ggml.go 11 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
package llm

import (
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"strings"
xuxzh1's avatar
init  
xuxzh1 committed
9
10

	"github.com/ollama/ollama/util/bufioutil"
mashun1's avatar
v1  
mashun1 committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
)

type GGML struct {
	container
	model
}

type model interface {
	KV() KV
	Tensors() Tensors
}

type KV map[string]any

func (kv KV) u64(key string) uint64 {
	switch v := kv[key].(type) {
	case uint64:
		return v
	case uint32:
		return uint64(v)
	case float64:
		return uint64(v)
	default:
		return 0
	}
}

func (kv KV) Architecture() string {
	if s, ok := kv["general.architecture"].(string); ok {
		return s
	}

	return "unknown"
}

func (kv KV) ParameterCount() uint64 {
	return kv.u64("general.parameter_count")
}

func (kv KV) FileType() fileType {
	if u64 := kv.u64("general.file_type"); u64 > 0 {
		return fileType(uint32(u64))
	}

	return fileTypeUnknown
}

func (kv KV) BlockCount() uint64 {
	return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
}

func (kv KV) HeadCount() uint64 {
	return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
}

func (kv KV) HeadCountKV() uint64 {
	if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
		return headCountKV
	}

	return 1
}

xuxzh1's avatar
init  
xuxzh1 committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
func (kv KV) EmbeddingHeadCount() uint64 {
	if heads := kv.HeadCount(); heads > 0 {
		return kv.EmbeddingLength() / kv.HeadCount()
	}

	return 0
}

func (kv KV) EmbeddingHeadCountK() uint64 {
	if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
		return k
	}

	return kv.EmbeddingHeadCount()
}

func (kv KV) EmbeddingHeadCountV() uint64 {
	if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
		return v
	}

	return kv.EmbeddingHeadCount()
}

mashun1's avatar
v1  
mashun1 committed
98
99
100
101
102
103
104
105
106
107
108
109
func (kv KV) GQA() uint64 {
	return kv.HeadCount() / kv.HeadCountKV()
}

func (kv KV) EmbeddingLength() uint64 {
	return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
}

func (kv KV) ContextLength() uint64 {
	return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
}

xuxzh1's avatar
init  
xuxzh1 committed
110
111
112
113
114
115
116
117
118
func (kv KV) ChatTemplate() string {
	s, _ := kv["tokenizer.chat_template"].(string)
	return s
}

type Tensors struct {
	Items  []*Tensor
	Offset uint64
}
mashun1's avatar
v1  
mashun1 committed
119
120
121

func (ts Tensors) Layers() map[string]Layer {
	layers := make(map[string]Layer)
xuxzh1's avatar
init  
xuxzh1 committed
122
	for _, t := range ts.Items {
mashun1's avatar
v1  
mashun1 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
		parts := strings.Split(t.Name, ".")
		if parts[0] == "blk" {
			// join first and second part, e.g. blk.%d
			parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
		}

		if _, ok := layers[parts[0]]; !ok {
			layers[parts[0]] = make(Layer)
		}

		layers[parts[0]][strings.Join(parts[1:], ".")] = t
	}

	return layers
}

type Layer map[string]*Tensor

func (l Layer) size() (size uint64) {
	for _, t := range l {
		size += t.Size()
	}

	return size
}

type Tensor struct {
	Name   string `json:"name"`
	Kind   uint32 `json:"kind"`
	Offset uint64 `json:"-"`

	// Shape is the number of elements in each dimension
	Shape []uint64 `json:"shape"`

	io.WriterTo `json:"-"`
}

func (t Tensor) blockSize() uint64 {
	switch t.Kind {
	case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
		return 1
	case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
		return 32
	default: // All others
		return 256
	}
}

func (t Tensor) typeSize() uint64 {
	blockSize := t.blockSize()

