common.cpp 57.3 KB
Newer Older
1
2
3
4
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif

5
6
7
#include "ggml.h"
#include "gguf.h"

8
#include "common.h"
9
#include "log.h"
10
#include "llama.h"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
11
#include "sampling.h"
12
13
14

#include <algorithm>
#include <cinttypes>
15
#include <climits>
16
17
#include <cmath>
#include <codecvt>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
18
#include <chrono>
19
20
21
#include <cstdarg>
#include <cstring>
#include <ctime>
22
#include <filesystem>
23
24
25
26
27
28
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <string>
29
#include <thread>
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <unordered_set>
#include <vector>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <locale>
#include <windows.h>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
45
#include <string.h>
46
47
48
49
50
51
52
53
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
54
55
56
57
58
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif

59
60
61
62
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
63
64
65
66
67
68
69
70
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}

common_time_meas::~common_time_meas() {
    if (t_start_us >= 0) {
        t_acc += ggml_time_us() - t_start_us;
    }
}

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//
// CPU utils
//

int32_t cpu_get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    unsigned int n_threads_win = std::thread::hardware_concurrency();
    unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;

    DWORD buffer_size = 0;
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
        if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
            return default_threads;
        }
    }

    std::vector<char> buffer(buffer_size);
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
        return default_threads;
    }

    int32_t num_physical_cores = 0;
    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
    while (buffer_size > 0) {
        if (info->Relationship == RelationProcessorCore) {
            num_physical_cores += info->Processor.GroupCount;
        }
        buffer_size -= info->Size;
        info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
    }

    return num_physical_cores > 0 ? num_physical_cores : default_threads;
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
                  unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
    __asm__("movq\t%%rbx,%%rsi\n\t"
            "cpuid\n\t"
            "xchgq\t%%rbx,%%rsi"
            : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
            : "0"(leaf), "2"(subleaf));
}

static int pin_cpu(int cpu) {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);
    return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}

static bool is_hybrid_cpu(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(7, 0, &eax, &ebx, &ecx, &edx);
    return !!(edx & (1u << 15));
}

static bool is_running_on_efficiency_core(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
    int intel_atom = 0x20;
    int core_type = (eax & 0xff000000u) >> 24;
    return core_type == intel_atom;
}

static int cpu_count_math_cpus(int n_cpu) {
    int result = 0;
    for (int cpu = 0; cpu < n_cpu; ++cpu) {
        if (pin_cpu(cpu)) {
174
            return -1;
175
        }
176
177
        if (is_running_on_efficiency_core()) {
            continue; // efficiency cores harm lockstep threading
178
        }
179
180
        ++cpu; // hyperthreading isn't useful for linear algebra
        ++result;
181
    }
182
183
184
185
186
187
188
189
190
191
192
193
194
    return result;
}

#endif // __x86_64__ && __linux__

/**
 * Returns number of CPUs on system that are useful for math.
 */
int32_t cpu_get_num_math() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
    int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
    if (n_cpu < 1) {
        return cpu_get_num_physical_cores();
195
    }
196
197
198
199
200
201
202
203
    if (is_hybrid_cpu()) {
        cpu_set_t affinity;
        if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
            int result = cpu_count_math_cpus(n_cpu);
            pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
            if (result > 0) {
                return result;
            }
204
205
        }
    }
206
207
208
209
210
211
212
213
214
215
#endif
    return cpu_get_num_physical_cores();
}

// Helper for setting process priority

#if defined(_WIN32)

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
216
217
        return true;
    }
218
219
220

    DWORD p = NORMAL_PRIORITY_CLASS;
    switch (prio) {
221
        case GGML_SCHED_PRIO_LOW:      p = BELOW_NORMAL_PRIORITY_CLASS; break;
222
223
224
225
        case GGML_SCHED_PRIO_NORMAL:   p = NORMAL_PRIORITY_CLASS;       break;
        case GGML_SCHED_PRIO_MEDIUM:   p = ABOVE_NORMAL_PRIORITY_CLASS; break;
        case GGML_SCHED_PRIO_HIGH:     p = HIGH_PRIORITY_CLASS;         break;
        case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS;     break;
226
    }
227
228
229
230

    if (!SetPriorityClass(GetCurrentProcess(), p)) {
        LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
        return false;
231
    }
232
233
234
235
236
237
238
239
240
241

    return true;
}

#else // MacOS and POSIX
#include <sys/types.h>
#include <sys/resource.h>

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
242
243
        return true;
    }
244
245
246

    int p = 0;
    switch (prio) {
247
        case GGML_SCHED_PRIO_LOW:      p =  5;  break;
248
249
250
251
        case GGML_SCHED_PRIO_NORMAL:   p =  0;  break;
        case GGML_SCHED_PRIO_MEDIUM:   p = -5;  break;
        case GGML_SCHED_PRIO_HIGH:     p = -10; break;
        case GGML_SCHED_PRIO_REALTIME: p = -20; break;
252
    }
253
254
255
256

    if (!setpriority(PRIO_PROCESS, 0, p)) {
        LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
        return false;
257
    }
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    return true;
}

