test_builtin_tuners.py 19.4 KB
Newer Older
liuzhe-lz's avatar
liuzhe-lz committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

4
import glob
Deshui Yu's avatar
Deshui Yu committed
5
import json
6
7
import logging
import os
8
import random
9
10
import shutil
import sys
RayMeng8's avatar
RayMeng8 committed
11
from collections import deque
Deshui Yu's avatar
Deshui Yu committed
12
13
from unittest import TestCase, main

14
from nni.algorithms.hpo.batch_tuner import BatchTuner
Yuge Zhang's avatar
Yuge Zhang committed
15
from nni.algorithms.hpo.dngo_tuner import DNGOTuner
16
17
18
19
20
21
from nni.algorithms.hpo.evolution_tuner import EvolutionTuner
from nni.algorithms.hpo.gp_tuner import GPTuner
from nni.algorithms.hpo.gridsearch_tuner import GridSearchTuner
from nni.algorithms.hpo.hyperopt_tuner import HyperoptTuner
from nni.algorithms.hpo.metis_tuner import MetisTuner
from nni.algorithms.hpo.pbt_tuner import PBTTuner
22
from nni.algorithms.hpo.random_tuner import RandomTuner
23
from nni.algorithms.hpo.regularized_evolution_tuner import RegularizedEvolutionTuner
24
from nni.algorithms.hpo.tpe_tuner import TpeTuner
25
26
from nni.runtime.msg_dispatcher import _pack_parameter, MsgDispatcher

27
28
smac_imported = False
if sys.platform != 'win32' and sys.version_info < (3, 9):
29
    from nni.algorithms.hpo.smac_tuner import SMACTuner
30
    smac_imported = True
31

32
from nni.tuner import Tuner
Deshui Yu's avatar
Deshui Yu committed
33

34
35
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('test_tuner')
Deshui Yu's avatar
Deshui Yu committed
36
37


38
class BuiltinTunersTestCase(TestCase):
39
40
41
42
43
44
    """
    Targeted at testing functions of built-in tuners, including
        - [ ] load_checkpoint
        - [ ] save_checkpoint
        - [X] update_search_space
        - [X] generate_multiple_parameters
45
        - [X] import_data
46
        - [ ] trial_end
47
        - [x] receive_trial_result
48
49
    """

50
51
52
53
54
    def setUp(self):
        self.test_round = 3
        self.params_each_round = 50
        self.exhaustive = False

RayMeng8's avatar
RayMeng8 committed
55
56
57
58
59
    def send_trial_callback(self, param_queue):
        def receive(*args):
            param_queue.append(tuple(args))
        return receive

60
    def send_trial_result(self, tuner, parameter_id, parameters, metrics):
61
62
        if parameter_id % 2 == 1:
            metrics = {'default': metrics, 'extra': 'hello'}
63
64
65
        tuner.receive_trial_result(parameter_id, parameters, metrics)
        tuner.trial_end(parameter_id, True)

66
67
    def search_space_test_one(self, tuner_factory, search_space, nas=False):
        # nas: whether the test checks classic nas tuner
68
69
70
71
        tuner = tuner_factory()
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)

72
        for i in range(self.test_round):
RayMeng8's avatar
RayMeng8 committed
73
            queue = deque()
74
            parameters = tuner.generate_multiple_parameters(list(range(i * self.params_each_round,
RayMeng8's avatar
RayMeng8 committed
75
76
                                                                       (i + 1) * self.params_each_round)),
                                                            st_callback=self.send_trial_callback(queue))
77
            logger.debug(parameters)
78
79
80
            check_range = lambda parameters, search_space: self.nas_check_range(parameters, search_space) \
                                                           if nas else self.check_range(parameters, search_space)
            check_range(parameters, search_space)
81
            for k in range(min(len(parameters), self.params_each_round)):
82
                self.send_trial_result(tuner, self.params_each_round * i + k, parameters[k], random.uniform(-100, 100))
RayMeng8's avatar
RayMeng8 committed
83
84
            while queue:
                id_, params = queue.popleft()
85
                check_range([params], search_space)
86
                self.send_trial_result(tuner, id_, params, random.uniform(-100, 100))
87
88
            if not parameters and not self.exhaustive:
                raise ValueError("No parameters generated")
89
90
91
92
93
94
95

