README.md 19.1 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/Microsoft.nni)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=6)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

Scarlett Li's avatar
Scarlett Li committed
17
**NNI (Neural Network Intelligence)** is an efficient and automatic toolkit to help users design and search neural network architecture, tune machine learning model's parameters or complex system's parameters. The tool manages automated machine learning (AutoML) experiments, dispatches and runs experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in different environments like local machine, remote servers and cloud.
18

19

chicm-ms's avatar
chicm-ms committed
20
### **NNI v1.2 has been released! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
21

QuanluZhang's avatar
QuanluZhang committed
22
<p align="center">
Lijiao's avatar
Lijiao committed
23
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
24
</p>
25

QuanluZhang's avatar
QuanluZhang committed
26
27
<table>
  <tbody>
28
    <tr align="center" valign="bottom">
29
30
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
31
      <td>
32
        <b>Frameworks & Libraries</b>
33
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
34
35
      </td>
      <td>
36
        <b>Algorithms</b>
37
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
38
39
      </td>
      <td>
Gems's avatar
Gems committed
40
        <b>Training Services</b>
41
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
42
43
      </td>
    </tr>
44
    </tr>
QuanluZhang's avatar
QuanluZhang committed
45
    <tr valign="top">
46
47
48
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
49
      <td>
50
      <ul><li><b>Supported Frameworks</b></li>
51
52
53
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
54
          <li>TensorFlow</li>
55
56
          <li>MXNet</li>
          <li>Caffe2</li>
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
72
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
73
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
74
75
76
77
78
79
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
80
81
        </ul>
      </td>
82
      <td align="left" >
83
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a>
QuanluZhang's avatar
QuanluZhang committed
84
        <ul>
85
          <b>Exhaustive search</b>
86
          <ul>
87
88
89
90
91
92
93
94
95
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
            </ul>
          <b>Heuristic search</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>  
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
96
          </ul>
97
98
99
100
101
102
103
104
105
106
107
108
109
110
          <b>Bayesian optimization</b>
            <ul>
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>  
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li> 
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a> </li>
            </ul>  
          <b>RL Based</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
          </ul>
        </ul>
          <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>
111
112
113
114
          <ul>
          <li><a href="docs/en_US/NAS/Overview.md#enas">ENAS</a></li>
          <li><a href="docs/en_US/NAS/Overview.md#darts">DARTS</a></li>
          <li><a href="docs/en_US/NAS/Overview.md#p-darts">P-DARTS</a></li>
115
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a> </li>
116
          </ul>
117
          <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>
118
119
120
121
122
123
124
125
126
127
128
129
          <ul>
          <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
          <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
          <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
          <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
          <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
130
131
132
133
134
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Early Stop Algorithms</a>
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>   
          </ul>
QuanluZhang's avatar
QuanluZhang committed
135
136
137
      </td>
      <td>
      <ul>
138
139
140
141
142
143
144
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
QuanluZhang's avatar
QuanluZhang committed
145
146
      </ul>
      </td>
147
    </tr> 
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/sdk_reference.rst">Python API</a></li>
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
         <li><a href="docs/en_US/Tutorial/Installation.md">Supported OS</a></li>
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/TrainingService/SupportTrainingService.md">Support TrainingService</li>
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
      </td>     
    </tr> 
QuanluZhang's avatar
QuanluZhang committed
175
176
  </tbody>
</table>
177
178


QuanluZhang's avatar
QuanluZhang committed
179

180
181


182
## **Who should consider using NNI**
Chi Song's avatar
Chi Song committed
183

Irene Tenison's avatar
Irene Tenison committed
184
185
186
187
* Those who want to try different AutoML algorithms in their training code (model) at their local machine.
* Those who want to run AutoML trial jobs in different environments to speed up search (e.g. remote servers and cloud).
* Researchers and data scientists who want to implement their own AutoML algorithms and compare it with other algorithms.
* ML Platform owners who want to support AutoML in their platform.
188

189
## Related Projects
Chi Song's avatar
Chi Song committed
190

191
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.
Chi Song's avatar
Chi Song committed
192

193
194
195
* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
Scarlett Li's avatar
Scarlett Li committed
196
197
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

198
199
We encourage researchers and students leverage these projects to accelerate the AI development and research.

