"examples/pytorch/hilander/test.py" did not exist on "66ad774f9eb7cbbb18b1c98f4abce43c2fb63170"
clip.cpp 125 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
#include "ggml-cpu.h"
10
11
#include "ggml-alloc.h"
#include "ggml-backend.h"
12
#include "gguf.h"
13
14
15
16
17
18
19
20
21
22
23
24

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
25
#include <unordered_set>
26
27
28
29
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
30
#include <array>
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

45
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
46

47
//#define CLIP_DEBUG_FUNCTIONS
48
49
50
51
52

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
53
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
72
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

162
163
164
165
166
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

167
168
169
170
171
172
173
174
175
struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
    int32_t hidden_size;
    int32_t n_intermediate;
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;

176
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
177

178
    float eps;
179

180
    std::vector<int32_t> image_grid_pinpoints;
181
    int32_t image_crop_resolution;
182
    std::unordered_set<int32_t> vision_feature_layer;
183
184
185
186
};

struct clip_layer {
    // attention
187
188
189
190
191
192
    struct ggml_tensor * k_w = nullptr;
    struct ggml_tensor * k_b = nullptr;
    struct ggml_tensor * q_w = nullptr;
    struct ggml_tensor * q_b = nullptr;
    struct ggml_tensor * v_w = nullptr;
    struct ggml_tensor * v_b = nullptr;
193

194
195
    struct ggml_tensor * o_w = nullptr;
    struct ggml_tensor * o_b = nullptr;
196
197

    // layernorm 1
198
199
    struct ggml_tensor * ln_1_w = nullptr;
    struct ggml_tensor * ln_1_b = nullptr;
200
201

    // ff
202
203
    struct ggml_tensor * ff_i_w = nullptr;
    struct ggml_tensor * ff_i_b = nullptr;
204

205
206
    struct ggml_tensor * ff_o_w = nullptr;
    struct ggml_tensor * ff_o_b = nullptr;
207
208

    // layernorm 2
209
210
    struct ggml_tensor * ln_2_w = nullptr;
    struct ggml_tensor * ln_2_b = nullptr;
211
212
213
214
215
216
};

struct clip_vision_model {
    struct clip_hparams hparams;

    // embeddings
217
218
219
220
221
    struct ggml_tensor * class_embedding = nullptr;
    struct ggml_tensor * patch_embeddings_0 = nullptr;
    struct ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    struct ggml_tensor * patch_bias = nullptr;
    struct ggml_tensor * position_embeddings = nullptr;
222

223
224
    struct ggml_tensor * pre_ln_w = nullptr;
    struct ggml_tensor * pre_ln_b = nullptr;
225
226
227
228
229
230
231
232
233

    std::vector<clip_layer> layers;

    struct ggml_tensor * post_ln_w;
    struct ggml_tensor * post_ln_b;

    struct ggml_tensor * projection;

    // LLaVA projection
234
235
236
237
    struct ggml_tensor * mm_0_w = nullptr;
    struct ggml_tensor * mm_0_b = nullptr;
    struct ggml_tensor * mm_2_w = nullptr;
    struct ggml_tensor * mm_2_b = nullptr;
238

239
    struct ggml_tensor * image_newline = nullptr;
240
241

    // Yi type models with mlp+normalization projection
242
243
244
245
246
247
    struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    struct ggml_tensor * mm_1_b = nullptr;
    struct ggml_tensor * mm_3_w = nullptr;
    struct ggml_tensor * mm_3_b = nullptr;
    struct ggml_tensor * mm_4_w = nullptr;
    struct ggml_tensor * mm_4_b = nullptr;
248

249
    //GLMV-Edge projection
250
251
252
253
    struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
    struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
    struct ggml_tensor * boi_w = nullptr;
    struct ggml_tensor * eoi_w = nullptr;
254

255
    // MobileVLM projection
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    struct ggml_tensor * mm_model_mlp_1_w = nullptr;
    struct ggml_tensor * mm_model_mlp_1_b = nullptr;
    struct ggml_tensor * mm_model_mlp_3_w = nullptr;
    struct ggml_tensor * mm_model_mlp_3_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
280
281

    // MobileVLM_V2 projection
282
283
284
285
286
287
    struct ggml_tensor * mm_model_mlp_0_w = nullptr;
    struct ggml_tensor * mm_model_mlp_0_b = nullptr;
    struct ggml_tensor * mm_model_mlp_2_w = nullptr;
    struct ggml_tensor * mm_model_mlp_2_b = nullptr;
    struct ggml_tensor * mm_model_peg_0_w = nullptr;
    struct ggml_tensor * mm_model_peg_0_b = nullptr;
288
289

    // MINICPMV projection
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    struct ggml_tensor * mm_model_pos_embed_k = nullptr;
    struct ggml_tensor * mm_model_query = nullptr;
    struct ggml_tensor * mm_model_proj = nullptr;
    struct ggml_tensor * mm_model_kv_proj = nullptr;
    struct ggml_tensor * mm_model_attn_q_w = nullptr;
    struct ggml_tensor * mm_model_attn_q_b = nullptr;
    struct ggml_tensor * mm_model_attn_k_w = nullptr;
    struct ggml_tensor * mm_model_attn_k_b = nullptr;
    struct ggml_tensor * mm_model_attn_v_w = nullptr;
    struct ggml_tensor * mm_model_attn_v_b = nullptr;
    struct ggml_tensor * mm_model_attn_o_w = nullptr;
    struct ggml_tensor * mm_model_attn_o_b = nullptr;
    struct ggml_tensor * mm_model_ln_q_w = nullptr;
    struct ggml_tensor * mm_model_ln_q_b = nullptr;
    struct ggml_tensor * mm_model_ln_kv_w = nullptr;
    struct ggml_tensor * mm_model_ln_kv_b = nullptr;
    struct ggml_tensor * mm_model_ln_post_w = nullptr;
    struct ggml_tensor * mm_model_ln_post_b = nullptr;

    // gemma3
    struct ggml_tensor * mm_input_proj_w = nullptr;
    struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
312
313
314
315
316
317
318
};

struct clip_ctx {
    bool has_text_encoder    = false;
    bool has_vision_encoder  = false;
    bool has_llava_projector = false;
    bool has_minicpmv_projector = false;
319
    bool has_glm_projector = false;
320
    bool has_qwen2vl_merger = false;
321
322
323
324
325
    int minicpmv_version = 2;

    struct clip_vision_model vision_model;
    projector_type proj_type = PROJECTOR_TYPE_MLP;

