common.cpp 50.7 KB
Newer Older
1
2
3
4
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif

5
6
7
#include "ggml.h"
#include "gguf.h"

8
#include "common.h"
9
#include "log.h"
10
11
12
13
#include "llama.h"

#include <algorithm>
#include <cinttypes>
14
#include <climits>
15
16
17
18
19
#include <cmath>
#include <codecvt>
#include <cstdarg>
#include <cstring>
#include <ctime>
20
#include <filesystem>
21
22
23
24
25
26
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <string>
27
#include <thread>
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <unordered_map>
#include <unordered_set>
#include <vector>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

//
// CPU utils
//

int32_t cpu_get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    unsigned int n_threads_win = std::thread::hardware_concurrency();
    unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;

    DWORD buffer_size = 0;
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
        if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
            return default_threads;
        }
    }

    std::vector<char> buffer(buffer_size);
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
        return default_threads;
    }

    int32_t num_physical_cores = 0;
    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
    while (buffer_size > 0) {
        if (info->Relationship == RelationProcessorCore) {
            num_physical_cores += info->Processor.GroupCount;
        }
        buffer_size -= info->Size;
        info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
    }

    return num_physical_cores > 0 ? num_physical_cores : default_threads;
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
                  unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
    __asm__("movq\t%%rbx,%%rsi\n\t"
            "cpuid\n\t"
            "xchgq\t%%rbx,%%rsi"
            : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
            : "0"(leaf), "2"(subleaf));
}

static int pin_cpu(int cpu) {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);
    return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}

static bool is_hybrid_cpu(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(7, 0, &eax, &ebx, &ecx, &edx);
    return !!(edx & (1u << 15));
}

static bool is_running_on_efficiency_core(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
    int intel_atom = 0x20;
    int core_type = (eax & 0xff000000u) >> 24;
    return core_type == intel_atom;
}

static int cpu_count_math_cpus(int n_cpu) {
    int result = 0;
    for (int cpu = 0; cpu < n_cpu; ++cpu) {
        if (pin_cpu(cpu)) {
159
            return -1;
160
        }
161
162
        if (is_running_on_efficiency_core()) {
            continue; // efficiency cores harm lockstep threading
163
        }
164
165
        ++cpu; // hyperthreading isn't useful for linear algebra
        ++result;
166
    }
167
168
169
170
171
172
173
174
175
176
177
178
179
    return result;
}

#endif // __x86_64__ && __linux__

/**
 * Returns number of CPUs on system that are useful for math.
 */
int32_t cpu_get_num_math() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
    int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
    if (n_cpu < 1) {
        return cpu_get_num_physical_cores();
180
    }
181
182
183
184
185
186
187
188
    if (is_hybrid_cpu()) {
        cpu_set_t affinity;
        if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
            int result = cpu_count_math_cpus(n_cpu);
            pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
            if (result > 0) {
                return result;
            }
189
190
        }
    }
191
192
193
194
195
196
197
198
199
200
#endif
    return cpu_get_num_physical_cores();
}

// Helper for setting process priority

#if defined(_WIN32)

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
201
202
        return true;
    }
203
204
205

    DWORD p = NORMAL_PRIORITY_CLASS;
    switch (prio) {
206
        case GGML_SCHED_PRIO_LOW:      p = BELOW_NORMAL_PRIORITY_CLASS; break;
207
208
209
210
        case GGML_SCHED_PRIO_NORMAL:   p = NORMAL_PRIORITY_CLASS;       break;
        case GGML_SCHED_PRIO_MEDIUM:   p = ABOVE_NORMAL_PRIORITY_CLASS; break;
        case GGML_SCHED_PRIO_HIGH:     p = HIGH_PRIORITY_CLASS;         break;
        case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS;     break;
211
    }
212
213
214
215

    if (!SetPriorityClass(GetCurrentProcess(), p)) {
        LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
        return false;
216
    }
217
218
219
220
221
222
223
224
225
226

    return true;
}

#else // MacOS and POSIX
#include <sys/types.h>
#include <sys/resource.h>

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
227
228
        return true;
    }
229
230
231

    int p = 0;
    switch (prio) {
232
        case GGML_SCHED_PRIO_LOW:      p =  5;  break;
233
234
235
236
        case GGML_SCHED_PRIO_NORMAL:   p =  0;  break;
        case GGML_SCHED_PRIO_MEDIUM:   p = -5;  break;
        case GGML_SCHED_PRIO_HIGH:     p = -10; break;
        case GGML_SCHED_PRIO_REALTIME: p = -20; break;
237
    }
238
239
240
241

    if (!setpriority(PRIO_PROCESS, 0, p)) {
        LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
        return false;
242
    }
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    return true;
}

