index.rst 8.79 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
Neural Network Intelligence
2
===========================
Yuge Zhang's avatar
Yuge Zhang committed
3
4
5

..  toctree::
    :maxdepth: 2
6
    :caption: Get Started
Yuge Zhang's avatar
Yuge Zhang committed
7
8
    :hidden:

9
10
11
    installation
    quickstart
    Learning NNI <tutorials>
12
13
14

..  toctree::
    :maxdepth: 2
15
    :caption: Full-scale Materials
16
17
    :hidden:

liuzhe-lz's avatar
liuzhe-lz committed
18
    Hyperparameter Optimization <hpo/index>
Yuge Zhang's avatar
Yuge Zhang committed
19
    Neural Architecture Search <nas/index>
J-shang's avatar
J-shang committed
20
    Model Compression <compression/index>
J-shang's avatar
J-shang committed
21
    Feature Engineering <feature_engineering/index>
22
    Experiment <experiment/overview>
23
24
25
26
27
28

..  toctree::
    :maxdepth: 2
    :caption: References
    :hidden:

Yuge Zhang's avatar
Yuge Zhang committed
29
30
    nnictl Commands <reference/nnictl>
    Experiment Configuration <reference/experiment_config>
J-shang's avatar
J-shang committed
31
    Python API <reference/python_api>
32
33
34
35
36
37

..  toctree::
    :maxdepth: 2
    :caption: Misc
    :hidden:

J-shang's avatar
J-shang committed
38
39
    Use Cases and Solutions <sharings/community_sharings>
    Research and Publications <notes/research_publications>
liuzhe-lz's avatar
liuzhe-lz committed
40
    notes/build_from_source
Yuge Zhang's avatar
Yuge Zhang committed
41
    Contribution Guide <notes/contributing>
J-shang's avatar
J-shang committed
42
    Change Log <release>
Yuge Zhang's avatar
Yuge Zhang committed
43

44
45
46
47
48
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate**:

* :doc:`Hyperparameter Tuning </hpo/overview>`,
* :doc:`Neural Architecture Search </nas/index>`,
* :doc:`Model Compression </compression/index>`,
J-shang's avatar
J-shang committed
49
* :doc:`Feature Engineering </feature_engineering/overview>`.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

.. Can't use section title here due to the limitation of toc

.. raw:: html
   
   <h2>Get Started Now</h2>

To install the current release:

.. code-block:: bash

   $ pip install nni

See the :doc:`installation guide </installation>` if you need additional help on installation.

65
Then, please read :doc:`quickstart` and :doc:`tutorials` to start your journey with NNI!
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

.. Please keep this part sync with readme

.. raw:: html

   <h2>Latest Updates

.. image:: ../img/release_icon.png
   :class: release-icon

.. raw:: html

   </h2>

* **New release**: `v2.6 is available <https://github.com/microsoft/nni/releases/tag/v2.6>`_ - *released on Jan-19-2022*
* **New demo available**: `Youtube entry <https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw>`_ | `Bilibili 入口 <https://space.bilibili.com/1649051673>`_ - *last updated on May-26-2021*
* **New webinar**: `Introducing Retiarii, A deep learning exploratory-training framework on NNI <https://note.microsoft.com/MSR-Webinar-Retiarii-Registration-Live.html>`_ - *scheduled on June-24-2021*
* **New community channel**: `Discussions <https://github.com/microsoft/nni/discussions>`_
J-shang's avatar
J-shang committed
84
* **New emoticons release**: :doc:`nnSpider <sharings/nn_spider/index>`
85

86
87
.. raw:: html

88
89
90
91
   <h2>Why choose NNI?</h2>

   <h3>NNI makes AutoML techniques plug-and-play.</h3>

92
93
94
   <div class="codesnippet-card-container">

.. codesnippetcard::
95
   :icon: ../img/thumbnails/hpo-small.svg
96
   :title: Hyper-parameter Tuning
liuzhe-lz's avatar
liuzhe-lz committed
97
   :link: tutorials/hpo_quickstart_pytorch/main
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

   .. code-block::

      params = nni.get_next_parameter()

      class Net(nn.Module):
          ...

      model = Net()
      optimizer = optim.SGD(model.parameters(),
                            params['lr'],
                            params['momentum'])

      for epoch in range(10):
          train(...)

      accuracy = test(model)
      nni.report_final_result(accuracy)

.. codesnippetcard::
118
   :icon: ../img/thumbnails/pruning-small.svg
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
   :title: Model Pruning
   :link: tutorials/pruning_quick_start_mnist

   .. code-block::

      # define a config_list
      config = [{
          'sparsity': 0.8,
          'op_types': ['Conv2d']
      }]

      # generate masks for simulated pruning
      wrapped_model, masks = \
          L1NormPruner(model, config). \
          compress()

135
      # apply the masks for real speedup
136
137
138
139
      ModelSpeedup(unwrapped_model, input, masks). \
          speedup_model()

.. codesnippetcard::
140
   :icon: ../img/thumbnails/quantization-small.svg
141
   :title: Quantization
142
   :link: tutorials/quantization_speedup
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

   .. code-block::

      # define a config_list
      config = [{
          'quant_types': ['input', 'weight'],
          'quant_bits': {'input': 8, 'weight': 8},
          'op_types': ['Conv2d']
      }]

      # in case quantizer needs a extra training
      quantizer = QAT_Quantizer(model, config)
      quantizer.compress()
      # Training...