326
    int32_t max_feature_layer; // unused in newer models like gemma3
327
328
329
    float image_mean[3];
    float image_std[3];
    bool use_gelu = false;
330
    bool use_silu = false;
331

332
333
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
334
335
336

    std::vector<uint8_t> buf_compute_meta;

337
338
339
340
341
342
343
344
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    ggml_backend_t backend;
    ggml_backend_t backend_cpu;
    ggml_backend_buffer_ptr buf;

    ggml_backend_sched_ptr sched;
345

346
    clip_image_size load_image_size;
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    clip_ctx(clip_context_params & ctx_params) {
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
        backend     = ctx_params.use_gpu
                        ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
                        : nullptr;

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
377
378
};

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;

    const int patch_size           = hparams.patch_size;
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int hidden_size          = hparams.hidden_size;
    const int n_head               = hparams.n_head;
    const int d_head               = hidden_size / n_head;
    const int n_layer              = hparams.n_layer;
    const float eps                = hparams.eps;

    GGML_ASSERT(imgs.entries.size() == 1); // batch_size == 1

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ggml_context_ptr ctx0_ptr(ggml_init(params));
    auto ctx0 = ctx0_ptr.get();

    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    // input raw
    struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
    inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
    inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
    inp = ggml_add(ctx0, inp, model.patch_bias);

    // position embeddings
    struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);

    // loop over layers
    for (int il = 0; il < n_layer; il++) {
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

        // layernorm1
        {
            cur = ggml_norm(ctx0, cur, eps);
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
        }

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);

            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // layernorm2
        {
            cur = ggml_norm(ctx0, cur, eps);
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        // siglip uses gelu
        cur = ggml_gelu(ctx0, cur);

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
    if (model.post_ln_w) {
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
    }

    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        const int batch_size = 1;
        const int mm_tokens_per_image = 256; // default value for gemma3
        const int tokens_per_side = sqrt(mm_tokens_per_image);
        const int patches_per_image = sqrt(num_patches);
        const int kernel_size = patches_per_image / tokens_per_side;

        embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
        embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);

        // doing a pool2d to reduce the number of output tokens to 256
        embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
        embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
        embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));

        // apply norm before projection
        embeddings = ggml_rms_norm(ctx0, embeddings, eps);
        embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);

        // apply projection
        embeddings = ggml_mul_mat(ctx0,
            ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
            embeddings);
    }

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}

static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
531
    if (!ctx->has_vision_encoder) {
532
        LOG_ERR("This gguf file seems to have no vision encoder\n");
533
534
535
536
537
538
539
540
541
542
        return nullptr;
    }

    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;
    if (ctx->has_minicpmv_projector) {
543
544
545
        LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
        image_size_width  = load_image_size.width;
        image_size_height = load_image_size.height;
546
        if (is_inf) {
547
548
            image_size_width  = imgs.entries[0]->nx;
            image_size_height = imgs.entries[0]->ny;
549
550
        }
    }
551
552
553
554
    else if (ctx->has_qwen2vl_merger) {
        // use the image's native resolution when image is avaible
        if (is_inf) {
        // if (imgs->data->nx && imgs->data->ny) {
555
556
            image_size_width  = imgs.entries[0]->nx;
            image_size_height = imgs.entries[0]->ny;
557
558
        }
    }
559
560
    const int patch_size           = hparams.patch_size;
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
561
562
    const int patches_w            = image_size_width / patch_size;
    const int patches_h            = image_size_height / patch_size;
563
    const int num_positions        = num_patches + (model.class_embedding ? 1 : 0);
564
    const int num_position_ids     = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
565
566
567
568
    const int hidden_size          = hparams.hidden_size;
    const int n_head               = hparams.n_head;
    const int d_head               = hidden_size / n_head;
    const float eps                = hparams.eps;
569
    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
570

571
    const int batch_size = imgs.entries.size();
572

573
    if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
574
575
576
577
578
579
580
581
582
        GGML_ASSERT(batch_size == 1);
    }

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

583
584
585
    ggml_context_ptr ctx0_ptr(ggml_init(params));
    auto ctx0 = ctx0_ptr.get();

586
587
588
589
590
591
    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

592
    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    if (ctx->has_qwen2vl_merger) {
        GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
        GGML_ASSERT(image_size_height % (patch_size * 2) == 0);

        auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_add(ctx0, inp, inp_1);
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
        inp = ggml_reshape_4d(
            ctx0, inp,
            hidden_size * 2, patches_w / 2, patches_h, batch_size);
        inp = ggml_reshape_4d(
            ctx0, inp,
            hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
        inp = ggml_reshape_3d(
            ctx0, inp,
            hidden_size, patches_w * patches_h, batch_size);
    }
    else {
        inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
    }
616

617
    if (model.patch_bias) {
618
619
620
621
622
623
624
625
        // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
        inp = ggml_add(ctx0, inp, model.patch_bias);
    }
    struct ggml_tensor * embeddings = inp;
    struct ggml_tensor * pos_embed = nullptr;

    if (ctx->has_llava_projector) {
        // concat class_embeddings and patch_embeddings
626
        if (model.class_embedding) {
627
628
629
630
631
632
633
634
635
636
            embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
            ggml_set_name(embeddings, "embeddings");
            ggml_set_input(embeddings);
            embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
                    embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
            embeddings = ggml_acc(ctx0, embeddings, inp,
                    embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
        }
    }

637
    struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
638
639
640
    ggml_set_name(positions, "positions");
    ggml_set_input(positions);

641
642
643
644
    if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
        embeddings =
            ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
    }
645
646
647
648
649
650
651
652
653
654

    if (ctx->has_minicpmv_projector) {
        int pos_w = image_size_width/patch_size;
        int pos_h = image_size_height/patch_size;
        if (ctx->minicpmv_version == 2) {
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
        }
        else if (ctx->minicpmv_version == 3) {
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
        }
655
656
657
        else if (ctx->minicpmv_version == 4) {
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
        }
658
659
660
661
662
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);
    }