#endif

//
// CLI argument parsing
//


void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
    int32_t n_set = 0;

    if (cpuparams.n_threads < 0) {
        // Assuming everything about cpuparams is invalid
        if (role_model != nullptr) {
            cpuparams = *role_model;
        } else {
            cpuparams.n_threads = cpu_get_num_math();
        }
263
    }
264
265
266
267
268

    for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
        if (cpuparams.cpumask[i]) {
            n_set++;
        }
269
    }
270
271
272
273

    if (n_set && n_set < cpuparams.n_threads) {
        // Not enough set bits, may experience performance issues.
        LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
274
    }
275
276
277
278
279
280
281
}

bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    size_t dash_loc = range.find('-');
    if (dash_loc == std::string::npos) {
        LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
        return false;
282
    }
283
284
285
286
287
288
289
290
291
292
293
294

    size_t start_i;
    size_t end_i;

    if (dash_loc == 0) {
        start_i = 0;
    } else {
        start_i = std::stoull(range.substr(0, dash_loc));
        if (start_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("Start index out of bounds!\n");
            return false;
        }
295
    }
296
297
298
299
300
301
302
303

    if (dash_loc == range.length() - 1) {
        end_i = GGML_MAX_N_THREADS - 1;
    } else {
        end_i = std::stoull(range.substr(dash_loc + 1));
        if (end_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("End index out of bounds!\n");
            return false;
304
305
306
        }
    }

307
308
309
310
311
    for (size_t i = start_i; i <= end_i; i++) {
        boolmask[i] = true;
    }

    return true;
312
313
}

314
315
316
317
318
319
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    // Discard potential 0x prefix
    size_t start_i = 0;
    if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
        start_i = 2;
    }
320

321
322
    size_t num_digits = mask.length() - start_i;
    if (num_digits > 128) num_digits = 128;
323

324
    size_t end_i = num_digits + start_i;
325

326
327
328
329
330
331
332
333
334
335
336
337
338
    for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
        char c = mask.at(i);
        int8_t id = c;

        if ((c >= '0' && c <= '9')) {
            id -= '0';
        } else if (c >= 'a' && c <= 'f') {
            id -= 'a' - 10;
        } else if (c >= 'A' && c <= 'F') {
            id -= 'A' - 10;
        } else {
            LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
            return false;
339
340
        }

341
342
343
344
345
346
347
348
349
        boolmask[  n  ] = boolmask[  n  ] || ((id & 8) != 0);
        boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
        boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
        boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
    }

    return true;
}

350
void common_init() {
351
    llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
352
353
        if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
            common_log_add(common_log_main(), level, "%s", text);
354
355
        }
    }, NULL);
356

357
358
359
360
361
#ifdef NDEBUG
    const char * build_type = "";
#else
    const char * build_type = " (debug)";
#endif
362

363
    LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
364
365
}

366
std::string common_params_get_system_info(const common_params & params) {
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    std::ostringstream os;

    os << "system_info: n_threads = " << params.cpuparams.n_threads;
    if (params.cpuparams_batch.n_threads != -1) {
        os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
    }
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
    os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
#else
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
#endif

    return os.str();
}

//
// String utils
//

388
389
390
391
392
393
394
395
396
397
398
399
400
std::string string_format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), size);
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
}

std::string string_strip(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && std::isspace(str[start])) {
        start++;
    }
    while (end > start && std::isspace(str[end - 1])) {
        end--;
    }
    return str.substr(start, end - start);
}

std::string string_get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
    if (search.empty()) {
        return;
    }
    std::string builder;
    builder.reserve(s.length());
    size_t pos = 0;
    size_t last_pos = 0;
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
        builder.append(s, last_pos, pos - last_pos);
        builder.append(replace);
        last_pos = pos + search.length();
    }
    builder.append(s, last_pos, std::string::npos);
    s = std::move(builder);
}

