
        const int longer_side = std::max(img->nx, img->ny);
2822
2823
2824
2825
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);

2826
2827
        // background color in RGB from LLaVA (this is the mean rgb color * 255)
        const std::array<uint8_t, 3> pad_color = {122, 116, 104};
2828

2829
2830
        // resize the image to the target_size
        image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
2831

2832
2833
2834
2835
        clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(res));
        return true;
2836

2837
2838
2839
2840
    } else if (!params.image_grid_pinpoints.empty()) {
        // "spatial_unpad" with "anyres" processing for llava-1.6
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
2841

2842
2843
2844
2845
2846
        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
            res_imgs->entries.push_back(std::move(res));
2847
2848
        }

2849
        return true;
2850

2851
    }
2852

2853
    GGML_ASSERT(false && "Unknown image preprocessing type");
2854
2855
2856
2857
2858
2859
2860
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
    return ctx->vision_model.image_newline;
}

void clip_free(clip_ctx * ctx) {
2861
2862
2863
    if (ctx == nullptr) {
        return;
    }
2864
2865
2866
    delete ctx;
}

2867
// deprecated
2868
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
2869
2870
2871
    const int32_t nx = ctx->vision_model.hparams.image_size;
    const int32_t ny = ctx->vision_model.hparams.image_size;
    return clip_embd_nbytes_by_img(ctx, nx, ny);
2872
2873
}

2874
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
2875
2876
2877
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
2878
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
2879
2880
}

2881
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
2882
2883
2884
    return ctx->vision_model.hparams.image_size;
}

2885
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
2886
2887
2888
    return ctx->vision_model.hparams.patch_size;
}

2889
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
2890
2891
2892
2893
    return ctx->vision_model.hparams.hidden_size;
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
2894
    return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
2895
2896
2897
}

const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
2898
2899
2900
2901
2902
2903
2904
2905
    if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
        return &ctx->vision_model.hparams.image_grid_pinpoints.front();
    }
    return nullptr;
}

size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.image_grid_pinpoints.size();
2906
2907
}

2908
// deprecated
2909
int clip_n_patches(const struct clip_ctx * ctx) {
2910
2911
2912
    clip_image_f32 img;
    img.nx = ctx->vision_model.hparams.image_size;
    img.ny = ctx->vision_model.hparams.image_size;
2913
    return clip_n_output_tokens(ctx, &img);
2914
2915
}

2916
// deprecated
2917
int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
    return clip_n_output_tokens(ctx, img);
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->vision_model.hparams;
    const int n_total = clip_n_output_tokens(ctx, img);
    if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
        return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->vision_model.hparams;
    if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
        return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
2939
2940
2941
2942
    const auto & params = ctx->vision_model.hparams;

    int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);

2943
    if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
2944
        n_patches /= 4;
2945
    } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
2946
2947
2948
2949
2950
2951
        if (ctx->minicpmv_version == 2) {
            n_patches = 96;
        }
        else if (ctx->minicpmv_version == 3) {
            n_patches = 64;
        }
2952
2953
2954
        else if (ctx->minicpmv_version == 4) {
            n_patches = 64;
        }
2955
2956
2957
2958
        else {
            GGML_ABORT("Unknown minicpmv version");
        }
    } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
2959
2960
2961
2962
        int patch_size = params.patch_size * 2;
        int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
        int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
        n_patches = x_patch * y_patch;
2963
2964
    } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        n_patches = 256;
2965
2966
2967
2968
2969
2970
    } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
        n_patches /= ctx->vision_model.hparams.proj_scale_factor;
    } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
        int n_patches_x = img->nx / params.patch_size;
        int n_patches_y = img->ny / params.patch_size;
        n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
    }

    return n_patches;
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
3063
3064
3065
3066
3067
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

3068
3069
3070
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

3071
3072
3073
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();
3074
3075
3076
3077

    if (ctx->has_llava_projector
            || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
            || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
3078
3079
        GGML_ASSERT(batch_size == 1);
    }
3080
3081

    // build the inference graph
3082
    ggml_backend_sched_reset(ctx->sched.get());
3083
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
3084
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
3085
3086