      # export calibration config and
159
      # generate TensorRT engine for real speedup
160
161
162
163
164
165
166
      calibration_config = quantizer.export_model(
          model_path, calibration_path)
      engine = ModelSpeedupTensorRT(
          model, input_shape, config=calib_config)
      engine.compress()

.. codesnippetcard::
167
   :icon: ../img/thumbnails/multi-trial-nas-small.svg
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
   :title: Neural Architecture Search
   :link: tutorials/hello_nas

   .. code-block:: diff

      # define model space
      -   self.conv2 = nn.Conv2d(32, 64, 3, 1)
      +   self.conv2 = nn.LayerChoice([
      +       nn.Conv2d(32, 64, 3, 1),
      +       DepthwiseSeparableConv(32, 64)
      +   ])
      # search strategy + evaluator
      strategy = RegularizedEvolution()
      evaluator = FunctionalEvaluator(
          train_eval_fn)

      # run experiment
      RetiariiExperiment(model_space,
          evaluator, strategy).run()

.. codesnippetcard::
189
   :icon: ../img/thumbnails/one-shot-nas-small.svg
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
   :title: One-shot NAS
   :link: nas/index

   .. code-block::

      # define model space
      space = AnySearchSpace()

      # get a darts trainer
      trainer = DartsTrainer(space, loss, metrics)
      trainer.fit()

      # get final searched architecture
      arch = trainer.export()

.. codesnippetcard::
206
   :icon: ../img/thumbnails/feature-engineering-small.svg
207
   :title: Feature Engineering
J-shang's avatar
J-shang committed
208
   :link: feature_engineering/overview
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

   .. code-block::

      selector = GBDTSelector()
      selector.fit(
          X_train, y_train,
          lgb_params=lgb_params,
          eval_ratio=eval_ratio,
          early_stopping_rounds=10,
          importance_type='gain',
          num_boost_round=1000)

      # get selected features
      features = selector.get_selected_features()

.. End of code snippet card

.. raw:: html
Yuge Zhang's avatar
Yuge Zhang committed
227

228
   </div>
Yuge Zhang's avatar
Yuge Zhang committed
229

230
231
232
   <h3>NNI eases the effort to scale and manage AutoML experiments.</h3>

.. codesnippetcard::
233
   :icon: ../img/thumbnails/training-service-small.svg
234
235
236
237
238
239
240
241
242
243
   :title: Training Service
   :link: experiment/training_service
   :seemore: See more here.

   An AutoML experiment requires many trials to explore feasible and potentially good-performing models.
   **Training service** aims to make the tuning process easily scalable in a distributed platforms.
   It provides a unified user experience for diverse computation resources (e.g., local machine, remote servers, AKS).
   Currently, NNI supports **more than 9** kinds of training services.

.. codesnippetcard::
244
   :icon: ../img/thumbnails/web-portal-small.svg
245
246
247
248
249
250
251
252
253
254
   :title: Web Portal
   :link: experiment/web_portal
   :seemore: See more here.

   Web portal visualizes the tuning process, exposing the ability to inspect, monitor and control the experiment.

   .. image:: ../static/img/webui.gif
      :width: 100%

.. codesnippetcard::
255
   :icon: ../img/thumbnails/experiment-management-small.svg
256
257
258
259
260
261
262
263
264
   :title: Experiment Management
   :link: experiment/exp_management
   :seemore: See more here.

   The DNN model tuning often requires more than one experiment.
   Users might try different tuning algorithms, fine-tune their search space, or switch to another training service.
   **Experiment management** provides the power to aggregate and compare tuning results from multiple experiments,
   so that the tuning workflow becomes clean and organized.

Yuge Zhang's avatar
Yuge Zhang committed
265
266
.. raw:: html

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
   <h2>Get Support and Contribute Back</h2>

NNI is maintained on the `NNI GitHub repository <https://github.com/microsoft/nni>`_. We collect feedbacks and new proposals/ideas on GitHub. You can:

* Open a `GitHub issue <https://github.com/microsoft/nni/issues>`_ for bugs and feature requests.
* Open a `pull request <https://github.com/microsoft/nni/pulls>`_ to contribute code (make sure to read the `contribution guide </contribution>` before doing this).
* Participate in `NNI Discussion <https://github.com/microsoft/nni/discussions>`_ for general questions and new ideas.
* Join the following IM groups.

.. list-table::
   :header-rows: 1
   :widths: auto

   * - Gitter
     - WeChat
   * -
       .. image:: https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png
     -
       .. image:: https://github.com/scarlett2018/nniutil/raw/master/wechat.png
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

.. raw:: html

   <h2>Citing NNI</h2>

If you use NNI in a scientific publication, please consider citing NNI in your references.

   Microsoft. Neural Network Intelligence (version |release|). https://github.com/microsoft/nni

Bibtex entry (please replace the version with the particular version you are using): ::

   @software{nni2021,
      author = {{Microsoft}},
      month = {1},
      title = {{Neural Network Intelligence}},
      url = {https://github.com/microsoft/nni},
      version = {2.0},
      year = {2021}
   }