    // pre-layernorm
663
    if (model.pre_ln_w) {
664
665
666
667
668
669
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "pre_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
    }

670
671
672
    std::vector<struct ggml_tensor *> embedding_stack;
    const auto & vision_feature_layer = hparams.vision_feature_layer;

673
    // loop over layers
674
    for (int il = 0; il < ctx->max_feature_layer; il++) {
675
676
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

677
678
679
680
681
682
        // If this is an embedding feature layer, save the output.
        // NOTE: 0 index here refers to the input to the encoder.
        if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
            embedding_stack.push_back(embeddings);
        }

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        //const size_t nb_q_w = model.layers[il].q_w->nb[0];

        // layernorm1
        {
            cur = ggml_norm(ctx0, cur, eps);

            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
                           model.layers[il].ln_1_b);
        }

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
700
701
702
703
704
            if (ctx->has_qwen2vl_merger) {
                Q = ggml_rope_multi(
                    ctx0, Q, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            }
705
706
707
708
709
710
711
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
            Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
712
713
714
715
716
            if (ctx->has_qwen2vl_merger) {
                K = ggml_rope_multi(
                    ctx0, K, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            }
717
718
719
720
721
722
723
724
725
726
727
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
            K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
            V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
728
            KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // layernorm2
        {
            cur = ggml_norm(ctx0, cur, eps);

            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        if (ctx->use_gelu) {
            cur = ggml_gelu_inplace(ctx0, cur);
756
757
        } else if (ctx->use_silu) {
            cur = ggml_silu_inplace(ctx0, cur);
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        } else {
            cur = ggml_gelu_quick_inplace(ctx0, cur);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
772
    if (model.post_ln_w) {
773
774
775
776
777
778
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
    }

779
780
781
782
783
784
785
786
787
788
789
790
791
    // final layer is a vision feature layer
    if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
        embedding_stack.push_back(embeddings);
    }

    // If feature layers are explicitly set, stack them (if we have multiple)
    if (!embedding_stack.empty()) {
        embeddings = embedding_stack[0];
        for (size_t i = 1; i < embedding_stack.size(); i++) {
            embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
        }
    }

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
    // llava projector
    if (ctx->has_llava_projector) {
        embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);

        struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
        ggml_set_name(patches, "patches");
        ggml_set_input(patches);

        // shape [1, 576, 1024]
        // ne is whcn, ne = [1024, 576, 1, 1]
        embeddings = ggml_get_rows(ctx0, embeddings, patches);

        // print_tensor_info(embeddings, "embeddings");

        // llava projector
        if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

            embeddings = ggml_gelu(ctx0, embeddings);
812
813
814
815
            if (model.mm_2_w) {
                embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
            }
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
            // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
            // First LayerNorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                model.mm_1_b);

            // GELU activation
            embeddings = ggml_gelu(ctx0, embeddings);

            // Second linear layer
            embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

            // Second LayerNorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                model.mm_4_b);
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
            // MobileVLM projector
            int n_patch = 24;
            struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
            mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
            mlp_1 = ggml_gelu(ctx0, mlp_1);
            struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
            mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
            // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

            // block 1
            struct ggml_tensor * block_1 = nullptr;
            {
                // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
                mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
                mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
                // stride = 1, padding = 1, bias is nullptr
855
                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

                // layer norm
                // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                // hardswish
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                // pointwise conv
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                block_1 = ggml_relu(ctx0, block_1);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                block_1 = ggml_hardsigmoid(ctx0, block_1);
                // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                int w = block_1->ne[0], h = block_1->ne[1];
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                // residual
                block_1 = ggml_add(ctx0, mlp_3, block_1);
            }

            // block_2
            {
                // stride = 2
903
                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                // layer norm
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                // hardswish
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                // not sure the parameters is right for globalAvgPooling
                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                // pointwise conv
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                block_1 = ggml_relu(ctx0, block_1);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                block_1 = ggml_hardsigmoid(ctx0, block_1);

                // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                int w = block_1->ne[0], h = block_1->ne[1];
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
            }
            embeddings = block_1;
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
        {
            int n_patch = 24;
            struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
            mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
            mlp_0 = ggml_gelu(ctx0, mlp_0);
            struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
            mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
            // mlp_2 ne = [2048, 576, 1, 1]
            // // AVG Pool Layer 2*2, strides = 2
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
            // mlp_2 ne = [576, 2048, 1, 1]
            mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
            // mlp_2 ne [24, 24, 2048, 1]
            mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
            // weight ne = [3, 3, 2048, 1]
964
            struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
            peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
            peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
            peg_0 = ggml_add(ctx0, peg_0, mlp_2);
            peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
            embeddings = peg_0;
        }
        else {
            GGML_ABORT("fatal error");
        }
    }
    // minicpmv projector
    else if (ctx->has_minicpmv_projector)
    {
        if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
            struct ggml_tensor * q = model.mm_model_query;
            { // layernorm
                q = ggml_norm(ctx0, q, eps);
                q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
            }
            struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
            { // layernorm
                v = ggml_norm(ctx0, v, eps);
                v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
            }
            struct ggml_tensor * k;
            { // position
                // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
                k = ggml_add(ctx0, v, pos_embed);
            }

            { // attention
                int hidden_size = 4096;
                const int d_head = 128;
                int n_head = hidden_size/d_head;
                int num_query = 96;
                if (ctx->minicpmv_version == 2) {
                    hidden_size = 4096;
                    n_head = hidden_size/d_head;
                    num_query = 96;
                }
                else if (ctx->minicpmv_version == 3) {
                    hidden_size = 3584;
                    n_head = hidden_size/d_head;
                    num_query = 64;
                }
1011
1012
1013
1014
1015
                else if (ctx->minicpmv_version == 4) {
                    hidden_size = 3584;
                    n_head = hidden_size/d_head;
                    num_query = 64;
                }
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

                struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
                struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
                struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
                // permute
                Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
                Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
                Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
                K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
                K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
                K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
                V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
                V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
                V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
                struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
1031
                KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
                struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
                KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
                KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
                KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);

                embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
            }
            { // layernorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
            }
            embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
        }
        else {
            GGML_ASSERT(false);
        }
    }
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    // glm projector
    else if (ctx->has_glm_projector) {
        if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
            embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            //GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                struct ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
                embeddings = ggml_silu_inplace(ctx0, embeddings);
                embeddings = ggml_mul(ctx0, embeddings,x);
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
        } else {
1073
            GGML_ABORT("fatal error");
1074
        }
1075
1076
    }
    else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);