Scarlett Li's avatar
Scarlett Li committed
200
## **Install & Verify**
Chi Song's avatar
Chi Song committed
201

202
**Install through pip**
Chi Song's avatar
Chi Song committed
203

204
* We support Linux, MacOS and Windows (local, remote and pai mode) in current stage, Ubuntu 16.04 or higher, MacOS 10.14.1 along with Windows 10.1809 are tested and supported. Simply run the following `pip install` in an environment that has `python >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
205

206
Linux and MacOS
Chi Song's avatar
Chi Song committed
207

Zejun Lin's avatar
Zejun Lin committed
208
```bash
Chi Song's avatar
Chi Song committed
209
python3 -m pip install --upgrade nni
210
```
Chi Song's avatar
Chi Song committed
211

212
Windows
Chi Song's avatar
Chi Song committed
213

214
```bash
Chi Song's avatar
Chi Song committed
215
python -m pip install --upgrade nni
216
```
Chi Song's avatar
Chi Song committed
217

Zejun Lin's avatar
Zejun Lin committed
218
219
220
Note:

* `--user` can be added if you want to install NNI in your home directory, which does not require any special privileges.
221
* Currently NNI on Windows support local, remote and pai mode. Anaconda or Miniconda is highly recommended to install NNI on Windows.
222
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md)
Gems Guo's avatar
Gems Guo committed
223
224

**Install through source code**
Chi Song's avatar
Chi Song committed
225

226
* We support Linux (Ubuntu 16.04 or higher), MacOS (10.14.1) and Windows (10.1809) in our current stage.
227
228

Linux and MacOS
Chi Song's avatar
Chi Song committed
229

Gems Guo's avatar
Gems Guo committed
230
* Run the following commands in an environment that has `python >= 3.5`, `git` and `wget`.
Chi Song's avatar
Chi Song committed
231
232

```bash
chicm-ms's avatar
chicm-ms committed
233
    git clone -b v1.2 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
234
235
    cd nni
    source install.sh
236
```
Chi Song's avatar
Chi Song committed
237

238
Windows
Chi Song's avatar
Chi Song committed
239
240
241

* Run the following commands in an environment that has `python >=3.5`, `git` and `PowerShell`

242
```bash
chicm-ms's avatar
chicm-ms committed
243
  git clone -b v1.2 https://github.com/Microsoft/nni.git
244
  cd nni
245
  powershell -ExecutionPolicy Bypass -file install.ps1
246
```
247

248
For the system requirements of NNI, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md)
Chi Song's avatar
Chi Song committed
249

250
For NNI on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/NniOnWindows.md)
251

Chi Song's avatar
Chi Song committed
252
253
**Verify install**

Yuge Zhang's avatar
Yuge Zhang committed
254
The following example is an experiment built on TensorFlow. Make sure you have **TensorFlow 1.x installed** before running it. Note that **currently Tensorflow 2.0 is NOT supported**.
Chi Song's avatar
Chi Song committed
255
256
257
258

* Download the examples via clone the source code.

```bash
chicm-ms's avatar
chicm-ms committed
259
    git clone -b v1.2 https://github.com/Microsoft/nni.git
Gems Guo's avatar
Gems Guo committed
260
```
Chi Song's avatar
Chi Song committed
261

262
Linux and MacOS
Chi Song's avatar
Chi Song committed
263
264
265

* Run the MNIST example.

266
```bash
267
    nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
268
```
Chi Song's avatar
Chi Song committed
269

270
Windows
Chi Song's avatar
Chi Song committed
271
272
273

* Run the MNIST example.