#endif

//
// CLI argument parsing
//


void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
    int32_t n_set = 0;

    if (cpuparams.n_threads < 0) {
        // Assuming everything about cpuparams is invalid
        if (role_model != nullptr) {
            cpuparams = *role_model;
        } else {
            cpuparams.n_threads = cpu_get_num_math();
        }
278
    }
279
280
281
282
283

    for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
        if (cpuparams.cpumask[i]) {
            n_set++;
        }
284
    }
285
286
287
288

    if (n_set && n_set < cpuparams.n_threads) {
        // Not enough set bits, may experience performance issues.
        LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
289
    }
290
291
292
293
294
295
296
}

bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    size_t dash_loc = range.find('-');
    if (dash_loc == std::string::npos) {
        LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
        return false;
297
    }
298
299
300
301
302
303
304
305
306
307
308
309

    size_t start_i;
    size_t end_i;

    if (dash_loc == 0) {
        start_i = 0;
    } else {
        start_i = std::stoull(range.substr(0, dash_loc));
        if (start_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("Start index out of bounds!\n");
            return false;
        }
310
    }
311
312
313
314
315
316
317
318

    if (dash_loc == range.length() - 1) {
        end_i = GGML_MAX_N_THREADS - 1;
    } else {
        end_i = std::stoull(range.substr(dash_loc + 1));
        if (end_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("End index out of bounds!\n");
            return false;
319
320
321
        }
    }

322
323
324
325
326
    for (size_t i = start_i; i <= end_i; i++) {
        boolmask[i] = true;
    }

    return true;
327
328
}

329
330
331
332
333
334
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    // Discard potential 0x prefix
    size_t start_i = 0;
    if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
        start_i = 2;
    }
335

336
337
    size_t num_digits = mask.length() - start_i;
    if (num_digits > 128) num_digits = 128;
338

339
    size_t end_i = num_digits + start_i;
340

341
342
343
344
345
346
347
348
349
350
351
352
353
    for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
        char c = mask.at(i);
        int8_t id = c;

        if ((c >= '0' && c <= '9')) {
            id -= '0';
        } else if (c >= 'a' && c <= 'f') {
            id -= 'a' - 10;
        } else if (c >= 'A' && c <= 'F') {
            id -= 'A' - 10;
        } else {
            LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
            return false;
354
355
        }

356
357
358
359
360
361
362
363
364
        boolmask[  n  ] = boolmask[  n  ] || ((id & 8) != 0);
        boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
        boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
        boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
    }

    return true;
}

365
void common_init() {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
366
    llama_log_set(common_log_default_callback, NULL);
367

368
369
370
371
372
#ifdef NDEBUG
    const char * build_type = "";
#else
    const char * build_type = " (debug)";
#endif
373

374
    LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
375
376
}

377
std::string common_params_get_system_info(const common_params & params) {
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    std::ostringstream os;

    os << "system_info: n_threads = " << params.cpuparams.n_threads;
    if (params.cpuparams_batch.n_threads != -1) {
        os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
    }
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
    os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
#else
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
#endif

    return os.str();
}

//
// String utils
//

399
400
401
402
403
404
405
406
407
408
409
410
411
std::string string_format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), size);
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
}

std::string string_strip(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && std::isspace(str[start])) {
        start++;
    }
    while (end > start && std::isspace(str[end - 1])) {
        end--;
    }
    return str.substr(start, end - start);
}

std::string string_get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
    if (search.empty()) {
        return;
    }
    std::string builder;
    builder.reserve(s.length());
    size_t pos = 0;
    size_t last_pos = 0;
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
        builder.append(s, last_pos, pos - last_pos);
        builder.append(replace);
        last_pos = pos + search.length();
    }
    builder.append(s, last_pos, std::string::npos);
    s = std::move(builder);
}

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
    return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}

bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
    bool has_suffix = string_ends_with(str, suffix);
    if (has_suffix) {
        str = str.substr(0, str.size() - suffix.size());
    }
    return has_suffix;
}

size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
    if (!str.empty() && !stop.empty()) {
        const char text_last_char = str.back();
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
            if (stop[char_index] == text_last_char) {
                const auto current_partial = stop.substr(0, char_index + 1);
                if (string_ends_with(str, current_partial)) {
                    return str.size() - char_index - 1;
                }
            }
        }
    }

    return std::string::npos;
}

487
488
std::string regex_escape(const std::string & s) {
    static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
489
    return std::regex_replace(s, special_chars, "\\$&");
490
491
}

