ggml.go 8.53 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
package llm

import (
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"strings"
)

type GGML struct {
	container
	model
}

type model interface {
	KV() KV
	Tensors() Tensors
}

type KV map[string]any

func (kv KV) u64(key string) uint64 {
	switch v := kv[key].(type) {
	case uint64:
		return v
	case uint32:
		return uint64(v)
	case float64:
		return uint64(v)
	default:
		return 0
	}
}

func (kv KV) Architecture() string {
	if s, ok := kv["general.architecture"].(string); ok {
		return s
	}

	return "unknown"
}

func (kv KV) ParameterCount() uint64 {
	return kv.u64("general.parameter_count")
}

func (kv KV) FileType() fileType {
	if u64 := kv.u64("general.file_type"); u64 > 0 {
		return fileType(uint32(u64))
	}

	return fileTypeUnknown
}

func (kv KV) BlockCount() uint64 {
	return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
}

func (kv KV) HeadCount() uint64 {
	return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
}

func (kv KV) HeadCountKV() uint64 {
	if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
		return headCountKV
	}

	return 1
}

func (kv KV) GQA() uint64 {
	return kv.HeadCount() / kv.HeadCountKV()
}

func (kv KV) EmbeddingLength() uint64 {
	return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
}

func (kv KV) ContextLength() uint64 {
	return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
}

type Tensors []*Tensor

func (ts Tensors) Layers() map[string]Layer {
	layers := make(map[string]Layer)
	for _, t := range ts {
		parts := strings.Split(t.Name, ".")
		if parts[0] == "blk" {
			// join first and second part, e.g. blk.%d
			parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
		}

		if _, ok := layers[parts[0]]; !ok {
			layers[parts[0]] = make(Layer)
		}

		layers[parts[0]][strings.Join(parts[1:], ".")] = t
	}

	return layers
}

type Layer map[string]*Tensor

func (l Layer) size() (size uint64) {
	for _, t := range l {
		size += t.Size()
	}

	return size
}

type Tensor struct {
	Name   string `json:"name"`
	Kind   uint32 `json:"kind"`
	Offset uint64 `json:"-"`

	// Shape is the number of elements in each dimension
	Shape []uint64 `json:"shape"`

	io.WriterTo `json:"-"`
}

func (t Tensor) blockSize() uint64 {
	switch t.Kind {
	case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
		return 1
	case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
		return 32
	default: // All others
		return 256
	}
}

func (t Tensor) typeSize() uint64 {
	blockSize := t.blockSize()

	switch t.Kind {
	case 0: // FP32
		return 4
	case 1: // FP16
		return 2
	case 2: // Q4_0
		return 2 + blockSize/2
	case 3: // Q4_1
		return 2 + 2 + blockSize/2
	case 6: // Q5_0
		return 2 + 4 + blockSize/2
	case 7: // Q5_1
		return 2 + 2 + 4 + blockSize/2
	case 8: // Q8_0
		return 2 + blockSize
	case 9: // Q8_1
		return 4 + 4 + blockSize
	case 10: // Q2_K
		return blockSize/16 + blockSize/4 + 2 + 2
	case 11: // Q3_K
		return blockSize/8 + blockSize/4 + 12 + 2
	case 12: // Q4_K
		return 2 + 2 + 12 + blockSize/2
	case 13: // Q5_K
		return 2 + 2 + 12 + blockSize/8 + blockSize/2
	case 14: // Q6_K
		return blockSize/2 + blockSize/4 + blockSize/16 + 2
	case 15: // Q8_K
		return 2 + blockSize + 2*blockSize/16
	case 16: // IQ2_XXS
		return 2 + 2*blockSize/8
	case 17: // IQ2_XS
		return 2 + 2*blockSize/8 + blockSize/32
	case 18: // IQ3_XXS
		return 2 + blockSize/4 + blockSize/8
	case 19: // IQ1_S
		return 2 + blockSize/8 + blockSize/16
	case 20: // IQ4_NL
		return 2 + blockSize/2
	case 21: // IQ3_S
		return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
	case 22: // IQ2_S
		return 2 + blockSize/4 + blockSize/16
	case 23: // IQ4_XS
		return 2 + 2 + blockSize/2 + blockSize/64
	case 24: // I8
		return 1
	case 25: // I16
		return 2
	case 26: // I32
		return 4
	case 27: // I64
		return 8
	case 28: // F64
		return 8
	case 29: // IQ1_M
		return blockSize/8 + blockSize/16 + blockSize/32
	default:
		return 0
	}
}