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
    return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}

bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
    bool has_suffix = string_ends_with(str, suffix);
    if (has_suffix) {
        str = str.substr(0, str.size() - suffix.size());
    }
    return has_suffix;
}

size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
    if (!str.empty() && !stop.empty()) {
        const char text_last_char = str.back();
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
            if (stop[char_index] == text_last_char) {
                const auto current_partial = stop.substr(0, char_index + 1);
                if (string_ends_with(str, current_partial)) {
                    return str.size() - char_index - 1;
                }
            }
        }
    }

    return std::string::npos;
}

476
477
std::string regex_escape(const std::string & s) {
    static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
478
    return std::regex_replace(s, special_chars, "\\$&");
479
480
}

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
    std::ostringstream result;
    for (size_t i = 0; i < values.size(); ++i) {
        if (i > 0) {
            result << separator;
        }
        result << values[i];
    }
    return result.str();
}

std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
    std::vector<std::string> parts;
    size_t start = 0;
    size_t end = str.find(delimiter);

    while (end != std::string::npos) {
        parts.push_back(str.substr(start, end - start));
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    parts.push_back(str.substr(start));

    return parts;
}

std::string string_repeat(const std::string & str, size_t n) {
    if (n == 0) {
        return "";
    }

    std::string result;
    result.reserve(str.length() * n);

    for (size_t i = 0; i < n; ++i) {
        result += str;
    }

    return result;
}

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
std::string string_from(bool value) {
    return value ? "true" : "false";
}

std::string string_from(const std::vector<int> & values) {
    std::stringstream buf;

    buf << "[ ";
    bool first = true;
    for (auto e : values) {
        if (first) {
            first = false;
        } else {
            buf << ", ";
        }
        buf << std::to_string(e);
    }
    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (const auto & token : tokens) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

558
        auto detokenized = common_token_to_piece(ctx, token);
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

        detokenized.erase(
            std::remove_if(
                detokenized.begin(),
                detokenized.end(),
                [](const unsigned char c) { return !std::isprint(c); }),
            detokenized.end());

        buf << "'" << detokenized << "'"
            << ":" << std::to_string(token);
    }

    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (int i = 0; i < batch.n_tokens; ++i) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

589
        auto detokenized = common_token_to_piece(ctx, batch.token[i]);
590
591
592
593
594
595
596
597

        detokenized.erase(
                std::remove_if(
                    detokenized.begin(),
                    detokenized.end(),
                    [](const unsigned char c) { return !std::isprint(c); }),
                detokenized.end());

598
599
600
601
602
603
        buf << "\n"          << std::to_string(i)
            << ", token '"   << detokenized << "'"
            << ", pos "      << std::to_string(batch.pos[i])
            << ", n_seq_id " << std::to_string(batch.n_seq_id[i])
            << ", seq_id "   << std::to_string(batch.seq_id[i][0])
            << ", logits "   << std::to_string(batch.logits[i]);
604
605
606
607
608
609
610
    }

    buf << " ]";

    return buf.str();
}

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
void string_process_escapes(std::string & input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                case 'x':
                    // Handle \x12, etc
                    if (input_idx + 2 < input_len) {
                        const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
                        char *err_p = nullptr;
                        const long val = std::strtol(x, &err_p, 16);
                        if (err_p == x + 2) {
                            input_idx += 2;
                            input[output_idx++] = char(val);
                            break;
                        }
                    }
                    // fall through
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
    const char * sep = strchr(data, '=');
    if (sep == nullptr || sep - data >= 128) {
651
        LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        return false;
    }
    llama_model_kv_override kvo;
    std::strncpy(kvo.key, data, sep - data);
    kvo.key[sep - data] = 0;
    sep++;
    if (strncmp(sep, "int:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
        kvo.val_i64 = std::atol(sep);
    } else if (strncmp(sep, "float:", 6) == 0) {
        sep += 6;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
        kvo.val_f64 = std::atof(sep);
    } else if (strncmp(sep, "bool:", 5) == 0) {
        sep += 5;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
        if (std::strcmp(sep, "true") == 0) {
            kvo.val_bool = true;
        } else if (std::strcmp(sep, "false") == 0) {
            kvo.val_bool = false;
        } else {
674
            LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
675
676
677
678
679
680
            return false;
        }
    } else if (strncmp(sep, "str:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
        if (strlen(sep) > 127) {
681
            LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
682
683
684
685
686
            return false;
        }
        strncpy(kvo.val_str, sep, 127);
        kvo.val_str[127] = '\0';
    } else {
687
        LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        return false;
    }
    overrides.emplace_back(std::move(kvo));
    return true;
}