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
    std::ostringstream result;
    for (size_t i = 0; i < values.size(); ++i) {
        if (i > 0) {
            result << separator;
        }
        result << values[i];
    }
    return result.str();
}

std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
    std::vector<std::string> parts;
    size_t start = 0;
    size_t end = str.find(delimiter);

    while (end != std::string::npos) {
        parts.push_back(str.substr(start, end - start));
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    parts.push_back(str.substr(start));

    return parts;
}

std::string string_repeat(const std::string & str, size_t n) {
    if (n == 0) {
        return "";
    }

    std::string result;
    result.reserve(str.length() * n);

    for (size_t i = 0; i < n; ++i) {
        result += str;
    }

    return result;
}

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
std::string string_from(bool value) {
    return value ? "true" : "false";
}

std::string string_from(const std::vector<int> & values) {
    std::stringstream buf;

    buf << "[ ";
    bool first = true;
    for (auto e : values) {
        if (first) {
            first = false;
        } else {
            buf << ", ";
        }
        buf << std::to_string(e);
    }
    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (const auto & token : tokens) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

569
        auto detokenized = common_token_to_piece(ctx, token);
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

        buf << "'" << detokenized << "'"
            << ":" << std::to_string(token);
    }

    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (int i = 0; i < batch.n_tokens; ++i) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

593
        auto detokenized = common_token_to_piece(ctx, batch.token[i]);
594

595
596
597
598
599
600
        buf << "\n"          << std::to_string(i)
            << ", token '"   << detokenized << "'"
            << ", pos "      << std::to_string(batch.pos[i])
            << ", n_seq_id " << std::to_string(batch.n_seq_id[i])
            << ", seq_id "   << std::to_string(batch.seq_id[i][0])
            << ", logits "   << std::to_string(batch.logits[i]);
601
602
603
604
605
606
607
    }

    buf << " ]";

    return buf.str();
}

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
void string_process_escapes(std::string & input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                case 'x':
                    // Handle \x12, etc
                    if (input_idx + 2 < input_len) {
                        const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
                        char *err_p = nullptr;
                        const long val = std::strtol(x, &err_p, 16);
                        if (err_p == x + 2) {
                            input_idx += 2;
                            input[output_idx++] = char(val);
                            break;
                        }
                    }
                    // fall through
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
    const char * sep = strchr(data, '=');
    if (sep == nullptr || sep - data >= 128) {
648
        LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        return false;
    }
    llama_model_kv_override kvo;
    std::strncpy(kvo.key, data, sep - data);
    kvo.key[sep - data] = 0;
    sep++;
    if (strncmp(sep, "int:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
        kvo.val_i64 = std::atol(sep);
    } else if (strncmp(sep, "float:", 6) == 0) {
        sep += 6;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
        kvo.val_f64 = std::atof(sep);
    } else if (strncmp(sep, "bool:", 5) == 0) {
        sep += 5;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
        if (std::strcmp(sep, "true") == 0) {
            kvo.val_bool = true;
        } else if (std::strcmp(sep, "false") == 0) {
            kvo.val_bool = false;
        } else {
671
            LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
672
673
674
675
676
677
            return false;
        }
    } else if (strncmp(sep, "str:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
        if (strlen(sep) > 127) {
678
            LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
679
680
681
682
683
            return false;
        }
        strncpy(kvo.val_str, sep, 127);
        kvo.val_str[127] = '\0';
    } else {
684
        LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        return false;
    }
    overrides.emplace_back(std::move(kvo));
    return true;
}

//
// Filesystem utils
//

// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
    if (!filename.length()) {
        // Empty filename invalid
        return false;
    }
    if (filename.length() > 255) {
        // Limit at common largest possible filename on Linux filesystems
        // to avoid unnecessary further validation
        // (On systems with smaller limits it will be caught by the OS)
        return false;
    }

    std::u32string filename_utf32;
    try {
711
712
713
714
#if defined(__clang__)
        // disable C++17 deprecation warning for std::codecvt_utf8
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
715
716
717
#elif defined(__GNUC__)
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wdeprecated-declarations"
718
#endif
719

720
        std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
721
722
723

#if defined(__clang__)
#    pragma clang diagnostic pop
724
725
#elif defined(__GNUC__)
#    pragma GCC diagnostic pop
726
727
#endif

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        filename_utf32 = converter.from_bytes(filename);

        // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
        // or invalid encodings were encountered. Reject such attempts
        std::string filename_reencoded = converter.to_bytes(filename_utf32);
        if (filename_reencoded != filename) {
            return false;
        }
    } catch (const std::exception &) {
        return false;
    }