	switch t.Kind {
	case 0: // FP32
		return 4
	case 1: // FP16
		return 2
	case 2: // Q4_0
		return 2 + blockSize/2
	case 3: // Q4_1
		return 2 + 2 + blockSize/2
	case 6: // Q5_0
		return 2 + 4 + blockSize/2
	case 7: // Q5_1
		return 2 + 2 + 4 + blockSize/2
	case 8: // Q8_0
		return 2 + blockSize
	case 9: // Q8_1
		return 4 + 4 + blockSize
	case 10: // Q2_K
		return blockSize/16 + blockSize/4 + 2 + 2
	case 11: // Q3_K
		return blockSize/8 + blockSize/4 + 12 + 2
	case 12: // Q4_K
		return 2 + 2 + 12 + blockSize/2
	case 13: // Q5_K
		return 2 + 2 + 12 + blockSize/8 + blockSize/2
	case 14: // Q6_K
		return blockSize/2 + blockSize/4 + blockSize/16 + 2
	case 15: // Q8_K
		return 2 + blockSize + 2*blockSize/16
	case 16: // IQ2_XXS
		return 2 + 2*blockSize/8
	case 17: // IQ2_XS
		return 2 + 2*blockSize/8 + blockSize/32
	case 18: // IQ3_XXS
		return 2 + blockSize/4 + blockSize/8
	case 19: // IQ1_S
		return 2 + blockSize/8 + blockSize/16
	case 20: // IQ4_NL
		return 2 + blockSize/2
	case 21: // IQ3_S
		return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
	case 22: // IQ2_S
		return 2 + blockSize/4 + blockSize/16
	case 23: // IQ4_XS
		return 2 + 2 + blockSize/2 + blockSize/64
	case 24: // I8
		return 1
	case 25: // I16
		return 2
	case 26: // I32
		return 4
	case 27: // I64
		return 8
	case 28: // F64
		return 8
	case 29: // IQ1_M
		return blockSize/8 + blockSize/16 + blockSize/32
	default:
		return 0
	}
}

func (t Tensor) parameters() uint64 {
	var count uint64 = 1
	for _, n := range t.Shape {
		count *= n
	}
	return count
}

func (t Tensor) Size() uint64 {
	return t.parameters() * t.typeSize() / t.blockSize()
}

type container interface {
	Name() string
	Decode(io.ReadSeeker) (model, error)
}

const (
	// Magic constant for `ggml` files (unversioned).
	FILE_MAGIC_GGML = 0x67676d6c
	// Magic constant for `ggml` files (versioned, ggmf).
	FILE_MAGIC_GGMF = 0x67676d66
	// Magic constant for `ggml` files (versioned, ggjt).
	FILE_MAGIC_GGJT = 0x67676a74
	// Magic constant for `ggla` files (LoRA adapter).
	FILE_MAGIC_GGLA = 0x67676C61
	// Magic constant for `gguf` files (versioned, gguf)
	FILE_MAGIC_GGUF_LE = 0x46554747
	FILE_MAGIC_GGUF_BE = 0x47475546
)

var ErrUnsupportedFormat = errors.New("unsupported model format")

func DetectGGMLType(b []byte) string {
	switch binary.LittleEndian.Uint32(b[:4]) {
	case FILE_MAGIC_GGML:
		return "ggml"
	case FILE_MAGIC_GGMF:
		return "ggmf"
	case FILE_MAGIC_GGJT:
		return "ggjt"
	case FILE_MAGIC_GGLA:
		return "ggla"
	case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
		return "gguf"
	default:
		return ""
	}
}

xuxzh1's avatar
init  
xuxzh1 committed
286
287
288
289
290
291
292
293
294
295
296
297
// DecodeGGML decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
	if maxArraySize == 0 {
		maxArraySize = 1024
	}

	rs = bufioutil.NewBufferedSeeker(rs, 32<<10)

mashun1's avatar
v1  
mashun1 committed
298
299
300
301
302
303
304
305
306
307
308
309
	var magic uint32
	if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
		return nil, 0, err
	}

	var c container
	switch magic {
	case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
		return nil, 0, ErrUnsupportedFormat
	case FILE_MAGIC_GGLA:
		c = &containerGGLA{}
	case FILE_MAGIC_GGUF_LE:
xuxzh1's avatar
init  
xuxzh1 committed
310
		c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
mashun1's avatar
v1  
mashun1 committed
311
	case FILE_MAGIC_GGUF_BE:
xuxzh1's avatar
init  
xuxzh1 committed
312
		c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
mashun1's avatar
v1  
mashun1 committed
313
314
315
316
317
	default:
		return nil, 0, errors.New("invalid file magic")
	}

	model, err := c.Decode(rs)
xuxzh1's avatar
init  
xuxzh1 committed
318
	if err != nil {
mashun1's avatar
v1  
mashun1 committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
		return nil, 0, err
	}

	offset, err := rs.Seek(0, io.SeekCurrent)
	if err != nil {
		return nil, 0, err
	}