//
// Filesystem utils
//

// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
    if (!filename.length()) {
        // Empty filename invalid
        return false;
    }
    if (filename.length() > 255) {
        // Limit at common largest possible filename on Linux filesystems
        // to avoid unnecessary further validation
        // (On systems with smaller limits it will be caught by the OS)
        return false;
    }

    std::u32string filename_utf32;
    try {
714
715
716
717
#if defined(__clang__)
        // disable C++17 deprecation warning for std::codecvt_utf8
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
718
719
720
#elif defined(__GNUC__)
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wdeprecated-declarations"
721
#endif
722

723
        std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
724
725
726

#if defined(__clang__)
#    pragma clang diagnostic pop
727
728
#elif defined(__GNUC__)
#    pragma GCC diagnostic pop
729
730
#endif

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        filename_utf32 = converter.from_bytes(filename);

        // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
        // or invalid encodings were encountered. Reject such attempts
        std::string filename_reencoded = converter.to_bytes(filename_utf32);
        if (filename_reencoded != filename) {
            return false;
        }
    } catch (const std::exception &) {
        return false;
    }

    // Check for forbidden codepoints:
    // - Control characters
    // - Unicode equivalents of illegal characters
    // - UTF-16 surrogate pairs
    // - UTF-8 replacement character
    // - Byte order mark (BOM)
    // - Illegal characters: / \ : * ? " < > |
    for (char32_t c : filename_utf32) {
        if (c <= 0x1F // Control characters (C0)
            || c == 0x7F // Control characters (DEL)
            || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
            || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
            || c == 0x2215 // Division Slash (forward slash equivalent)
            || c == 0x2216 // Set Minus (backslash equivalent)
            || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
            || c == 0xFFFD // Replacement Character (UTF-8)
            || c == 0xFEFF // Byte Order Mark (BOM)
            || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
            || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
            return false;
        }
    }

    // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
    // Unicode and other whitespace is not affected, only 0x20 space
    if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
        return false;
    }

    // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
    if (filename.find("..") != std::string::npos) {
        return false;
    }

    // Reject "."
    if (filename == ".") {
        return false;
    }

    return true;
}

785
786
787
#include <iostream>


788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
    std::wstring wpath = converter.from_bytes(path);

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);

806
807
808
809
810
811
812
813
814
        pos_slash += 1;

        // skip the drive letter, in some systems it can return an access denied error
        if (subpath.length() == 2 && subpath[1] == ':') {
            continue;
        }

        const bool success = CreateDirectoryW(subpath.c_str(), NULL);

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

std::string fs_get_cache_directory() {
    std::string cache_directory = "";
    auto ensure_trailing_slash = [](std::string p) {
        // Make sure to add trailing slash
        if (p.back() != DIRECTORY_SEPARATOR) {
            p += DIRECTORY_SEPARATOR;
        }
        return p;
    };
    if (getenv("LLAMA_CACHE")) {
        cache_directory = std::getenv("LLAMA_CACHE");
    } else {
877
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
878
879
880
881
882
883
884
885
886
        if (std::getenv("XDG_CACHE_HOME")) {
            cache_directory = std::getenv("XDG_CACHE_HOME");
        } else {
            cache_directory = std::getenv("HOME") + std::string("/.cache/");
        }
#elif defined(__APPLE__)
        cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
        cache_directory = std::getenv("LOCALAPPDATA");
887
888
889
#else
#  error Unknown architecture
#endif
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
        cache_directory = ensure_trailing_slash(cache_directory);
        cache_directory += "llama.cpp";
    }
    return ensure_trailing_slash(cache_directory);
}

std::string fs_get_cache_file(const std::string & filename) {
    GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
    std::string cache_directory = fs_get_cache_directory();
    const bool success = fs_create_directory_with_parents(cache_directory);
    if (!success) {
        throw std::runtime_error("failed to create cache directory: " + cache_directory);
    }
    return cache_directory + filename;
}