        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
    }
1089
1090
1091
1092
1093
1094
1095

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}

1096
1097
1098
1099
1100
1101
1102
1103
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        return clip_image_build_graph_siglip(ctx, imgs);
    } else {
        // TODO: we should have one build_* function per model
        return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
    }
}
1104

1105
1106
1107
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
1108

1109
1110
    clip_ctx & ctx_clip;
    std::string fname;
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
    size_t model_size; // in bytes

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
    clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
1122

1123
1124
1125
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
1126
1127
        }

1128
        ctx_meta.reset(meta);
1129

1130
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
1131

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
1145
1146
        }

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
                struct ggml_tensor * cur = ggml_get_tensor(meta, name);
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
1158
1159
1160
1161
            }
        }
    }

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
    void load_hparams() {
        // projector type
        {
            std::string proj_type;
            get_string(KEY_PROJ_TYPE, proj_type, false);
            if (!proj_type.empty()) {
                ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
            }
            if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
1172
1173
1174
            }
        }

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
        // other hparams
        {
            get_bool(KEY_HAS_TEXT_ENC, ctx_clip.has_text_encoder, false);
            get_bool(KEY_HAS_VIS_ENC, ctx_clip.has_vision_encoder, false);
            GGML_ASSERT(ctx_clip.has_vision_encoder);
            GGML_ASSERT(!ctx_clip.has_text_encoder);

            // legacy keys, use KEY_PROJ_TYPE instead
            get_bool(KEY_HAS_LLAVA_PROJ, ctx_clip.has_llava_projector, false);
            get_bool(KEY_HAS_MINICPMV_PROJ, ctx_clip.has_minicpmv_projector, false);
            get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
            get_bool(KEY_HAS_GLM_PROJ, ctx_clip.has_glm_projector, false);
            get_bool(KEY_HAS_QWEN2VL_MERGER, ctx_clip.has_qwen2vl_merger, false);
            // !!! do NOT extend the list above, use KEY_PROJ_TYPE instead

            get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
            get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);

            auto & hparams = ctx_clip.vision_model.hparams;
            get_u32(string_format(KEY_N_EMBD,         "vision"), hparams.hidden_size);
            get_u32(string_format(KEY_N_HEAD,         "vision"), hparams.n_head);
            get_u32(string_format(KEY_N_FF,           "vision"), hparams.n_intermediate);
            get_u32(string_format(KEY_N_BLOCK,        "vision"), hparams.n_layer);
            get_u32(string_format(KEY_PROJ_DIM,       "vision"), hparams.projection_dim);
            get_f32(string_format(KEY_LAYER_NORM_EPS, "vision"), hparams.eps);
            get_u32(KEY_IMAGE_SIZE, hparams.image_size);
            get_u32(KEY_PATCH_SIZE, hparams.patch_size);
            get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
            get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
1204

1205
1206
1207
1208
1209
1210
1211
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
1212

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            {
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
                    ctx_clip.image_mean[i] = mean_data[i];
                    ctx_clip.image_std[i]  = std_data[i];
                }
1224
1225
            }

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
            // Calculate the deepest feature layer based on hparams and projector type
            ctx_clip.max_feature_layer = get_deepest_feature_layer(&ctx_clip);
1239

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
            LOG_INF("%s: text_encoder:       %d\n", __func__, ctx_clip.has_text_encoder);
            LOG_INF("%s: vision_encoder:     %d\n", __func__, ctx_clip.has_vision_encoder);
            LOG_INF("%s: llava_projector:    %d\n", __func__, ctx_clip.has_llava_projector);
            LOG_INF("%s: minicpmv_projector: %d\n", __func__, ctx_clip.has_minicpmv_projector);
            LOG_INF("%s: minicpmv_version:   %d\n", __func__, ctx_clip.minicpmv_version);
            LOG_INF("%s: glm_projector:      %d\n", __func__, ctx_clip.has_glm_projector);
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
1250

1251
1252
1253
    void load_tensors() {
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
1254

1255
1256
1257
1258
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
1259
1260
        }

1261
1262
1263
1264
1265
1266
1267
1268
1269
        // create data context
        struct ggml_init_params params = {
            /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
1270
1271
        }

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
            struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
                struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
1287

1288
        auto & vision_model = ctx_clip.vision_model;
1289

1290
        vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
1291

1292
1293
        vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
        vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"),   false);
1294

1295
1296
        vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
        vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"),   false);
1297

1298
1299
1300
1301
1302
        vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
        if (vision_model.patch_embeddings_1 == nullptr) {
            ctx_clip.has_qwen2vl_merger = false;
1303
1304
        }

1305
        vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
1306

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
        // layers
        vision_model.layers.resize(vision_model.hparams.n_layer);
        for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
            auto & layer = vision_model.layers[il];
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      "v", il, "weight"));
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "weight"));
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      "v", il, "weight"));
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        "v", il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        "v", il, "weight"), false);
            layer.ff_i_w = get_tensor(string_format(TN_FFN_DOWN,    "v", il, "weight"));
            layer.ff_o_w = get_tensor(string_format(TN_FFN_UP,      "v", il, "weight"));
            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      "v", il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      "v", il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        "v", il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        "v", il, "bias"), false);
            layer.ff_i_b = get_tensor(string_format(TN_FFN_DOWN,    "v", il, "bias"), false);
            layer.ff_o_b = get_tensor(string_format(TN_FFN_UP,      "v", il, "bias"), false);
        }

        switch (ctx_clip.proj_type) {
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
                    vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
                    // Yi-type llava
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    // missing in Yi-type llava
                    vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    // Yi-type llava
                    vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (vision_model.mm_3_w) {
                        // TODO: this is a hack to support Yi-type llava
                        ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
                    }
                    vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
                    vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
                    vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
                } break;
            case PROJECTOR_TYPE_RESAMPLER:
                {
                    // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
                    vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
                    vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
                    vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
                    vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
                    vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
                    vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
                    vision_model.boi_w = get_tensor(TN_GLM_BOI_W);
                    vision_model.eoi_w = get_tensor(TN_GLM_EOI_W);
                } break;
            case PROJECTOR_TYPE_MERGER:
                {
                    vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
            case PROJECTOR_TYPE_GEMMA3:
                {
                    vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
                } break;
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
1441