    // Check for forbidden codepoints:
    // - Control characters
    // - Unicode equivalents of illegal characters
    // - UTF-16 surrogate pairs
    // - UTF-8 replacement character
    // - Byte order mark (BOM)
    // - Illegal characters: / \ : * ? " < > |
    for (char32_t c : filename_utf32) {
        if (c <= 0x1F // Control characters (C0)
            || c == 0x7F // Control characters (DEL)
            || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
            || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
            || c == 0x2215 // Division Slash (forward slash equivalent)
            || c == 0x2216 // Set Minus (backslash equivalent)
            || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
            || c == 0xFFFD // Replacement Character (UTF-8)
            || c == 0xFEFF // Byte Order Mark (BOM)
            || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
            || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
            return false;
        }
    }

    // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
    // Unicode and other whitespace is not affected, only 0x20 space
    if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
        return false;
    }

    // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
    if (filename.find("..") != std::string::npos) {
        return false;
    }

    // Reject "."
    if (filename == ".") {
        return false;
    }

    return true;
}

782
783
784
#include <iostream>


785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
    std::wstring wpath = converter.from_bytes(path);

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);

803
804
805
806
807
808
809
810
811
        pos_slash += 1;

        // skip the drive letter, in some systems it can return an access denied error
        if (subpath.length() == 2 && subpath[1] == ':') {
            continue;
        }

        const bool success = CreateDirectoryW(subpath.c_str(), NULL);

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

std::string fs_get_cache_directory() {
    std::string cache_directory = "";
    auto ensure_trailing_slash = [](std::string p) {
        // Make sure to add trailing slash
        if (p.back() != DIRECTORY_SEPARATOR) {
            p += DIRECTORY_SEPARATOR;
        }
        return p;
    };
    if (getenv("LLAMA_CACHE")) {
        cache_directory = std::getenv("LLAMA_CACHE");
    } else {
874
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
875
876
        if (std::getenv("XDG_CACHE_HOME")) {
            cache_directory = std::getenv("XDG_CACHE_HOME");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
877
        } else if (std::getenv("HOME")) {
878
            cache_directory = std::getenv("HOME") + std::string("/.cache/");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
879
880
881
882
883
884
885
886
887
888
889
890
        } else {
#if defined(__linux__)
            /* no $HOME is defined, fallback to getpwuid */
            struct passwd *pw = getpwuid(getuid());
            if ((!pw) || (!pw->pw_dir)) {
                throw std::runtime_error("Failed to find $HOME directory");
            }

            cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
            throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
891
892
893
894
895
        }
#elif defined(__APPLE__)
        cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
        cache_directory = std::getenv("LOCALAPPDATA");
896
897
898
#else
#  error Unknown architecture
#endif
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
        cache_directory = ensure_trailing_slash(cache_directory);
        cache_directory += "llama.cpp";
    }
    return ensure_trailing_slash(cache_directory);
}

std::string fs_get_cache_file(const std::string & filename) {
    GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
    std::string cache_directory = fs_get_cache_directory();
    const bool success = fs_create_directory_with_parents(cache_directory);
    if (!success) {
        throw std::runtime_error("failed to create cache directory: " + cache_directory);
    }
    return cache_directory + filename;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
std::vector<common_file_info> fs_list_files(const std::string & path) {
    std::vector<common_file_info> files;
    if (path.empty()) return files;

    std::filesystem::path dir(path);
    if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
        return files;
    }

    for (const auto & entry : std::filesystem::directory_iterator(dir)) {
        try {
            // Only include regular files (skip directories)
            const auto & p = entry.path();
            if (std::filesystem::is_regular_file(p)) {
                common_file_info info;
                info.path = p.string();
                info.name = p.filename().string();
                try {
                    info.size = static_cast<size_t>(std::filesystem::file_size(p));
                } catch (const std::filesystem::filesystem_error &) {
                    info.size = 0;
                }
                files.push_back(std::move(info));
            }
        } catch (const std::filesystem::filesystem_error &) {
            // skip entries we cannot inspect
            continue;
        }
    }

    return files;
}

948
949
950
951

//
// Model utils
//
952

Daniel Hiltgen's avatar
Daniel Hiltgen committed
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
static inline void common_init_sampler_from_model(
    const llama_model * model,
    common_params_sampling & sparams) {

    const uint64_t config = sparams.user_sampling_config;

    auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
        if (config & user_config) return;

        char buf[64] = {0};
        if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
            char * end = nullptr;
            int32_t v = strtol(buf, &end, 10);
            if (end && end != buf) dst = v;
        }
    };

    auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
        if (config & user_config) return;

        char buf[128] = {0};
        if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
            char * end = nullptr;
            float v = strtof(buf, &end);
            if (end && end != buf) dst = v;
        }
    };