//
// Model utils
//
910

911
912
913
struct common_init_result common_init_from_params(common_params & params) {
    common_init_result iparams;
    auto mparams = common_model_params_to_llama(params);
914

915
    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
916
    if (model == NULL) {
917
        LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
918
919
920
        return iparams;
    }

921
922
    const llama_vocab * vocab = llama_model_get_vocab(model);

923
    auto cparams = common_context_params_to_llama(params);
924

925
    llama_context * lctx = llama_init_from_model(model, cparams);
926
    if (lctx == NULL) {
927
        LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
928
        llama_model_free(model);
929
930
931
        return iparams;
    }

932
    if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
933
        LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
934
        params.ctx_shift = false;
935
936
    }

937
938
    if (!params.control_vectors.empty()) {
        if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
939
        if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_model_n_layer(model);
940

941
        const auto cvec = common_control_vector_load(params.control_vectors);
942
943
        if (cvec.n_embd == -1) {
            llama_free(lctx);
944
            llama_model_free(model);
945

946
947
948
            return iparams;
        }

949
950
951
952
953
954
955
        int err = llama_apply_adapter_cvec(
                lctx,
                cvec.data.data(),
                cvec.data.size(),
                cvec.n_embd,
                params.control_vector_layer_start,
                params.control_vector_layer_end);
956
957
        if (err) {
            llama_free(lctx);
958
            llama_model_free(model);
959

960
961
962
963
            return iparams;
        }
    }

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
    if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
        bool ok = true;

        if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have a  BOS token, reranking will not work\n", __func__);
            ok = false;
        }

        bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
        bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;

        if (!has_eos && !has_sep) {
            LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
            ok = false;
        } else if (!has_eos) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
        } else if (!has_sep) {
            LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
            ok = false;
        }

        if (!ok) {
            llama_free(lctx);
            llama_model_free(model);

            return iparams;
        }
    }

993
994
    // load and optionally apply lora adapters
    for (auto & la : params.lora_adapters) {
995
996
        llama_adapter_lora_ptr lora;
        lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
997
        if (lora == nullptr) {
998
            LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
999
            llama_free(lctx);
1000
            llama_model_free(model);
1001
1002
            return iparams;
        }
1003
1004
1005

        la.ptr = lora.get();
        iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
1006
    }
1007

1008
    if (!params.lora_init_without_apply) {
1009
        common_set_adapter_lora(lctx, params.lora_adapters);
1010
1011
    }

1012
1013
    if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
        LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
1014
        params.sampling.ignore_eos = false;
1015
1016
    }

1017
1018
1019
1020
1021
    // initialize once
    for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
        if (llama_vocab_is_eog(vocab, i)) {
            LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
            params.sampling.logit_bias_eog.push_back({i, -INFINITY});
1022
1023
1024
        }
    }

1025
1026
1027
1028
1029
1030
1031
    if (params.sampling.ignore_eos) {
        // add EOG biases to the active set of logit biases
        params.sampling.logit_bias.insert(
                params.sampling.logit_bias.end(),
                params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
    }

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    if (params.sampling.penalty_last_n == -1) {
        LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.penalty_last_n = llama_n_ctx(lctx);
    }

    if (params.sampling.dry_penalty_last_n == -1) {
        LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
    }

1042
    if (params.warmup) {
1043
        LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
1044

1045
1046
        llama_set_warmup(lctx, true);

1047
        std::vector<llama_token> tmp;
1048
1049
1050
        llama_token bos = llama_vocab_bos(vocab);
        llama_token eos = llama_vocab_eos(vocab);

1051
        // some models (e.g. T5) don't have a BOS token
1052
        if (bos != LLAMA_TOKEN_NULL) {
1053
1054
            tmp.push_back(bos);
        }
1055
1056
1057
1058
1059
1060
        if (eos != LLAMA_TOKEN_NULL) {
            tmp.push_back(eos);
        }
        if (tmp.empty()) {
            tmp.push_back(0);
        }
1061
1062

        if (llama_model_has_encoder(model)) {
1063
            llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
1064
            llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
1065
            if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
1066
1067
1068
1069
1070
1071
                decoder_start_token_id = bos;
            }
            tmp.clear();
            tmp.push_back(decoder_start_token_id);
        }
        if (llama_model_has_decoder(model)) {
1072
            llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
1073
        }
1074
        llama_memory_clear(llama_get_memory(lctx), true);
1075
        llama_synchronize(lctx);
1076
        llama_perf_context_reset(lctx);
1077
        llama_set_warmup(lctx, false);
1078
1079
    }