    def check_range(self, generated_params, search_space):
        EPS = 1E-6
        for param in generated_params:
            if self._testMethodName == "test_batch":
                param = {list(search_space.keys())[0]: param}
            for k, v in param.items():
RayMeng8's avatar
RayMeng8 committed
96
97
98
                if k == "load_checkpoint_dir" or k == "save_checkpoint_dir":
                    self.assertIsInstance(v, str)
                    continue
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                if k.startswith("_mutable_layer"):
                    _, block, layer, choice = k.split("/")
                    cand = search_space[block]["_value"][layer].get(choice)
                    # cand could be None, e.g., optional_inputs_chosen_state
                    if choice == "layer_choice":
                        self.assertIn(v, cand)
                    if choice == "optional_input_size":
                        if isinstance(cand, int):
                            self.assertEqual(v, cand)
                        else:
                            self.assertGreaterEqual(v, cand[0])
                            self.assertLessEqual(v, cand[1])
                    if choice == "optional_inputs":
                        pass  # ignore for now
                    continue
                item = search_space[k]
                if item["_type"] == "choice":
                    self.assertIn(v, item["_value"])
                if item["_type"] == "randint":
                    self.assertIsInstance(v, int)
                if item["_type"] == "uniform":
                    self.assertIsInstance(v, float)
                if item["_type"] in ("randint", "uniform", "quniform", "loguniform", "qloguniform"):
                    self.assertGreaterEqual(v, item["_value"][0])
                    self.assertLessEqual(v, item["_value"][1])
                if item["_type"].startswith("q"):
                    multiple = v / item["_value"][2]
                    print(k, v, multiple, item)
                    if item["_value"][0] + EPS < v < item["_value"][1] - EPS:
                        self.assertAlmostEqual(int(round(multiple)), multiple)
                if item["_type"] in ("qlognormal", "lognormal"):
                    self.assertGreaterEqual(v, 0)
                if item["_type"] == "mutable_layer":
                    for layer_name in item["_value"].keys():
                        self.assertIn(v[layer_name]["chosen_layer"], item["layer_choice"])

135
136
137
138
139
140
141
142
143
144
145
146
147
    def nas_check_range(self, generated_params, search_space):
        for params in generated_params:
            for k in params:
                v = params[k]
                items = search_space[k]
                if items['_type'] == 'layer_choice':
                    self.assertIn(v['_value'], items['_value'])
                elif items['_type'] == 'input_choice':
                    for choice in v['_value']:
                        self.assertIn(choice, items['_value']['candidates'])
                else:
                    raise KeyError

148
149
    def search_space_test_all(self, tuner_factory, supported_types=None, ignore_types=None, fail_types=None):
        # Three types: 1. supported; 2. ignore; 3. fail.
150
151
152
153
154
155
156
157
158
159
160
        # NOTE(yuge): ignore types
        # Supported types are listed in the table. They are meant to be supported and should be correct.
        # Other than those, all the rest are "unsupported", which are expected to produce ridiculous results
        # or throw some exceptions. However, there are certain types I can't check. For example, generate
        # "normal" using GP Tuner returns successfully and results are fine if we check the range (-inf to +inf),
        # but they make no sense: it's not a normal distribution. So they are ignored in tests for now.
        with open(os.path.join(os.path.dirname(__file__), "assets/search_space.json"), "r") as fp:
            search_space_all = json.load(fp)
        if supported_types is None:
            supported_types = ["choice", "randint", "uniform", "quniform", "loguniform", "qloguniform",
                               "normal", "qnormal", "lognormal", "qlognormal"]
161
162
163
164
        if fail_types is None:
            fail_types = []
        if ignore_types is None:
            ignore_types = []
165
166
167
        full_supported_search_space = dict()
        for single in search_space_all:
            space = search_space_all[single]
168
            if any(single.startswith(t) for t in ignore_types):
169
                continue
170
            expected_fail = not any(single.startswith(t) for t in supported_types) or \
RayMeng8's avatar
RayMeng8 committed
171
172
                any(single.startswith(t) for t in fail_types) or \
                "fail" in single  # name contains fail (fail on all)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            single_search_space = {single: space}
            if not expected_fail:
                # supports this key
                self.search_space_test_one(tuner_factory, single_search_space)
                full_supported_search_space.update(single_search_space)
            else:
                # unsupported key
                with self.assertRaises(Exception, msg="Testing {}".format(single)) as cm:
                    self.search_space_test_one(tuner_factory, single_search_space)
                logger.info("%s %s %s", tuner_factory, single, cm.exception)
        if not any(t in self._testMethodName for t in ["batch", "grid_search"]):
            # grid search fails for too many combinations
            logger.info("Full supported search space: %s", full_supported_search_space)
            self.search_space_test_one(tuner_factory, full_supported_search_space)