1442
1443
1444
        // load data
        {
            std::vector<uint8_t> read_buf;
1445
1446

#ifdef _WIN32
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
1457
#if __GLIBCXX__
1458
1459
1460
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
1461
#else // MSVC
1462
1463
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
1464
#endif
1465
            free(wbuf);
1466
#else
1467
            auto fin = std::ifstream(fname, std::ios::binary);
1468
1469
#endif
            if (!fin) {
1470
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
1471
            }
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
                struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
1494
1495
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
1496
            close(fd);
1497
#else
1498
            fin.close();
1499
#endif
1500
1501
1502

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
1503
1504
    }

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
    void alloc_compute_meta() {
        ctx_clip.buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
        clip_image_size image_size;
        image_size.width  = clip_get_image_size(&ctx_clip);
        image_size.height = clip_get_image_size(&ctx_clip);
        int n_patches = clip_get_image_size(&ctx_clip) / image_size.width;
        img->nx = n_patches;
        img->ny = n_patches;
        img->buf.resize(n_patches * image_size.width * image_size.height * 3);
        batch.entries.push_back(std::move(img));

        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
1530
            }
1531
1532
        }
    }
1533

1534
1535
1536
1537
1538
1539
1540
1541
    void get_bool(const std::string & key, bool & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
1542

1543
1544
1545
1546
1547
1548
1549
1550
    void get_i32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
1551

1552
1553
1554
1555
1556
    void get_u32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
1557
        }
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

    void get_f32(const std::string & key, float & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

    void get_string(const std::string & key, std::string & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
1575
        }
1576
1577
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
1578

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
};
1593

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
    return clip_init(fname, clip_context_params{
        /* use_gpu */   true,
        /* verbosity */ static_cast<ggml_log_level>(verbosity),
    });
}

struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
    g_logger_state.verbosity_thold = ctx_params.verbosity;
    clip_ctx * ctx_clip = new clip_ctx(ctx_params);

    try {
        clip_model_loader loader(fname, *ctx_clip);
        loader.load_hparams();
        loader.load_tensors();
        loader.alloc_compute_meta();
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
        delete ctx_clip;
        return nullptr;
1615
1616
    }

1617
    return ctx_clip;
1618
1619
1620
}

void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
1621
    ctx_clip->load_image_size = *load_image_size; // copy
1622
1623
}

1624
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
1625
    return &ctx_clip->load_image_size;
1626
1627
}

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
1680
    }
1681
    return batch->entries[idx]->ny;
1682
}
1683
1684
1685
1686
1687

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
1688
    }
1689
    return batch->entries[idx].get();
1690
1691
}

1692
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
1693
1694
1695
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
1696
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
1697
1698
1699
1700
1701
1702
}

bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
    if (!data) {
1703
        LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
1704
1705
        return false;
    }
1706
    clip_build_img_from_pixels(data, nx, ny, img);
1707
1708
1709
1710
1711
1712
1713
1714
    stbi_image_free(data);
    return true;
}

bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
    if (!data) {
1715
        LOG_ERR("%s: failed to decode image bytes\n", __func__);
1716
1717
        return false;
    }
1718
    clip_build_img_from_pixels(data, nx, ny, img);
1719
1720
1721
1722
1723
    stbi_image_free(data);
    return true;
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
1724
1725
1726
1727
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
1728

1729
1730
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
1731
        int c = i % 3; // rgb
1732
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
1733
1734
1735
    }
}

1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
    // Bilinear resize function
    static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
1773

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
    static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
        float C[5];
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
1832
1833
1834
                }
            }
        }
1835
1836

        return true;
1837
1838
    }

1839
1840
1841
1842
1843
1844
    // llava-1.6 type of resize_and_pad
    // if the ratio is not 1:1, padding with pad_color will be applied
    // pad_color is single channel, default is 0 (black)
    static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        int target_width  = target_resolution.width;
        int target_height = target_resolution.height;
1845

1846
1847
        float scale_w = static_cast<float>(target_width) / image.nx;
        float scale_h = static_cast<float>(target_height) / image.ny;
1848

1849
        int new_width, new_height;
1850

1851
1852
1853
1854
1855
1856
1857
        if (scale_w < scale_h) {
            new_width  = target_width;
            new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
        } else {
            new_height = target_height;
            new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
        }
1858

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
        clip_image_u8 resized_image;
        bicubic_resize(image, resized_image, new_width, new_height);

        clip_image_u8 padded_image;
        padded_image.nx = target_width;
        padded_image.ny = target_height;
        padded_image.buf.resize(3 * target_width * target_height);

        // Fill the padded image with the fill color
        for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
            padded_image.buf[i]     = pad_color[0];
            padded_image.buf[i + 1] = pad_color[1];
            padded_image.buf[i + 2] = pad_color[2];
        }
1873

1874
1875
1876
        // Calculate padding offsets
        int pad_x = (target_width  - new_width)  / 2;
        int pad_y = (target_height - new_height) / 2;
1877

1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
        // Copy the resized image into the center of the padded buffer
        for (int y = 0; y < new_height; ++y) {
            for (int x = 0; x < new_width; ++x) {
                for (int c = 0; c < 3; ++c) {
                    padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
                }
            }
        }
        dst = std::move(padded_image);
    }
1888

1889
1890
1891
1892
    static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);
1893

1894
1895
1896
1897
1898
1899
1900
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
1901
1902
1903
            }
        }
    }
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

private:
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
1915
1916

/**
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
1928
 *
1929
1930
1931
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
1932
 */
1933
1934
1935
1936
1937
1938
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
1939

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static int get_max_slices(struct clip_ctx * ctx) {
        if (clip_is_minicpmv(ctx)) {
            return 9;
        }
        return 0;
    }