    // set inputs
3087
    const auto & model   = ctx->vision_model;
3088
3089
    const auto & hparams = model.hparams;

3090
3091
3092
    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

3093
3094
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
3095
    const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
3096
    const int pos_w = ctx->load_image_size.width  / patch_size;
3097
    const int pos_h = ctx->load_image_size.height / patch_size;
3098

3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
        struct ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
3127
    {
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B
3144

3145
3146
3147
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
3148
3149
3150
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
3151
3152
3153
3154
3155
3156
3157
3158
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
3159
3160
3161
3162
                    }
                }
            }
        }
3163
        set_input_f32("inp_raw", inp_raw);
3164
3165
    }

3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
    // set input per projector
    switch (ctx->proj_type) {
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
3178
                }
3179
3180
3181
3182
3183
3184
3185
3186
3187
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);
3188

3189
3190
3191
3192
                // inspired from resampler of Qwen-VL:
                //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
                //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
                int embed_dim = clip_n_mmproj_embd(ctx);
3193

3194
3195
                // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
                auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
3196

3197
3198
3199
3200
3201
3202
                std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
                for(int i = 0; i < pos_w * pos_h; ++i){
                    for(int j = 0; j < embed_dim; ++j){
                        pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
                    }
                }
3203

3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
                set_input_f32("pos_embed", pos_embed);
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
            {
                const int merge_ratio = 2;
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
                std::vector<int> positions(num_positions * 4);
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
3226

3227
3228
3229
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
3230
            {
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
3275
3276
                        }
                    }
3277
3278
3279
3280
3281
3282
3283
3284

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
3285
3286
                }

3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
                const int mpow = merge_ratio * merge_ratio;
                std::vector<int> positions(num_positions * 4);

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
3307

3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(num_positions);
                // dimension H
                for (int i = 0; i < num_positions; i++) {
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < num_positions; i++) {
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
            std::vector<int32_t> positions(num_positions);
3330
            for (int i = 0; i < num_positions; i++) {
3331
                positions[i] = i;
3332
            }
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
                std::vector<int32_t> positions(num_positions);
                for (int i = 0; i < num_positions; i++) {
                    positions[i] = i;
                }
                set_input_i32("positions", positions);
3346

3347
3348
3349
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
3350
                int patch_offset = model.class_embedding ? 1 : 0;
3351
                std::vector<int32_t> patches(num_patches);
3352
                for (int i = 0; i < num_patches; i++) {
3353
                    patches[i] = i + patch_offset;
3354
                }
3355
3356
3357
3358
3359
3360
3361
3362
3363
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
            {
                // do nothing
            } break;
        default:
            GGML_ABORT("Unknown projector type");
3364
3365
    }

3366
    ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
3367

3368
3369
3370
3371
3372
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
3373
3374

    // the last node is the embedding tensor
3375
    struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
3376
3377
3378
3379
3380
3381
3382
3383
3384

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
    assert(itype < GGML_TYPE_COUNT);
3385
    ggml_type type = static_cast<ggml_type>(itype);
3386

3387
3388
3389
3390
    auto * ctx_clip = clip_init(fname_inp, clip_context_params{
        /* use_gpu */   false,
        /* verbosity */ GGML_LOG_LEVEL_ERROR,
    });
3391

3392
3393
    const auto & ctx_src = ctx_clip->ctx_gguf.get();
    const auto & ctx_data = ctx_clip->ctx_data.get();
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440

    auto * ctx_out = gguf_init_empty();
    gguf_set_kv(ctx_out, ctx_src);
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
    gguf_set_val_u32(ctx_out, "general.file_type", itype);

    auto fout = std::ofstream(fname_out, std::ios::binary);

    const int n_tensors = gguf_get_n_tensors(ctx_src);

    for (int i = 0; i < n_tensors; ++i) {
        const char * name = gguf_get_tensor_name(ctx_src, i);
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
        gguf_add_tensor(ctx_out, cur);
    }

    const size_t meta_size = gguf_get_meta_size(ctx_out);
    for (size_t i = 0; i < meta_size; ++i) {
        fout.put(0);
    }