	// final model type
	return &GGML{
		container: c,
		model:     model,
	}, offset, nil
}

func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
	embedding := llm.KV().EmbeddingLength()
	heads := llm.KV().HeadCount()
	headsKV := llm.KV().HeadCountKV()
xuxzh1's avatar
init  
xuxzh1 committed
338
339
340
341
	vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)

	embeddingHeads := llm.KV().EmbeddingHeadCount()
	embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
mashun1's avatar
v1  
mashun1 committed
342
343
344
345
346
347
348
349
350

	layers := llm.Tensors().Layers()

	switch llm.KV().Architecture() {
	case "llama":
		fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))

		partialOffload = 4 * batch * embedding
		partialOffload += max(
xuxzh1's avatar
init  
xuxzh1 committed
351
352
			// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
			4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
mashun1's avatar
v1  
mashun1 committed
353
354
355
356
357
358
359
			4*batch*(embedding+vocab)+embedding*vocab*105/128,
		)

		if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
			// mixtral 8x22b
			ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
			partialOffload = max(
xuxzh1's avatar
init  
xuxzh1 committed
360
361
				3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
				4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
mashun1's avatar
v1  
mashun1 committed
362
363
364
365
366
367
			)
		} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
			// mixtral 8x7b
			ffnGateWeight1 := ffnGateWeight.Shape[1]
			fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
			partialOffload = max(
xuxzh1's avatar
init  
xuxzh1 committed
368
				4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
mashun1's avatar
v1  
mashun1 committed
369
370
371
				4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
			)
		}
xuxzh1's avatar
init  
xuxzh1 committed
372
373
374
375
376
377
378
379
380
381
382
383
	case "gemma", "gemma2":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
		)

		partialOffload = max(
			4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
			4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
				4*embeddingHeadsK*context*8+
				embedding*embeddingHeadsK*heads*9/16,
		)
mashun1's avatar
v1  
mashun1 committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
	case "command-r":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(2+4*embedding+context*(1+heads)),
		)

		partialOffload = max(
			4*batch*(embedding+vocab)+embedding*vocab*105/128,
			4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
		)
	case "qwen2":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(1+2*embedding+context+context*heads),
		)

		partialOffload = max(
			4*batch*(embedding+vocab)+embedding*vocab*105/128,
			4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
		)
	case "phi2":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(1+4*embedding+context+context*heads),
		)

		partialOffload = max(
			4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
			4*batch*(2+3*embedding+context+context*heads),
		)
	case "stablelm":
		fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
		partialOffload = max(
			4*batch*(vocab+2*embedding),
			fullOffload,
		)
xuxzh1's avatar
init  
xuxzh1 committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
	case "deepseek2":
		fullOffload = max(
			4*batch*(3*embedding+vocab),
			4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
		)

		partialOffload = max(
			4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
			4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
		)
	case "chatglm":
		fullOffload = 4 * batch * (embedding + vocab)
		partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
		if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
			fullOffload = max(
				fullOffload,
				4*batch*(2+
					2*embedding+
					context+
					context*heads+
					embeddingHeadsK*heads+
					qkvBias.Shape[0]),
			)

			partialOffload = max(
				partialOffload,
				4*batch*(1+
					2*embedding+
					embeddingHeadsK*heads+
					context+
					context*heads)+
					4*embeddingHeadsK*context+
					4*context*embeddingHeadsK+
					4*qkvBias.Shape[0],
			)
		}
mashun1's avatar
v1  
mashun1 committed
456
457
458
459
	}

	return
}