1080
1081
    iparams.model.reset(model);
    iparams.context.reset(lctx);
1082

1083
1084
1085
    return iparams;
}

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
std::string get_model_endpoint() {
    const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
    // We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
    const char * hf_endpoint_env = getenv("HF_ENDPOINT");
    const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
    std::string model_endpoint = "https://huggingface.co/";
    if (endpoint_env) {
        model_endpoint = endpoint_env;
        if (model_endpoint.back() != '/') model_endpoint += '/';
    }
    return model_endpoint;
}

1099
1100
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
    llama_clear_adapter_lora(ctx);
1101
    for (auto & la : lora) {
1102
        if (la.scale != 0.0f) {
1103
            llama_set_adapter_lora(ctx, la.ptr, la.scale);
1104
1105
1106
1107
        }
    }
}

1108
struct llama_model_params common_model_params_to_llama(common_params & params) {
1109
1110
    auto mparams = llama_model_default_params();

1111
1112
1113
    if (!params.devices.empty()) {
        mparams.devices = params.devices.data();
    }
1114

1115
1116
1117
    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
1118

1119
1120
1121
1122
1123
1124
    mparams.main_gpu        = params.main_gpu;
    mparams.split_mode      = params.split_mode;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;
    mparams.check_tensors   = params.check_tensors;
1125
    mparams.use_extra_bufts = !params.no_extra_bufts;
1126

1127
1128
1129
1130
1131
1132
1133
    if (params.kv_overrides.empty()) {
        mparams.kv_overrides = NULL;
    } else {
        GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
        mparams.kv_overrides = params.kv_overrides.data();
    }

1134
1135
1136
1137
1138
1139
1140
    if (params.tensor_buft_overrides.empty()) {
        mparams.tensor_buft_overrides = NULL;
    } else {
        GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
        mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
    }

1141
1142
1143
    mparams.progress_callback           = params.load_progress_callback;
    mparams.progress_callback_user_data = params.load_progress_callback_user_data;

1144
1145
1146
    return mparams;
}

1147
struct llama_context_params common_context_params_to_llama(const common_params & params) {
1148
1149
1150
1151
1152
1153
1154
1155
    auto cparams = llama_context_default_params();

    cparams.n_ctx             = params.n_ctx;
    cparams.n_seq_max         = params.n_parallel;
    cparams.n_batch           = params.n_batch;
    cparams.n_ubatch          = params.n_ubatch;
    cparams.n_threads         = params.cpuparams.n_threads;
    cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ?
1156
                                params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    cparams.embeddings        = params.embedding;
    cparams.rope_scaling_type = params.rope_scaling_type;
    cparams.rope_freq_base    = params.rope_freq_base;
    cparams.rope_freq_scale   = params.rope_freq_scale;
    cparams.yarn_ext_factor   = params.yarn_ext_factor;
    cparams.yarn_attn_factor  = params.yarn_attn_factor;
    cparams.yarn_beta_fast    = params.yarn_beta_fast;
    cparams.yarn_beta_slow    = params.yarn_beta_slow;
    cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
    cparams.pooling_type      = params.pooling_type;
    cparams.attention_type    = params.attention_type;
    cparams.defrag_thold      = params.defrag_thold;
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
    cparams.offload_kqv       = !params.no_kv_offload;
    cparams.flash_attn        = params.flash_attn;
1173
    cparams.no_perf           = params.no_perf;
1174
    cparams.op_offload        = !params.no_op_offload;
1175
1176
    cparams.swa_full          = params.swa_full;
    cparams.kv_unified        = params.kv_unified;
1177

1178
1179
    cparams.type_k = params.cache_type_k;
    cparams.type_v = params.cache_type_v;
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

    return cparams;
}

struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
    struct ggml_threadpool_params tpp;

    ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults

    if (params.mask_valid) {
        std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
    }

    tpp.prio       = params.priority;
    tpp.poll       = params.poll;
    tpp.strict_cpu = params.strict_cpu;

    return tpp;
}

//
// Batch utils
//

1204
void common_batch_clear(struct llama_batch & batch) {
1205
1206
1207
    batch.n_tokens = 0;
}

1208
void common_batch_add(
1209
1210
1211
1212
1213
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits) {
1214
1215
    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    batch.token   [batch.n_tokens] = id;
    batch.pos     [batch.n_tokens] = pos;
    batch.n_seq_id[batch.n_tokens] = seq_ids.size();
    for (size_t i = 0; i < seq_ids.size(); ++i) {
        batch.seq_id[batch.n_tokens][i] = seq_ids[i];
    }
    batch.logits  [batch.n_tokens] = logits;

    batch.n_tokens++;
}

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
//
// Token utils
//

size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}

    return i;
}

size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
    // check for empty sequences
    if (a.empty() || b.empty()) {
        return 0;
    }

    // get the lengths of the input sequences
    size_t a_len = a.size();
    size_t b_len = b.size();

    // initialize the maximum length of the longest common subsequence (LCS)
    size_t max_length = 0;

    // use two rows instead of a 2D matrix to optimize space
    std::vector<size_t> prev_row(b_len + 1, 0);
    std::vector<size_t> curr_row(b_len + 1, 0);

    // iterate through the elements of a
    for (size_t i = 1; i <= a_len; i++) {
        // iterate through the elements of b
        for (size_t j = 1; j <= b_len; j++) {
            // if elements at the current positions match
            if (a[i - 1] == b[j - 1]) {
                // if it's the first element of either sequences, set LCS length to 1
                if (i == 1 || j == 1) {
                    curr_row[j] = 1;
                } else {
                    // increment LCS length by 1 compared to the previous element
                    curr_row[j] = prev_row[j - 1] + 1;
                }

                // update max_length if necessary
                if (curr_row[j] > max_length) {
                    max_length = curr_row[j];
                }
            } else {
                // reset LCS length if elements don't match
                curr_row[j] = 0;
            }
        }

        // update the previous row for the next iteration
        prev_row = curr_row;
    }

    // return the maximum length of the LCS
    return max_length;
}

1287
1288
1289
1290
//
// Vocab utils
//

1291
std::vector<llama_token> common_tokenize(
1292
1293
1294
1295
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
1296
1297
1298
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_tokenize(vocab, text, add_special, parse_special);
1299
1300
}

1301
std::vector<llama_token> common_tokenize(
1302
    const struct llama_vocab * vocab,
1303
1304
1305
1306
1307
1308
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + 2 * add_special;
    std::vector<llama_token> result(n_tokens);
1309
    n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1310
1311
1312
    if (n_tokens == std::numeric_limits<int32_t>::min()) {
        throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
    }
1313
1314
    if (n_tokens < 0) {
        result.resize(-n_tokens);
1315
        int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1316
1317
1318
1319
1320
1321
1322
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

1323
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
1324
1325
1326
1327
1328
1329
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_token_to_piece(vocab, token, special);
}

std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
1330
1331
    std::string piece;
    piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
1332
    const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1333
1334
    if (n_chars < 0) {
        piece.resize(-n_chars);
1335
        int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1336
1337
1338
1339
1340
1341
1342
1343
1344
        GGML_ASSERT(check == -n_chars);
    }
    else {
        piece.resize(n_chars);
    }

    return piece;
}

1345
1346
1347
1348
1349
1350
1351
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_detokenize(vocab, tokens, special);
}

std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
1352
1353
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
1354
    int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1355
1356
    if (n_chars < 0) {
        text.resize(-n_chars);
1357
        n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}