    // Sampling sequence
    if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
        char buf[512] = {0};
        if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
            const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
            if (!sampler_names.empty()) {
                sparams.samplers = common_sampler_types_from_names(sampler_names, true);
            }
        }
    }

    get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K),           sparams.top_k,           common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P),           sparams.top_p,           common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P),           sparams.min_p,           common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD),   sparams.xtc_threshold,   common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP),            sparams.temp,            common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
    get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N),  sparams.penalty_last_n,  common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT),  sparams.penalty_repeat,  common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
    get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT),        sparams.mirostat,        common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU),    sparams.mirostat_tau,    common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
    get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA),    sparams.mirostat_eta,    common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}

1005
1006
1007
struct common_init_result common_init_from_params(common_params & params) {
    common_init_result iparams;
    auto mparams = common_model_params_to_llama(params);
1008

1009
    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
1010
    if (model == NULL) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1011
1012
        LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
            __func__, params.model.path.c_str());
1013
1014
1015
        return iparams;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1016
1017
    common_init_sampler_from_model(model, params.sampling);

1018
1019
    const llama_vocab * vocab = llama_model_get_vocab(model);

1020
    auto cparams = common_context_params_to_llama(params);
1021

1022
    llama_context * lctx = llama_init_from_model(model, cparams);
1023
    if (lctx == NULL) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1024
1025
        LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
            __func__, params.model.path.c_str());
1026
        llama_model_free(model);
1027
1028
1029
        return iparams;
    }

1030
    if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
1031
        LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
1032
        params.ctx_shift = false;
1033
1034
    }

1035
1036
    if (!params.control_vectors.empty()) {
        if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
1037
        if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_model_n_layer(model);
1038

1039
        const auto cvec = common_control_vector_load(params.control_vectors);
1040
1041
        if (cvec.n_embd == -1) {
            llama_free(lctx);
1042
            llama_model_free(model);
1043

1044
1045
1046
            return iparams;
        }

1047
1048
1049
1050
1051
1052
1053
        int err = llama_apply_adapter_cvec(
                lctx,
                cvec.data.data(),
                cvec.data.size(),
                cvec.n_embd,
                params.control_vector_layer_start,
                params.control_vector_layer_end);
1054
1055
        if (err) {
            llama_free(lctx);
1056
            llama_model_free(model);
1057

1058
1059
1060
1061
            return iparams;
        }
    }

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
    if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
        bool ok = true;

        if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have a  BOS token, reranking will not work\n", __func__);
            ok = false;
        }

        bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
        bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1072
        bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
1073

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1074
1075
        if (!has_eos && !has_sep && !has_rerank_prompt) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            ok = false;
        } else if (!has_eos) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
        }

        if (!ok) {
            llama_free(lctx);
            llama_model_free(model);

            return iparams;
        }
    }

1089
1090
    // load and optionally apply lora adapters
    for (auto & la : params.lora_adapters) {
1091
1092
        llama_adapter_lora_ptr lora;
        lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
1093
        if (lora == nullptr) {
1094
            LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
1095
            llama_free(lctx);
1096
            llama_model_free(model);
1097
1098
            return iparams;
        }
1099

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1100
        char buf[1024];
1101
        la.ptr = lora.get();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1102
1103
1104
1105
        llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
        la.task_name = buf;
        llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
        la.prompt_prefix = buf;
1106
        iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
1107
    }
1108

1109
    if (!params.lora_init_without_apply) {
1110
        common_set_adapter_lora(lctx, params.lora_adapters);
1111
1112
    }

1113
1114
    if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
        LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
1115
        params.sampling.ignore_eos = false;
1116
1117
    }

1118
1119
1120
1121
1122
    // initialize once
    for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
        if (llama_vocab_is_eog(vocab, i)) {
            LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
            params.sampling.logit_bias_eog.push_back({i, -INFINITY});
1123
1124
1125
        }
    }

1126
1127
1128
1129
1130
1131
1132
    if (params.sampling.ignore_eos) {
        // add EOG biases to the active set of logit biases
        params.sampling.logit_bias.insert(
                params.sampling.logit_bias.end(),
                params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
    }

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
    if (params.sampling.penalty_last_n == -1) {
        LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.penalty_last_n = llama_n_ctx(lctx);
    }

    if (params.sampling.dry_penalty_last_n == -1) {
        LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
    }

1143
    if (params.warmup) {
1144
        LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
1145

1146
1147
        llama_set_warmup(lctx, true);

1148
        std::vector<llama_token> tmp;
1149
1150
1151
        llama_token bos = llama_vocab_bos(vocab);
        llama_token eos = llama_vocab_eos(vocab);