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int max_slice_nums  = get_max_slices(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
        const float log_ratio = log((float)original_width / original_height);
        const float ratio = (float)original_width * original_height / (slice_size * slice_size);
        const int multiple = fmin(ceil(ratio), max_slice_nums);
        const bool has_slices = (multiple > 1);
        const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
                ctx->vision_model.hparams.image_grid_pinpoints,
                original_size);
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
                    if (x == 0) {
                        res.grid_size.width++;
1988
1989
                    }
                }
1990
                res.grid_size.height++;
1991
            }
1992
1993

            return res;
1994
1995
        }

1996
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
1997

1998
1999
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, has_slices);
        res.overview_size = best_size;
2000

2001
2002
2003
2004
        if (!has_slices) {
            // skip slicing logic
            res.refined_size = clip_image_size{0, 0};
            res.grid_size    = clip_image_size{0, 0};
2005

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
        } else {
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
                    // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
                }
            }
        }
2032

2033
2034
        return res;
    }
2035

2036
2037
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
2038

2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
        image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
            image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
        } else {
            image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
        }
2055

2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
            image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
            output.push_back(std::move(img_slice));
2066
        }
2067
2068

        return output;
2069
2070
    }

2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        int original_width = original_size.width;
        int original_height = original_size.height;
        clip_image_size best_fit;
        int max_effective_resolution = 0;
        int min_wasted_resolution = std::numeric_limits<int>::max();

        for (const auto & resolution : possible_resolutions) {
            int width  = resolution.width;
            int height = resolution.height;
            float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
            int downscaled_width  = static_cast<int>(original_width * scale);
            int downscaled_height = static_cast<int>(original_height * scale);
            int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
            int wasted_resolution = (width * height) - effective_resolution;
            // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
                max_effective_resolution = effective_resolution;
                min_wasted_resolution = wasted_resolution;
                best_fit = resolution;
2113
2114
            }
        }
2115
2116

        return best_fit;
2117
2118
    }

2119
2120
2121
2122
2123
    // used by llava 1.6 with custom list of pinpoints
    static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
        std::vector<clip_image_size> possible_resolutions;
        for (size_t i = 0; i < pinpoints.size(); i += 2) {
            possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
2124
        }
2125
        return select_best_resolution(original_size, possible_resolutions);
2126
2127
    }

2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
2170
                }
2171
                ++m;
2172
2173
            }
        }
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
2185
    }
2186
};
2187

2188
// TODO @ngxson : decprecate the load_image_size singleton pattern
2189
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
2190
2191
    const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
    return inst.grid_size.width;
2192
2193
2194
2195
}

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
2196
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
    if (!ctx->has_vision_encoder) {
        LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
        return false;
    }

    clip_image_size original_size{img->nx, img->ny};
    bool pad_to_square = true;
    auto & params = ctx->vision_model.hparams;
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
        pad_to_square = false;
    }
2209

2210
    if (clip_is_minicpmv(ctx)) {
2211
2212
2213
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

2214
        for (size_t i = 0; i < imgs.size(); ++i) {
2215
2216
2217
2218
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
            res_imgs->entries.push_back(std::move(res));
2219
        }
2220
2221
        return true;
    }
2222
    else if (ctx->has_qwen2vl_merger) {
2223
2224
        clip_image_u8 resized;
        auto patch_size = clip_get_patch_size(ctx) * 2;
2225
2226
        int nx = ceil((float)img->nx / patch_size) * patch_size;
        int ny = ceil((float)img->ny / patch_size) * patch_size;
2227
        image_manipulation::bicubic_resize(*img, resized, nx, ny);
2228

2229
2230
2231
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        // clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
2232
        // res_imgs->data[0] = *res;
2233
        res_imgs->entries.push_back(std::move(img_f32));
2234
2235
        return true;
    }
2236

2237
    if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
2238
        clip_image_u8 resized_image;
2239
2240
        int sz = params.image_size;
        image_manipulation::bicubic_resize(*img, resized_image, sz, sz);
2241
        clip_image_f32_ptr img_f32(clip_image_f32_init());
2242
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
2243
2244
        normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(img_f32));
2245
2246
2247
        return true;
    }

2248
2249
2250
    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

2251
    clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
2252
2253
2254
2255
2256

    if (pad_to_square) {
        // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
        // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
        const int longer_side = std::max(img->nx, img->ny);
2257
2258
2259
2260
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);

2261
2262
        // background color in RGB from LLaVA (this is the mean rgb color * 255)
        const std::array<uint8_t, 3> pad_color = {122, 116, 104};
2263

2264
2265
        // resize the image to the target_size
        image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
2266

2267
2268
2269
2270
        clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(res));
        return true;
2271

2272
2273
2274
2275
    } else if (!params.image_grid_pinpoints.empty()) {
        // "spatial_unpad" with "anyres" processing for llava-1.6
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
2276

2277
2278
2279
2280
2281
        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
            res_imgs->entries.push_back(std::move(res));
2282
2283
        }

2284
        return true;
2285

2286
    }
2287

2288
    GGML_ASSERT(false && "Unknown image preprocessing type");
2289
2290
2291
2292
2293
2294
2295
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
    return ctx->vision_model.image_newline;
}

void clip_free(clip_ctx * ctx) {
2296
2297
2298
    if (ctx == nullptr) {
        return;
    }
2299
2300
2301
2302
    delete ctx;
}

size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
2303
2304
    int extra_tokens = ctx->has_glm_projector ? 2 : 0;
    return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
2305
2306
}

2307
2308
2309
2310
2311
2312
2313
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
    return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}

2314
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
2315
2316
2317
    return ctx->vision_model.hparams.image_size;
}

2318
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
2319
2320
2321
    return ctx->vision_model.hparams.patch_size;
}

2322
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
2323
2324
2325
2326
    return ctx->vision_model.hparams.hidden_size;
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
2327
    return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
2328
2329
2330
}

const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
2331
2332
2333
2334
2335
2336
2337
2338
    if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
        return &ctx->vision_model.hparams.image_grid_pinpoints.front();
    }
    return nullptr;
}

size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.image_grid_pinpoints.size();
2339
2340
2341
}

int clip_n_patches(const struct clip_ctx * ctx) {
2342
2343
2344
2345
2346
2347
2348
    clip_image_f32 img;
    img.nx = ctx->vision_model.hparams.image_size;
    img.ny = ctx->vision_model.hparams.image_size;
    return clip_n_patches_by_img(ctx, &img);
}

int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
2349
2350
2351
2352
    const auto & params = ctx->vision_model.hparams;

    int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);