func (t Tensor) parameters() uint64 {
	var count uint64 = 1
	for _, n := range t.Shape {
		count *= n
	}
	return count
}

func (t Tensor) Size() uint64 {
	return t.parameters() * t.typeSize() / t.blockSize()
}

type container interface {
	Name() string
	Decode(io.ReadSeeker) (model, error)
}

const (
	// Magic constant for `ggml` files (unversioned).
	FILE_MAGIC_GGML = 0x67676d6c
	// Magic constant for `ggml` files (versioned, ggmf).
	FILE_MAGIC_GGMF = 0x67676d66
	// Magic constant for `ggml` files (versioned, ggjt).
	FILE_MAGIC_GGJT = 0x67676a74
	// Magic constant for `ggla` files (LoRA adapter).
	FILE_MAGIC_GGLA = 0x67676C61
	// Magic constant for `gguf` files (versioned, gguf)
	FILE_MAGIC_GGUF_LE = 0x46554747
	FILE_MAGIC_GGUF_BE = 0x47475546
)

var ErrUnsupportedFormat = errors.New("unsupported model format")

func DetectGGMLType(b []byte) string {
	switch binary.LittleEndian.Uint32(b[:4]) {
	case FILE_MAGIC_GGML:
		return "ggml"
	case FILE_MAGIC_GGMF:
		return "ggmf"
	case FILE_MAGIC_GGJT:
		return "ggjt"
	case FILE_MAGIC_GGLA:
		return "ggla"
	case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
		return "gguf"
	default:
		return ""
	}
}

func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
	var magic uint32
	if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
		return nil, 0, err
	}

	var c container
	switch magic {
	case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
		return nil, 0, ErrUnsupportedFormat
	case FILE_MAGIC_GGLA:
		c = &containerGGLA{}
	case FILE_MAGIC_GGUF_LE:
		c = &containerGGUF{ByteOrder: binary.LittleEndian}
	case FILE_MAGIC_GGUF_BE:
		c = &containerGGUF{ByteOrder: binary.BigEndian}
	default:
		return nil, 0, errors.New("invalid file magic")
	}

	model, err := c.Decode(rs)
	if errors.Is(err, io.EOF) {
		// noop
	} else if err != nil {
		return nil, 0, err
	}

	offset, err := rs.Seek(0, io.SeekCurrent)
	if err != nil {
		return nil, 0, err
	}

	// final model type
	return &GGML{
		container: c,
		model:     model,
	}, offset, nil
}

func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
	embedding := llm.KV().EmbeddingLength()
	heads := llm.KV().HeadCount()
	headsKV := llm.KV().HeadCountKV()
	vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))

	layers := llm.Tensors().Layers()

	switch llm.KV().Architecture() {
	case "llama":
		fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))

		partialOffload = 4 * batch * embedding
		partialOffload += max(
			4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
			4*batch*(embedding+vocab)+embedding*vocab*105/128,
		)

		if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
			// mixtral 8x22b
			ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
			partialOffload = max(
				3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV),
				4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch),
			)
		} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
			// mixtral 8x7b
			ffnGateWeight1 := ffnGateWeight.Shape[1]
			fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
			partialOffload = max(
				4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
				4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
			)
		}
	case "gemma":
		fullOffload = 4 * batch * (embedding + vocab)
		partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
	case "command-r":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(2+4*embedding+context*(1+heads)),
		)

		partialOffload = max(
			4*batch*(embedding+vocab)+embedding*vocab*105/128,
			4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
		)
	case "qwen2":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(1+2*embedding+context+context*heads),
		)

		partialOffload = max(
			4*batch*(embedding+vocab)+embedding*vocab*105/128,
			4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
		)
	case "phi2":
		fullOffload = max(
			4*batch*(embedding+vocab),
			4*batch*(1+4*embedding+context+context*heads),
		)

		partialOffload = max(
			4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
			4*batch*(2+3*embedding+context+context*heads),
		)
	case "stablelm":
		fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
		partialOffload = max(
			4*batch*(vocab+2*embedding),
			fullOffload,
		)
	}

	return
}