1152
        // some models (e.g. T5) don't have a BOS token
1153
        if (bos != LLAMA_TOKEN_NULL) {
1154
1155
            tmp.push_back(bos);
        }
1156
1157
1158
1159
1160
1161
        if (eos != LLAMA_TOKEN_NULL) {
            tmp.push_back(eos);
        }
        if (tmp.empty()) {
            tmp.push_back(0);
        }
1162
1163

        if (llama_model_has_encoder(model)) {
1164
            llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
1165
            llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
1166
            if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
1167
1168
1169
1170
1171
1172
                decoder_start_token_id = bos;
            }
            tmp.clear();
            tmp.push_back(decoder_start_token_id);
        }
        if (llama_model_has_decoder(model)) {
1173
            llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
1174
        }
1175
        llama_memory_clear(llama_get_memory(lctx), true);
1176
        llama_synchronize(lctx);
1177
        llama_perf_context_reset(lctx);
1178
        llama_set_warmup(lctx, false);
1179
1180
    }

1181
1182
    iparams.model.reset(model);
    iparams.context.reset(lctx);
1183

1184
1185
1186
    return iparams;
}

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
std::string get_model_endpoint() {
    const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
    // We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
    const char * hf_endpoint_env = getenv("HF_ENDPOINT");
    const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
    std::string model_endpoint = "https://huggingface.co/";
    if (endpoint_env) {
        model_endpoint = endpoint_env;
        if (model_endpoint.back() != '/') model_endpoint += '/';
    }
    return model_endpoint;
}

1200
1201
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
    llama_clear_adapter_lora(ctx);
1202
    for (auto & la : lora) {
1203
        if (la.scale != 0.0f) {
1204
            llama_set_adapter_lora(ctx, la.ptr, la.scale);
1205
1206
1207
1208
        }
    }
}

1209
struct llama_model_params common_model_params_to_llama(common_params & params) {
1210
1211
    auto mparams = llama_model_default_params();

1212
1213
1214
    if (!params.devices.empty()) {
        mparams.devices = params.devices.data();
    }
1215

1216
1217
1218
    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
1219

1220
1221
1222
1223
1224
1225
    mparams.main_gpu        = params.main_gpu;
    mparams.split_mode      = params.split_mode;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;
    mparams.check_tensors   = params.check_tensors;
1226
    mparams.use_extra_bufts = !params.no_extra_bufts;
1227
    mparams.no_host         = params.no_host;
1228

1229
1230
1231
1232
1233
1234
1235
    if (params.kv_overrides.empty()) {
        mparams.kv_overrides = NULL;
    } else {
        GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
        mparams.kv_overrides = params.kv_overrides.data();
    }

1236
1237
1238
1239
1240
1241
1242
    if (params.tensor_buft_overrides.empty()) {
        mparams.tensor_buft_overrides = NULL;
    } else {
        GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
        mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
    }

1243
1244
1245
    mparams.progress_callback           = params.load_progress_callback;
    mparams.progress_callback_user_data = params.load_progress_callback_user_data;

1246
1247
1248
    return mparams;
}

1249
struct llama_context_params common_context_params_to_llama(const common_params & params) {
1250
1251
1252
1253
1254
1255
1256
1257
    auto cparams = llama_context_default_params();

    cparams.n_ctx             = params.n_ctx;
    cparams.n_seq_max         = params.n_parallel;
    cparams.n_batch           = params.n_batch;
    cparams.n_ubatch          = params.n_ubatch;
    cparams.n_threads         = params.cpuparams.n_threads;
    cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ?
1258
                                params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
    cparams.embeddings        = params.embedding;
    cparams.rope_scaling_type = params.rope_scaling_type;
    cparams.rope_freq_base    = params.rope_freq_base;
    cparams.rope_freq_scale   = params.rope_freq_scale;
    cparams.yarn_ext_factor   = params.yarn_ext_factor;
    cparams.yarn_attn_factor  = params.yarn_attn_factor;
    cparams.yarn_beta_fast    = params.yarn_beta_fast;
    cparams.yarn_beta_slow    = params.yarn_beta_slow;
    cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
    cparams.pooling_type      = params.pooling_type;
    cparams.attention_type    = params.attention_type;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1270
    cparams.flash_attn_type   = params.flash_attn_type;
1271
1272
1273
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
    cparams.offload_kqv       = !params.no_kv_offload;
1274
    cparams.no_perf           = params.no_perf;
1275
    cparams.op_offload        = !params.no_op_offload;
1276
1277
    cparams.swa_full          = params.swa_full;
    cparams.kv_unified        = params.kv_unified;
1278

1279
1280
    cparams.type_k = params.cache_type_k;
    cparams.type_v = params.cache_type_v;
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

    return cparams;
}

struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
    struct ggml_threadpool_params tpp;

    ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults

    if (params.mask_valid) {
        std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
    }

    tpp.prio       = params.priority;
    tpp.poll       = params.poll;
    tpp.strict_cpu = params.strict_cpu;

    return tpp;
}

//
// Batch utils
//

1305
void common_batch_clear(struct llama_batch & batch) {
1306
1307
1308
    batch.n_tokens = 0;
}