2353
    if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
2354
2355
2356
2357
2358
2359
2360
2361
        n_patches /= 4;
    } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
        if (ctx->minicpmv_version == 2) {
            n_patches = 96;
        }
        else if (ctx->minicpmv_version == 3) {
            n_patches = 64;
        }
2362
2363
2364
        else if (ctx->minicpmv_version == 4) {
            n_patches = 64;
        }
2365
2366
2367
2368
2369
    } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
        int patch_size = params.patch_size * 2;
        int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
        int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
        n_patches = x_patch * y_patch;
2370
2371
    } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        n_patches = 256;
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
    }

    return n_patches;
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
    if (!ctx->has_vision_encoder) {
2465
        LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
2466
2467
2468
        return false;
    }

2469
2470
2471
2472
2473
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

2474
2475
2476
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

2477
2478
2479
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;

2480
    if (!ctx->has_vision_encoder) {
2481
        LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
2482
2483
2484
        return false;
    }

2485
    int batch_size = imgs.entries.size();
2486
2487
2488
2489
2490
2491
    if (ctx->has_llava_projector) {
        GGML_ASSERT(batch_size == 1); // TODO: support multiple images
    }
    if (ctx->has_minicpmv_projector) {
        GGML_ASSERT(batch_size == 1);
    }
2492
2493
2494
2495
2496
2497
    if (ctx->has_glm_projector) {
        GGML_ASSERT(batch_size == 1);
        ggml_tensor * boi = ctx->vision_model.boi_w;
        ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
        vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
    }
2498
2499

    // build the inference graph
2500
    ggml_backend_sched_reset(ctx->sched.get());
2501
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
2502
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
2503
2504
2505
2506
2507
2508
2509
2510

    // set inputs
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;
2511
    if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
2512
2513
        image_size_width  = imgs.entries[0]->nx;
        image_size_height = imgs.entries[0]->ny;
2514
2515
2516
    }
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
2517
2518
2519
    const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
    const int pos_w = ctx->load_image_size.width / patch_size;
    const int pos_h = ctx->load_image_size.height / patch_size;
2520
2521
2522
2523
2524

    {
        struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
        float * data = (float *)malloc(ggml_nbytes(inp_raw));

2525
2526
2527
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
2528
            if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
2529
2530
2531
2532
2533
2534
2535
2536
2537
                GGML_ASSERT(nx == image_size && ny == image_size);
            }

            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
                for (int k = 0; k < 3; k++) {
                    for (int y = 0; y < ny; y++) {
                        for (int x = 0; x < nx; x++) {
2538
                            data[(b * 3 * n) + k * n + y * nx + x] = imgs.entries[b]->buf[3 * (y * nx + x) + k];
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
                        }
                    }
                }
            }
        }
        ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
        free(data);
    }
    if (ctx->has_minicpmv_projector) {
        {
            // inspired from siglip:
            //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
            //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
            int* positions_data = (int*)malloc(ggml_nbytes(positions));
2554
2555
            int bucket_coords_h[1024];
            int bucket_coords_w[1024];
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
            for (int i = 0; i < pos_h; i++){
                bucket_coords_h[i] = std::floor(70.0*i/pos_h);
            }
            for (int i = 0; i < pos_w; i++){
                bucket_coords_w[i] = std::floor(70.0*i/pos_w);
            }
            for (int i = 0, id = 0; i < pos_h; i++){
                for (int j = 0; j < pos_w; j++){
                    positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                }
            }
            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
            free(positions_data);
        }

        {
            // inspired from resampler of Qwen-VL:
            //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
            //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
            struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
            int embed_dim = 4096;
            if (ctx->minicpmv_version == 2) {
                embed_dim = 4096;
            }
            else if (ctx->minicpmv_version == 3) {
                embed_dim = 3584;
            }
2583
2584
2585
            else if (ctx->minicpmv_version == 4) {
                embed_dim = 3584;
            }
2586
2587
2588
            auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));

            float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
2589
2590
2591
            for(int i=0;i < pos_w * pos_h; ++i){
                for(int j=0; j < embed_dim; ++j){
                    pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
2592
2593
2594
2595
2596
2597
2598
                }
            }

            ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
            free(pos_embed_data);
        }
    }
2599
2600
2601
    else {
        if (model.class_embedding) {
            struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
2602

2603
2604
2605
2606
            void* zero_mem = malloc(ggml_nbytes(embeddings));
            memset(zero_mem, 0, ggml_nbytes(embeddings));
            ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
            free(zero_mem);
2607
2608
        }

2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
        if (ctx->has_qwen2vl_merger) {
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");

            const int pw = image_size_width / patch_size;
            const int ph = image_size_height / patch_size;
            int* positions_data = (int*)malloc(ggml_nbytes(positions));

            int ptr = 0;
            for (int y = 0; y < ph; y+=2)
            {
                for (int x = 0; x < pw; x+=2)
                {
                    for (int dy = 0; dy < 2; dy++) {
                        for (int dx = 0; dx < 2; dx++) {
                            positions_data[ptr]                 = y + dy;
                            positions_data[num_patches + ptr]     = x + dx;
                            positions_data[num_patches * 2 + ptr] = y + dy;
                            positions_data[num_patches * 3 + ptr] = x + dx;
                            ptr++;
                        }
                    }
                }
            }

            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
            free(positions_data);
        }
2636
2637
2638
        else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
            // do nothing
        }
2639
        else {
2640
2641
2642
2643
2644
2645
2646
2647
2648
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");

            int* positions_data = (int*)malloc(ggml_nbytes(positions));
            for (int i = 0; i < num_positions; i++) {
                positions_data[i] = i;
            }
            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
            free(positions_data);

2649
            if (!ctx->has_glm_projector) {
2650
                struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
2651
2652
2653
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
2654
                int patch_offset = model.class_embedding ? 1 : 0;
2655
2656
                int* patches_data = (int*)malloc(ggml_nbytes(patches));
                for (int i = 0; i < num_patches; i++) {
2657
                    patches_data[i] = i + patch_offset;
2658
2659
2660
                }
                ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
                free(patches_data);
2661
2662
2663
2664
            }
        }
    }

