sampling.cpp 20.9 KB
Newer Older
1
2
#include "sampling.h"

3
#include "common.h"
4
#include "log.h"
5

6
7
#include <cmath>
#include <unordered_map>
8
#include <algorithm>
9

10
11
12
13
14
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
template<typename T>
struct ring_buffer {
    ring_buffer(size_t cap) : capacity(cap), data(cap) {}
15

16
17
18
    T & front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
19
        }
20
21
        return data[first];
    }
22

23
24
25
    const T & front() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
26
        }
27
28
        return data[first];
    }
29

30
31
32
    T & back() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
33
        }
34
        return data[pos];
35
36
    }

37
38
39
40
41
    const T & back() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
42
43
    }

44
45
46
47
48
49
50
51
52
    void push_back(const T & value) {
        if (sz == capacity) {
            // advance the start when buffer is full
            first = (first + 1) % capacity;
        } else {
            sz++;
        }
        data[pos] = value;
        pos = (pos + 1) % capacity;
53
54
    }

55
56
57
58
59
60
61
62
63
    T pop_front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        T value = data[first];
        first = (first + 1) % capacity;
        sz--;
        return value;
    }
64

65
66
67
    const T & rat(size_t i) const {
        if (i >= sz) {
            throw std::runtime_error("ring buffer: index out of bounds");
68
        }
69
        return data[(first + sz - i - 1) % capacity];
70
71
    }

72
73
74
75
76
77
78
79
    std::vector<T> to_vector() const {
        std::vector<T> result;
        result.reserve(sz);
        for (size_t i = 0; i < sz; i++) {
            result.push_back(data[(first + i) % capacity]);
        }
        return result;
    }
80

81
82
83
84
85
    void clear() {
        // here only reset the status of the buffer
        sz = 0;
        first = 0;
        pos = 0;
86
87
    }

88
89
    bool empty() const {
        return sz == 0;
90
91
    }

92
93
    size_t size() const {
        return sz;
94
95
    }

96
97
98
99
100
101
    size_t capacity = 0;
    size_t sz = 0;
    size_t first = 0;
    size_t pos = 0;
    std::vector<T> data;
};
102

103
104
struct common_sampler {
    common_params_sampling params;
105

106
107
    struct llama_sampler * grmr;
    struct llama_sampler * chain;
108

109
    ring_buffer<llama_token> prev;
110

111
    std::vector<llama_token_data> cur;
112

113
    llama_token_data_array cur_p;
114

115
116
    void set_logits(struct llama_context * ctx, int idx) {
        const auto * logits = llama_get_logits_ith(ctx, idx);
117

118
119
120
121
        const llama_model * model = llama_get_model(ctx);
        const llama_vocab * vocab = llama_model_get_vocab(model);

        const int n_vocab = llama_vocab_n_tokens(vocab);
122
123
124
125
126
127
128
129
130
131
132

        cur.resize(n_vocab);

        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
        }

        cur_p = { cur.data(), cur.size(), -1, false };
    }
};

133
std::string common_params_sampling::print() const {
134
135
136
137
    char result[1024];

    snprintf(result, sizeof(result),
            "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
138
            "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
139
            "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
140
            "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
141
            penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
142
            dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
143
            top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
144
            mirostat, mirostat_eta, mirostat_tau);
145
146
147
148

    return std::string(result);
}

149
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
150
151
    const llama_vocab * vocab = llama_model_get_vocab(model);

152
153
154
155
    llama_sampler_chain_params lparams = llama_sampler_chain_default_params();

    lparams.no_perf = params.no_perf;