274
```bash
275
    nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
276
```
Chi Song's avatar
Chi Song committed
277

278
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
279

Chi Song's avatar
Chi Song committed
280
```text
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
297
298
299
300
301
302
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
303
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
304
```
Scarlett Li's avatar
Scarlett Li committed
305

306
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
307
308
309
310
311
312

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
313
## **Documentation**
314
315
Our primary documentation is at [here](https://nni.readthedocs.io/en/latest/Overview.html) and is generated from this repository.<br/>
Maybe you want to read:
Chi Song's avatar
Chi Song committed
316

Yan Ni's avatar
Yan Ni committed
317
* [NNI overview](docs/en_US/Overview.md)
318
319
* [Quick start](docs/en_US/Tutorial/QuickStart.md)
* [WebUI tutorial](docs/en_US/Tutorial/WebUI.md)
320
321
* [Contributing](docs/en_US/Tutorial/Contributing.md)

322

Scarlett Li's avatar
Scarlett Li committed
323
## **How to**
Chi Song's avatar
Chi Song committed
324

325
326
* [Install NNI](docs/en_US/Tutorial/Installation.md)
* [Use command line tool nnictl](docs/en_US/Tutorial/Nnictl.md)
327
* [Define a trial](docs/en_US/TrialExample/Trials.md)
328
* [Config an experiment](docs/en_US/Tutorial/ExperimentConfig.md)
329
330
331
332
333
* [Define search space](docs/en_US/Tutorial/SearchSpaceSpec.md)
* [choose tuner/search-algorithm](docs/en_US/Tuner/BuiltinTuner.md)
* [Use annotation](docs/en_US/TrialExample/Trials.md#nni-python-annotation)
* [Use NNIBoard](docs/en_US/Tutorial/WebUI.md)

Chi Song's avatar
Chi Song committed
334

335

Scarlett Li's avatar
Scarlett Li committed
336
## **Tutorials**
Chi Song's avatar
Chi Song committed
337

338
* [Run an experiment on local (with multiple GPUs)](docs/en_US/TrainingService/LocalMode.md)
339
340
341
342
343
* [Run an experiment on OpenPAI](docs/en_US/TrainingService/PaiMode.md)
* [Run an experiment on Kubeflow](docs/en_US/TrainingService/KubeflowMode.md)
* [Run an experiment on multiple machines](docs/en_US/TrainingService/RemoteMachineMode.md)
* [Try different tuners](docs/en_US/Tuner/BuiltinTuner.md)
* [Try different assessors](docs/en_US/Assessor/BuiltinAssessor.md)
344
* [Implement a customized tuner](docs/en_US/Tuner/CustomizeTuner.md)
345
* [Implement a customized assessor](docs/en_US/Assessor/CustomizeAssessor.md)
346
* [Implement TrainingService in NNI](docs/en_US/TrainingService/HowToImplementTrainingService.md)
347
* [Use Genetic Algorithm to find good model architectures for Reading Comprehension task](docs/en_US/TrialExample/SquadEvolutionExamples.md)
348
349
* [Advanced Neural Architecture Search](docs/en_US/AdvancedFeature/AdvancedNas.md)

Scarlett Li's avatar
Scarlett Li committed
350
351

## **Contribute**
352
This project welcomes contributions and there are many ways in which you can participate in the project, for example:
353
354
355
* Open [bug reports](https://github.com/microsoft/nni/issues/new/choose).
* Request a [new feature](https://github.com/microsoft/nni/issues/new/choose).
* Suggest or ask some questions on the [How to Debug](docs/en_US/Tutorial/HowToDebug.md) guidance document.
356
357
* Find the issues tagged with ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22), these are simple and easy to start , we recommend new contributors to start with.

358
359
360

Before providing your hacks, you can review the [Contributing Instruction](docs/en_US/Tutorial/Contributing.md) to get more information. In addition, we also provide you with the following documents:
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
361
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
362
363
364
365
* [Customize Your Own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
* [Customize Your Own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)

366

rabbit008's avatar
rabbit008 committed
367
368
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
369
370
371
* ### **External Repositories** ###
   * Run [ENAS](examples/tuners/enas_nni/README.md) with NNI
   * Run [Neural Network Architecture Search](examples/trials/nas_cifar10/README.md) with NNI 
372
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI 
373
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
374
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
375
376
377
378
379
380
381
382

* ### **Relevant Articles** ###
  
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
383
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
384
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
385
386

## **Feedback**
387
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.
388
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
389
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
Chi Song's avatar
Chi Song committed
390

Microsoft Open Source's avatar
Microsoft Open Source committed
391

Chi Song's avatar
Chi Song committed
392
393
## **License**

394
The entire codebase is under [MIT license](LICENSE)
395