1309
void common_batch_add(
1310
1311
1312
1313
1314
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits) {
1315
1316
    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
    batch.token   [batch.n_tokens] = id;
    batch.pos     [batch.n_tokens] = pos;
    batch.n_seq_id[batch.n_tokens] = seq_ids.size();
    for (size_t i = 0; i < seq_ids.size(); ++i) {
        batch.seq_id[batch.n_tokens][i] = seq_ids[i];
    }
    batch.logits  [batch.n_tokens] = logits;

    batch.n_tokens++;
}

1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
//
// Token utils
//

size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}

    return i;
}

size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
    // check for empty sequences
    if (a.empty() || b.empty()) {
        return 0;
    }

    // get the lengths of the input sequences
    size_t a_len = a.size();
    size_t b_len = b.size();

    // initialize the maximum length of the longest common subsequence (LCS)
    size_t max_length = 0;

    // use two rows instead of a 2D matrix to optimize space
    std::vector<size_t> prev_row(b_len + 1, 0);
    std::vector<size_t> curr_row(b_len + 1, 0);

    // iterate through the elements of a
    for (size_t i = 1; i <= a_len; i++) {
        // iterate through the elements of b
        for (size_t j = 1; j <= b_len; j++) {
            // if elements at the current positions match
            if (a[i - 1] == b[j - 1]) {
                // if it's the first element of either sequences, set LCS length to 1
                if (i == 1 || j == 1) {
                    curr_row[j] = 1;
                } else {
                    // increment LCS length by 1 compared to the previous element
                    curr_row[j] = prev_row[j - 1] + 1;
                }

                // update max_length if necessary
                if (curr_row[j] > max_length) {
                    max_length = curr_row[j];
                }
            } else {
                // reset LCS length if elements don't match
                curr_row[j] = 0;
            }
        }

        // update the previous row for the next iteration
        prev_row = curr_row;
    }

    // return the maximum length of the LCS
    return max_length;
}

1388
1389
1390
1391
//
// Vocab utils
//

1392
std::vector<llama_token> common_tokenize(
1393
1394
1395
1396
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
1397
1398
1399
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_tokenize(vocab, text, add_special, parse_special);
1400
1401
}

1402
std::vector<llama_token> common_tokenize(
1403
    const struct llama_vocab * vocab,
1404
1405
1406
1407
1408
1409
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + 2 * add_special;
    std::vector<llama_token> result(n_tokens);
1410
    n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1411
1412
1413
    if (n_tokens == std::numeric_limits<int32_t>::min()) {
        throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
    }
1414
1415
    if (n_tokens < 0) {
        result.resize(-n_tokens);
1416
        int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1417
1418
1419
1420
1421
1422
1423
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

1424
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
1425
1426
1427
1428
1429
1430
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_token_to_piece(vocab, token, special);
}

std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
1431
1432
    std::string piece;
    piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
1433
    const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1434
1435
    if (n_chars < 0) {
        piece.resize(-n_chars);
1436
        int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1437
1438
1439
1440
1441
1442
1443
1444
1445
        GGML_ASSERT(check == -n_chars);
    }
    else {
        piece.resize(n_chars);
    }

    return piece;
}

1446
1447
1448
1449
1450
1451
1452
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_detokenize(vocab, tokens, special);
}

std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
1453
1454
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
1455
    int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1456
1457
    if (n_chars < 0) {
        text.resize(-n_chars);
1458
        n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}

//
// Embedding utils
//

1472
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
1473
1474
1475
1476
1477
1478
1479
1480
    double sum = 0.0;

    switch (embd_norm) {
        case -1: // no normalisation
            sum = 1.0;
            break;
        case 0: // max absolute
            for (int i = 0; i < n; i++) {
1481
1482
1483
                if (sum < std::abs(inp[i])) {
                    sum = std::abs(inp[i]);
                }
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
            }
            sum /= 32760.0; // make an int16 range
            break;
        case 2: // euclidean
            for (int i = 0; i < n; i++) {
                sum += inp[i] * inp[i];
            }
            sum = std::sqrt(sum);
            break;
        default: // p-norm (euclidean is p-norm p=2)
            for (int i = 0; i < n; i++) {
                sum += std::pow(std::abs(inp[i]), embd_norm);
            }
            sum = std::pow(sum, 1.0 / embd_norm);
            break;
    }

    const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;

    for (int i = 0; i < n; i++) {
        out[i] = inp[i] * norm;
    }
}

1508
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    double sum  = 0.0;
    double sum1 = 0.0;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum  += embd1[i] * embd2[i];
        sum1 += embd1[i] * embd1[i];
        sum2 += embd2[i] * embd2[i];
    }