    // regexes of tensor names to be quantized
    const std::vector<std::string> k_names = {
        ".*weight",
    };

    std::vector<uint8_t> work(512);
    std::vector<float> conv_buf(512);
    size_t total_size_org = 0;
    size_t total_size_new = 0;

    for (int i = 0; i < n_tensors; ++i) {
        const std::string name = gguf_get_tensor_name(ctx_src, i);
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;

        bool quantize = false;
        for (const auto & s : k_names) {
            if (std::regex_match(name, std::regex(s))) {
                quantize = true;
                break;
            }
        }

3441
3442
        // quantize only 2D tensors and bigger than block size
        quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
3443
3444
3445
3446
3447

        if (quantize) {
            new_type = type;
            if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
                new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
3448
                // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
            }
            const size_t n_elms = ggml_nelements(cur);
            float * f32_data;

            switch (cur->type) {
            case GGML_TYPE_F32:
                f32_data = (float *)cur->data;
                break;
            case GGML_TYPE_F16:
                if (conv_buf.size() < n_elms) {
                    conv_buf.resize(n_elms);
                }
                for (size_t j = 0; j < n_elms; ++j) {
                    conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
                }
                f32_data = (float *)conv_buf.data();
                break;
            default:
3467
                LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
                gguf_free(ctx_out);
                return false;
            }

            if (work.size() < n_elms * 4) {
                work.resize(n_elms * 4);
            }
            new_data = work.data();

            new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
        } else {
            new_type = cur->type;
            new_data = cur->data;
            new_size = ggml_nbytes(cur);
        }
        const size_t orig_size = ggml_nbytes(cur);
        total_size_org += orig_size;
        total_size_new += new_size;
        gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
3487
3488
        GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
        gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
3489
3490
3491
3492
3493
3494
        fout.write((const char *)new_data, new_size);
        size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
        for (size_t j = 0; j < pad; ++j) {
            fout.put(0);
        }

3495
        LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
               orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
    }

    // go back to beginning of file and write the updated metadata
    fout.seekp(0, std::ios::beg);
    std::vector<uint8_t> meta(meta_size);
    gguf_get_meta_data(ctx_out, meta.data());
    fout.write((const char *)meta.data(), meta_size);

    fout.close();

    clip_free(ctx_clip);
    gguf_free(ctx_out);

    {
3511
3512
        LOG_INF("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
        LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
3513
3514
3515
3516
3517
3518
    }

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
    switch (ctx->proj_type) {
        case PROJECTOR_TYPE_LDP:
            return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
        case PROJECTOR_TYPE_LDPV2:
            return ctx->vision_model.mm_model_peg_0_b->ne[0];
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
            return ctx->vision_model.mm_2_b->ne[0];
        case PROJECTOR_TYPE_MLP_NORM:
            return ctx->vision_model.mm_3_b->ne[0];
        case PROJECTOR_TYPE_MINICPMV:
            if (ctx->minicpmv_version == 2) {
                return 4096;
            } else if (ctx->minicpmv_version == 3) {
                return 3584;
            } else if (ctx->minicpmv_version == 4) {
                return 3584;
            }
            GGML_ABORT("Unknown minicpmv version");
        case PROJECTOR_TYPE_GLM_EDGE:
            return ctx->vision_model.mm_model_mlp_3_w->ne[1];
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            return ctx->vision_model.mm_1_b->ne[0];
        case PROJECTOR_TYPE_GEMMA3:
            return ctx->vision_model.mm_input_proj_w->ne[0];
        case PROJECTOR_TYPE_IDEFICS3:
            return ctx->vision_model.projection->ne[1];
        default:
            GGML_ABORT("Unknown projector type");
3549
    }
3550
3551
3552
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
3553
    if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
3554
3555
3556
3557
        return ctx->minicpmv_version;
    }
    return 0;
}
3558

3559
bool clip_is_glm(const struct clip_ctx * ctx) {
3560
    return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
3561
}
3562

3563
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
3564
    return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
3565
3566
}

3567
3568
3569
3570
3571
3572
3573
3574
bool clip_is_llava(const struct clip_ctx * ctx) {
    return ctx->has_llava_projector;
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
    return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
}

3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
3587
3588
3589
3590
3591
3592
3593
3594

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
    return ctx->proj_type;
}