156
157
158
159
160
161
162
163
    struct llama_sampler * grmr;
    if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
        grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
        GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
    } else {
164
        std::vector<std::string> trigger_patterns;
165
166
167
168
169
170
171
172
173
174
175
176
        std::vector<std::string> patterns_anywhere;
        std::vector<llama_token> trigger_tokens;
        for (const auto & trigger : params.grammar_triggers) {
            switch (trigger.type) {
                case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
                {
                    const auto & word = trigger.value;
                    patterns_anywhere.push_back(regex_escape(word));
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
                {
177
178
179
180
181
182
                    patterns_anywhere.push_back(trigger.value);
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
                {
                    trigger_patterns.push_back(trigger.value);
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
                {
                    const auto token = trigger.token;
                    trigger_tokens.push_back(token);
                    break;
                }
                default:
                    GGML_ASSERT(false && "unknown trigger type");
            }
        }

        if (!patterns_anywhere.empty()) {
            trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
        }

        std::vector<const char *> trigger_patterns_c;
        trigger_patterns_c.reserve(trigger_patterns.size());
        for (const auto & regex : trigger_patterns) {
            trigger_patterns_c.push_back(regex.c_str());
204
205
206
        }

        grmr = params.grammar_lazy
207
208
209
             ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
                                                        trigger_patterns_c.data(), trigger_patterns_c.size(),
                                                        trigger_tokens.data(), trigger_tokens.size())
210
             :      llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
211
212
213
        if (!grmr) {
            return nullptr;
        }
214
215
    }

216
    auto * result = new common_sampler {
217
        /* .params = */ params,
218
        /* .grmr   = */ grmr,
219
220
221
222
223
224
225
226
        /* .chain  = */ llama_sampler_chain_init(lparams),
        /* .prev   = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
        /* .cur    = */ {},
        /* .cur_p  = */ {},
    };

    llama_sampler_chain_add(result->chain,
            llama_sampler_init_logit_bias(
227
                llama_vocab_n_tokens(vocab),
228
229
230
                params.logit_bias.size(),
                params.logit_bias.data()));

231
    if (params.mirostat == 0) {
232
233
234
235
236
237
238
239
        for (const auto & cnstr : params.samplers) {
            switch (cnstr) {
                case COMMON_SAMPLER_TYPE_DRY:
                    {
                        std::vector<const char *> c_breakers;
                        c_breakers.reserve(params.dry_sequence_breakers.size());
                        for (const auto & str : params.dry_sequence_breakers) {
                            c_breakers.push_back(str.c_str());
240
                        }
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

                        llama_sampler_chain_add(result->chain, llama_sampler_init_dry      (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
                    }
                    break;
                case COMMON_SAMPLER_TYPE_TOP_K:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_k       (params.top_k));
                    break;
                case COMMON_SAMPLER_TYPE_TOP_P:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_p       (params.top_p, params.min_keep));
                    break;
                case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
                    break;
                case COMMON_SAMPLER_TYPE_MIN_P:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_min_p       (params.min_p, params.min_keep));
                    break;
                case COMMON_SAMPLER_TYPE_XTC:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_xtc         (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
                    break;
                case COMMON_SAMPLER_TYPE_TYPICAL_P:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_typical     (params.typ_p, params.min_keep));
                    break;
                case COMMON_SAMPLER_TYPE_TEMPERATURE:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext    (params.temp, params.dynatemp_range, params.dynatemp_exponent));
                    break;
                case COMMON_SAMPLER_TYPE_INFILL:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_infill      (vocab));
                    break;
                case COMMON_SAMPLER_TYPE_PENALTIES:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_penalties   (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
                    break;
                default:
                    GGML_ASSERT(false && "unknown sampler type");
274
275
            }
        }
276
277
278
        llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
    } else if (params.mirostat == 1) {
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
279
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
280
281
282
    } else if (params.mirostat == 2) {
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
283
    } else {
284
        GGML_ASSERT(false && "unknown mirostat version");
285
286
287
288
289
    }

    return result;
}

290
void common_sampler_free(struct common_sampler * gsmpl) {
291
292
293
294
295
296
    if (gsmpl) {
        llama_sampler_free(gsmpl->grmr);

        llama_sampler_free(gsmpl->chain);

        delete gsmpl;
297
298
299
    }
}

300
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
301
302
303
    if (accept_grammar) {
        llama_sampler_accept(gsmpl->grmr, token);
    }
304

305
    llama_sampler_accept(gsmpl->chain, token);
306

307
    gsmpl->prev.push_back(token);
308
309
}

310
void common_sampler_reset(struct common_sampler * gsmpl) {
311
    llama_sampler_reset(gsmpl->grmr);
312