2665
    ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
2666

2667
2668
2669
2670
2671
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
2672
2673

    // the last node is the embedding tensor
2674
    struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
2675
2676
2677
2678

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

2679
2680
2681
2682
2683
2684
2685
    if (ctx->has_glm_projector) {
        //eoi
        ggml_tensor * eoi = ctx->vision_model.eoi_w;
        int offset = ggml_nelements(embeddings);
        ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
    }

2686
2687
2688
2689
2690
    return true;
}

bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
    assert(itype < GGML_TYPE_COUNT);
2691
    ggml_type type = static_cast<ggml_type>(itype);
2692

2693
2694
2695
2696
    auto * ctx_clip = clip_init(fname_inp, clip_context_params{
        /* use_gpu */   false,
        /* verbosity */ GGML_LOG_LEVEL_ERROR,
    });
2697

2698
2699
    const auto & ctx_src = ctx_clip->ctx_gguf.get();
    const auto & ctx_data = ctx_clip->ctx_data.get();
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

    auto * ctx_out = gguf_init_empty();
    gguf_set_kv(ctx_out, ctx_src);
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
    gguf_set_val_u32(ctx_out, "general.file_type", itype);

    auto fout = std::ofstream(fname_out, std::ios::binary);

    const int n_tensors = gguf_get_n_tensors(ctx_src);

    for (int i = 0; i < n_tensors; ++i) {
        const char * name = gguf_get_tensor_name(ctx_src, i);
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
        gguf_add_tensor(ctx_out, cur);
    }

    const size_t meta_size = gguf_get_meta_size(ctx_out);
    for (size_t i = 0; i < meta_size; ++i) {
        fout.put(0);
    }

    // regexes of tensor names to be quantized
    const std::vector<std::string> k_names = {
        ".*weight",
    };

    std::vector<uint8_t> work(512);
    std::vector<float> conv_buf(512);
    size_t total_size_org = 0;
    size_t total_size_new = 0;

    for (int i = 0; i < n_tensors; ++i) {
        const std::string name = gguf_get_tensor_name(ctx_src, i);
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;

        bool quantize = false;
        for (const auto & s : k_names) {
            if (std::regex_match(name, std::regex(s))) {
                quantize = true;
                break;
            }
        }

2747
2748
        // quantize only 2D tensors and bigger than block size
        quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
2749
2750
2751
2752
2753

        if (quantize) {
            new_type = type;
            if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
                new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
2754
                // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
            }
            const size_t n_elms = ggml_nelements(cur);
            float * f32_data;

            switch (cur->type) {
            case GGML_TYPE_F32:
                f32_data = (float *)cur->data;
                break;
            case GGML_TYPE_F16:
                if (conv_buf.size() < n_elms) {
                    conv_buf.resize(n_elms);
                }
                for (size_t j = 0; j < n_elms; ++j) {
                    conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
                }
                f32_data = (float *)conv_buf.data();
                break;
            default:
2773
                LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
                gguf_free(ctx_out);
                return false;
            }

            if (work.size() < n_elms * 4) {
                work.resize(n_elms * 4);
            }
            new_data = work.data();

            new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
        } else {
            new_type = cur->type;
            new_data = cur->data;
            new_size = ggml_nbytes(cur);
        }
        const size_t orig_size = ggml_nbytes(cur);
        total_size_org += orig_size;
        total_size_new += new_size;
        gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
2793
2794
        GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
        gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
2795
2796
2797
2798
2799
2800
        fout.write((const char *)new_data, new_size);
        size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
        for (size_t j = 0; j < pad; ++j) {
            fout.put(0);
        }

2801
        LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
               orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
    }

    // go back to beginning of file and write the updated metadata
    fout.seekp(0, std::ios::beg);
    std::vector<uint8_t> meta(meta_size);
    gguf_get_meta_data(ctx_out, meta.data());
    fout.write((const char *)meta.data(), meta_size);

    fout.close();

    clip_free(ctx_clip);
    gguf_free(ctx_out);

    {
2817
2818
        LOG_INF("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
        LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
    }

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
    if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
        return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
        return ctx->vision_model.mm_model_peg_0_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
        return ctx->vision_model.mm_2_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
        return ctx->vision_model.mm_3_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
        if (ctx->minicpmv_version == 2) {
            return 4096;
        }
        else if (ctx->minicpmv_version == 3) {
            return 3584;
        }
2844
2845
2846
2847
2848
2849
        else if (ctx->minicpmv_version == 4) {
            return 3584;
        }
    }
    if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
        return ctx->vision_model.mm_model_mlp_3_w->ne[1];
2850
    }
2851
2852
2853
    if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
        return ctx->vision_model.mm_1_b->ne[0];
    }
2854
2855
2856
    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        return ctx->vision_model.mm_input_proj_w->ne[0];
    }
2857
2858

    std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
2859
    throw std::runtime_error(string_format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
2860
2861
2862
2863
2864
2865
2866
2867
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
    if (ctx->has_minicpmv_projector) {
        return ctx->minicpmv_version;
    }
    return 0;
}
2868

2869
2870
2871
bool clip_is_glm(const struct clip_ctx * ctx) {
    return ctx->has_glm_projector;
}
2872

2873
2874
2875
2876
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
    return ctx->has_qwen2vl_merger;
}

2877
2878
2879
2880
2881
2882
2883
2884
bool clip_is_llava(const struct clip_ctx * ctx) {
    return ctx->has_llava_projector;
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
    return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
}

2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
    // Get the index of the second to last layer; this is the
    // default for models that have a llava projector
    const auto & hparams = ctx->vision_model.hparams;
    int n_layer = hparams.n_layer - 1;
    int deepest_feature_layer = -1;

    // Handle other projectors; incrementing here indicates that we
    // should use the last encoder layer for the vision features.
    if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
        n_layer += 1;
    }

    // If we set explicit vision feature layers, only go up to the deepest one
    for (const auto & feature_layer : hparams.vision_feature_layer) {
        if (feature_layer > deepest_feature_layer) {
            deepest_feature_layer = feature_layer;
        }
    }
    return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
}
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919

bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
2920
2921
2922
2923
2924
2925
2926
2927

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
    return ctx->proj_type;
}