//
// Embedding utils
//

1371
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
1372
1373
1374
1375
1376
1377
1378
1379
    double sum = 0.0;

    switch (embd_norm) {
        case -1: // no normalisation
            sum = 1.0;
            break;
        case 0: // max absolute
            for (int i = 0; i < n; i++) {
1380
1381
1382
                if (sum < std::abs(inp[i])) {
                    sum = std::abs(inp[i]);
                }
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
            }
            sum /= 32760.0; // make an int16 range
            break;
        case 2: // euclidean
            for (int i = 0; i < n; i++) {
                sum += inp[i] * inp[i];
            }
            sum = std::sqrt(sum);
            break;
        default: // p-norm (euclidean is p-norm p=2)
            for (int i = 0; i < n; i++) {
                sum += std::pow(std::abs(inp[i]), embd_norm);
            }
            sum = std::pow(sum, 1.0 / embd_norm);
            break;
    }

    const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;

    for (int i = 0; i < n; i++) {
        out[i] = inp[i] * norm;
    }
}

1407
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    double sum  = 0.0;
    double sum1 = 0.0;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum  += embd1[i] * embd2[i];
        sum1 += embd1[i] * embd1[i];
        sum2 += embd2[i] * embd2[i];
    }

    // Handle the case where one or both vectors are zero vectors
    if (sum1 == 0.0 || sum2 == 0.0) {
        if (sum1 == 0.0 && sum2 == 0.0) {
            return 1.0f; // two zero vectors are similar
        }
        return 0.0f;
    }

    return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

1433
1434
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
    common_control_vector_data result = { -1, {} };
1435
1436
1437
1438
1439
1440
1441
1442

    ggml_context * ctx = nullptr;
    struct gguf_init_params meta_gguf_params = {
        /* .no_alloc = */ false,
        /* .ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
    if (!ctx_gguf) {
1443
        LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
1444
1445
1446
1447
1448
        return result;
    }

    int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
    if (n_tensors == 0) {
1449
        LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    }

    for (int i = 0; i < n_tensors; i++) {
        std::string name = gguf_get_tensor_name(ctx_gguf, i);

        int layer_idx = -1;

        // split on '.'
        size_t dotpos = name.find('.');
        if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
            try {
                layer_idx = std::stoi(name.substr(dotpos + 1));
            } catch (...) {
                layer_idx = -1;
            }
        }
        if (layer_idx < 0) {
1467
            LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1468
1469
1470
            result.n_embd = -1;
            break;
        } else if (layer_idx == 0) {
1471
            LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1472
1473
1474
1475
1476
1477
            result.n_embd = -1;
            break;
        }

        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
        if (tensor->type != GGML_TYPE_F32) {
1478
            LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
1479
1480
1481
1482
            result.n_embd = -1;
            break;
        }
        if (ggml_n_dims(tensor) != 1) {
1483
            LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
1484
1485
1486
1487
1488
1489
1490
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result.n_embd = ggml_nelements(tensor);
        } else if (ggml_nelements(tensor) != result.n_embd) {
1491
            LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
            result.n_embd = -1;
            break;
        }

        // extend if necessary - do not store data for layer 0 (it's not used)
        result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);

        const float * src = (const float *) tensor->data;
        float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
        for (int j = 0; j < result.n_embd; j++) {
            dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
        }

    }

    if (result.n_embd == -1) {
1508
        LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
1509
1510
1511
1512
1513
1514
1515
1516
1517
        result.data.clear();
    }

    gguf_free(ctx_gguf);
    ggml_free(ctx);

    return result;
}

1518
1519
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
    common_control_vector_data result = { -1, {} };
1520
1521

    for (const auto & info : load_infos) {
1522
        auto cur = common_control_vector_load_one(info);
1523
1524
1525
1526
1527
1528

        if (cur.n_embd == -1) {
            result.n_embd = -1;
            break;
        }
        if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
1529
            LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result = std::move(cur);
        } else {
            result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f);  // extend if necessary
            for (size_t i = 0; i < cur.data.size(); i++) {
                result.data[i] += cur.data[i];
            }
        }
    }

    if (result.n_embd == -1) {
1545
        LOG_ERR("%s: no valid control vector files passed\n", __func__);
1546
1547
1548
1549
1550
        result.data.clear();
    }

    return result;
}
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567

ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
    const int64_t ne_datapoint = llama_n_ctx(ctx);
    const int64_t ndata        = (tokens.size() - ne_datapoint - 1) / stride;
    ggml_opt_dataset_t result = ggml_opt_dataset_init(
        GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);

    llama_token * data   = (llama_token *) ggml_opt_dataset_data(result)->data;
    llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;

    for (int64_t idata = 0; idata < ndata; ++idata) {
        memcpy(data   + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
        memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
    }

    return result;
}