313
    llama_sampler_reset(gsmpl->chain);
314
315
}

316
317
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
    return new common_sampler {
318
319
320
321
322
323
324
        /* .params = */ gsmpl->params,
        /* .grmr   = */ llama_sampler_clone(gsmpl->grmr),
        /* .chain  = */ llama_sampler_clone(gsmpl->chain),
        /* .prev   = */ gsmpl->prev,
        /* .cur    = */ gsmpl->cur,
        /* .cur_p  = */ gsmpl->cur_p,
    };
325
326
}

327
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
328
    // TODO: measure grammar performance
329

330
331
332
333
334
335
336
    if (gsmpl) {
        llama_perf_sampler_print(gsmpl->chain);
    }
    if (ctx) {
        llama_perf_context_print(ctx);
    }
}
337

338
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
339
    gsmpl->set_logits(ctx, idx);
340

341
342
343
    auto & grmr  = gsmpl->grmr;
    auto & chain = gsmpl->chain;
    auto & cur_p = gsmpl->cur_p; // initialized by set_logits
344

345
346
    if (grammar_first) {
        llama_sampler_apply(grmr, &cur_p);
347
348
    }

349
    llama_sampler_apply(chain, &cur_p);
350

351
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
352

353
    const llama_token id = cur_p.data[cur_p.selected].id;
354

355
356
357
    if (grammar_first) {
        return id;
    }
358

359
360
361
362
    // check if it the sampled token fits the grammar
    {
        llama_token_data       single_token_data       = { id, 1.0f, 0.0f };
        llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
363

364
        llama_sampler_apply(grmr, &single_token_data_array);
365

366
367
368
        const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
        if (is_valid) {
            return id;
369
370
371
        }
    }

372
373
374
    // resampling:
    // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
    gsmpl->set_logits(ctx, idx);
375

376
377
    llama_sampler_apply(grmr,  &cur_p);
    llama_sampler_apply(chain, &cur_p);
378

379
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
380

381
382
    return cur_p.data[cur_p.selected].id;
}
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
    GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");

    std::vector<llama_token> result;
    result.reserve(idxs.size());

    size_t i = 0;
    for (; i < draft.size(); i++) {
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);

        common_sampler_accept(gsmpl, id, true);

        result.push_back(id);

        if (draft[i] != id) {
            break;
        }
    }

    if (i == draft.size()) {
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);

        common_sampler_accept(gsmpl, id, true);

        result.push_back(id);
    }

    return result;
}

std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
    std::vector<int> idxs(draft.size() + 1);
    for (size_t i = 0; i < idxs.size(); ++i) {
        idxs[i] = i;
    }

    return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
}

uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
424
425
426
427
    return llama_sampler_get_seed(gsmpl->chain);
}

// helpers
428

429
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
430
431
    return &gsmpl->cur_p;
}
432

433
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
434
435
    return gsmpl->prev.rat(0);
}
436

437
std::string common_sampler_print(const struct common_sampler * gsmpl) {
438
    std::string result = "logits ";
439

440
441
442
    for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
        const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
        result += std::string("-> ") + llama_sampler_name(smpl) + " ";
443
444
    }

445
446
447
    return result;
}

448
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
449
450
451
452
    n = std::min(n, (int) gsmpl->prev.size());

    if (n <= 0) {
        return "";
453
454
    }

455
456
457
458
459
460
461
462
    std::string result;
    result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab

    for (int i = n - 1; i >= 0; i--) {
        const llama_token id = gsmpl->prev.rat(i);

        GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");

463
        result += common_token_to_piece(ctx_main, id);
464
465
    }

466
467
468
    return result;
}

469
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
470
    switch (cnstr) {
471
472
473
474
        case COMMON_SAMPLER_TYPE_DRY:         return 'd';
        case COMMON_SAMPLER_TYPE_TOP_K:       return 'k';
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return 'y';
        case COMMON_SAMPLER_TYPE_TOP_P:       return 'p';
475
        case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
476
477
478
479
        case COMMON_SAMPLER_TYPE_MIN_P:       return 'm';
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
        case COMMON_SAMPLER_TYPE_XTC:         return 'x';
        case COMMON_SAMPLER_TYPE_INFILL:      return 'i';
480
        case COMMON_SAMPLER_TYPE_PENALTIES:   return 'e';
481
482
483
        default : return '?';
    }
}
484