    // Handle the case where one or both vectors are zero vectors
    if (sum1 == 0.0 || sum2 == 0.0) {
        if (sum1 == 0.0 && sum2 == 0.0) {
            return 1.0f; // two zero vectors are similar
        }
        return 0.0f;
    }

    return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

1534
1535
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
    common_control_vector_data result = { -1, {} };
1536
1537
1538
1539
1540
1541
1542
1543

    ggml_context * ctx = nullptr;
    struct gguf_init_params meta_gguf_params = {
        /* .no_alloc = */ false,
        /* .ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
    if (!ctx_gguf) {
1544
        LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
1545
1546
1547
1548
1549
        return result;
    }

    int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
    if (n_tensors == 0) {
1550
        LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
    }

    for (int i = 0; i < n_tensors; i++) {
        std::string name = gguf_get_tensor_name(ctx_gguf, i);

        int layer_idx = -1;

        // split on '.'
        size_t dotpos = name.find('.');
        if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
            try {
                layer_idx = std::stoi(name.substr(dotpos + 1));
            } catch (...) {
                layer_idx = -1;
            }
        }
        if (layer_idx < 0) {
1568
            LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1569
1570
1571
            result.n_embd = -1;
            break;
        } else if (layer_idx == 0) {
1572
            LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1573
1574
1575
1576
1577
1578
            result.n_embd = -1;
            break;
        }

        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
        if (tensor->type != GGML_TYPE_F32) {
1579
            LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
1580
1581
1582
1583
            result.n_embd = -1;
            break;
        }
        if (ggml_n_dims(tensor) != 1) {
1584
            LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
1585
1586
1587
1588
1589
1590
1591
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result.n_embd = ggml_nelements(tensor);
        } else if (ggml_nelements(tensor) != result.n_embd) {
1592
            LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
            result.n_embd = -1;
            break;
        }

        // extend if necessary - do not store data for layer 0 (it's not used)
        result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);

        const float * src = (const float *) tensor->data;
        float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
        for (int j = 0; j < result.n_embd; j++) {
            dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
        }

    }

    if (result.n_embd == -1) {
1609
        LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
1610
1611
1612
1613
1614
1615
1616
1617
1618
        result.data.clear();
    }

    gguf_free(ctx_gguf);
    ggml_free(ctx);

    return result;
}

1619
1620
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
    common_control_vector_data result = { -1, {} };
1621
1622

    for (const auto & info : load_infos) {
1623
        auto cur = common_control_vector_load_one(info);
1624
1625
1626
1627
1628
1629

        if (cur.n_embd == -1) {
            result.n_embd = -1;
            break;
        }
        if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
1630
            LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result = std::move(cur);
        } else {
            result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f);  // extend if necessary
            for (size_t i = 0; i < cur.data.size(); i++) {
                result.data[i] += cur.data[i];
            }
        }
    }

    if (result.n_embd == -1) {
1646
        LOG_ERR("%s: no valid control vector files passed\n", __func__);
1647
1648
1649
1650
1651
        result.data.clear();
    }

    return result;
}
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
    const int64_t ne_datapoint = llama_n_ctx(ctx);
    const int64_t ndata        = (tokens.size() - ne_datapoint - 1) / stride;
    ggml_opt_dataset_t result = ggml_opt_dataset_init(
        GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);

    llama_token * data   = (llama_token *) ggml_opt_dataset_data(result)->data;
    llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;

    for (int64_t idata = 0; idata < ndata; ++idata) {
        memcpy(data   + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
        memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
    }

    return result;
}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
    ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
    const lr_opt &            d      = *(lr_opt *) userdata;
    result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
    result.sgd.wd = result.adamw.wd = d.wd;
    return result;
}

// TODO make all command line args case-insensitive
static inline bool eq_case_insensitive(char const* a, char const* b) {
    return !
#if defined(_MSC_VER)
        _stricmp
#else
        strcasecmp
#endif // defined(_MSC_VER)
        (a, b);
}

enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
    if (eq_case_insensitive("adamw", n)) {
        return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
    }
    if (eq_case_insensitive("sgd", n)) {
        return GGML_OPT_OPTIMIZER_TYPE_SGD;
    }
    return GGML_OPT_OPTIMIZER_TYPE_COUNT;
}

// TODO simplify to use just log and exp
static float const k_log_2 = std::log(2.f);

void lr_opt::init() {
    if (lr_min > 0 && lr_min < lr0) {
        float nhalf = std::log(lr0 / lr_min) / k_log_2;
        float e     = epochs;
        if (decay_epochs > 0 && decay_epochs < e) {
            e = decay_epochs;
        } else {
            decay_epochs = e;
        }
        scale_epoch = nhalf / e;
    }
}

float lr_opt::get_lr(float epoch) const {
    float r = lr_min <= 0 ? lr0 :
        epoch >= decay_epochs ? lr_min :
        lr0 * std::pow(0.5f, epoch * scale_epoch);
    LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
    return r;
}