485
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
486
    switch (cnstr) {
487
488
489
490
        case COMMON_SAMPLER_TYPE_DRY:         return "dry";
        case COMMON_SAMPLER_TYPE_TOP_K:       return "top_k";
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return "typ_p";
        case COMMON_SAMPLER_TYPE_TOP_P:       return "top_p";
491
        case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
492
493
494
495
        case COMMON_SAMPLER_TYPE_MIN_P:       return "min_p";
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
        case COMMON_SAMPLER_TYPE_XTC:         return "xtc";
        case COMMON_SAMPLER_TYPE_INFILL:      return "infill";
496
        case COMMON_SAMPLER_TYPE_PENALTIES:   return "penalties";
497
        default : return "";
498
    }
499
}
500

501
502
503
504
505
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
    std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
        { "dry",         COMMON_SAMPLER_TYPE_DRY },
        { "top_k",       COMMON_SAMPLER_TYPE_TOP_K },
        { "top_p",       COMMON_SAMPLER_TYPE_TOP_P },
506
        { "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
507
508
509
510
511
        { "typ_p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "min_p",       COMMON_SAMPLER_TYPE_MIN_P },
        { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
        { "xtc",         COMMON_SAMPLER_TYPE_XTC },
        { "infill",      COMMON_SAMPLER_TYPE_INFILL },
512
        { "penalties",   COMMON_SAMPLER_TYPE_PENALTIES },
513
    };
514

515
516
    // since samplers names are written multiple ways
    // make it ready for both system names and input names
517
518
519
    std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
        { "top-k",       COMMON_SAMPLER_TYPE_TOP_K },
        { "top-p",       COMMON_SAMPLER_TYPE_TOP_P },
520
        { "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
521
522
523
524
525
526
527
        { "nucleus",     COMMON_SAMPLER_TYPE_TOP_P },
        { "typical-p",   COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typical",     COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typ-p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typ",         COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "min-p",       COMMON_SAMPLER_TYPE_MIN_P },
        { "temp",        COMMON_SAMPLER_TYPE_TEMPERATURE },
528
    };
529

530
    std::vector<common_sampler_type> samplers;
531
    samplers.reserve(names.size());
532

533
534
535
536
    for (const auto & name : names) {
        auto sampler = sampler_canonical_name_map.find(name);
        if (sampler != sampler_canonical_name_map.end()) {
            samplers.push_back(sampler->second);
537
538
539
540
541
542
543
            continue;
        }
        if (allow_alt_names) {
            sampler = sampler_alt_name_map.find(name);
            if (sampler != sampler_alt_name_map.end()) {
                samplers.push_back(sampler->second);
                continue;
544
545
            }
        }
546
        LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
547
548
    }

549
    return samplers;
550
551
}

552
553
554
555
556
557
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
    std::unordered_map<char, common_sampler_type> sampler_name_map = {
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY),         COMMON_SAMPLER_TYPE_DRY },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K),       COMMON_SAMPLER_TYPE_TOP_K },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P),   COMMON_SAMPLER_TYPE_TYPICAL_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P),       COMMON_SAMPLER_TYPE_TOP_P },
558
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
559
560
561
562
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P),       COMMON_SAMPLER_TYPE_MIN_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC),         COMMON_SAMPLER_TYPE_XTC },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL),      COMMON_SAMPLER_TYPE_INFILL },
563
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES),   COMMON_SAMPLER_TYPE_PENALTIES },
564
    };
565

566
    std::vector<common_sampler_type> samplers;
567
    samplers.reserve(chars.size());
568

569
570
571
572
    for (const auto & c : chars) {
        const auto sampler = sampler_name_map.find(c);
        if (sampler != sampler_name_map.end()) {
            samplers.push_back(sampler->second);
573
574
        } else {
            LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
575
        }
576
    }
577
578

    return samplers;
579
}