188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def nas_search_space_test_all(self, tuner_factory):
        # Since classic tuner should support only LayerChoice and InputChoice,
        # ignore type and fail type are dismissed here. 
        with open(os.path.join(os.path.dirname(__file__), "assets/classic_nas_search_space.json"), "r") as fp:
            search_space_all = json.load(fp)
        full_supported_search_space = dict()
        for single in search_space_all:
            space = search_space_all[single]
            single_search_space = {single: space}
            self.search_space_test_one(tuner_factory, single_search_space, nas=True)
            full_supported_search_space.update(single_search_space)
        logger.info("Full supported search space: %s", full_supported_search_space)
        self.search_space_test_one(tuner_factory, full_supported_search_space, nas=True)

QuanluZhang's avatar
QuanluZhang committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def import_data_test_for_pbt(self):
        """
        test1: import data with complete epoch
        test2: import data with incomplete epoch
        """
        search_space = {
            "choice_str": {
                "_type": "choice",
                "_value": ["cat", "dog", "elephant", "cow", "sheep", "panda"]
            }
        }
        all_checkpoint_dir = os.path.expanduser("~/nni/checkpoint/test/")
        population_size = 4
        # ===import data at the beginning===
        tuner = PBTTuner(
            all_checkpoint_dir=all_checkpoint_dir,
            population_size=population_size
        )
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        save_dirs = [os.path.join(all_checkpoint_dir, str(i), str(0)) for i in range(population_size)]
        # create save checkpoint directory
        for save_dir in save_dirs:
            os.makedirs(save_dir, exist_ok=True)
        # for simplicity, omit "load_checkpoint_dir"
        data = [{"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[0]}, "value": 1.1},
                {"parameter": {"choice_str": "dog", "save_checkpoint_dir": save_dirs[1]}, "value": {"default": 1.2, "tmp": 2}},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[2]}, "value": 11},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[3]}, "value": 7}]
        epoch = tuner.import_data(data)
        self.assertEqual(epoch, 1)
        logger.info("Imported data successfully at the beginning")
        shutil.rmtree(all_checkpoint_dir)
        # ===import another data at the beginning, test the case when there is an incompleted epoch===
        tuner = PBTTuner(
            all_checkpoint_dir=all_checkpoint_dir,
            population_size=population_size
        )
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        for i in range(population_size - 1):
            save_dirs.append(os.path.join(all_checkpoint_dir, str(i), str(1)))
        for save_dir in save_dirs:
            os.makedirs(save_dir, exist_ok=True)
        data = [{"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[0]}, "value": 1.1},
                {"parameter": {"choice_str": "dog", "save_checkpoint_dir": save_dirs[1]}, "value": {"default": 1.2, "tmp": 2}},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[2]}, "value": 11},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[3]}, "value": 7},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[4]}, "value": 1.1},
                {"parameter": {"choice_str": "dog", "save_checkpoint_dir": save_dirs[5]}, "value": {"default": 1.2, "tmp": 2}},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[6]}, "value": 11}]
        epoch = tuner.import_data(data)
        self.assertEqual(epoch, 1)
        logger.info("Imported data successfully at the beginning with incomplete epoch")
        shutil.rmtree(all_checkpoint_dir)

liuzhe-lz's avatar
liuzhe-lz committed
258
    def import_data_test(self, tuner_factory, stype="choice_str", support_middle=True):
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        """
        import data at the beginning with number value and dict value
        import data in the middle also with number value and dict value, and duplicate data record
        generate parameters after data import

        Parameters
        ----------
        tuner_factory : lambda
            a lambda for instantiate a tuner
        stype : str
            the value type of hp choice, support "choice_str" and "choice_num"
        """
        if stype == "choice_str":
            search_space = {
                "choice_str": {
                    "_type": "choice",
                    "_value": ["cat", "dog", "elephant", "cow", "sheep", "panda"]
                }
            }
        elif stype == "choice_num":
            search_space = {
                "choice_num": {
                    "_type": "choice",
                    "_value": [10, 20, 30, 40, 50, 60]
                }
            }
        else:
            raise RuntimeError("Unexpected stype")
        tuner = tuner_factory()
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        # import data at the beginning
        if stype == "choice_str":
            data = [{"parameter": {"choice_str": "cat"}, "value": 1.1},
                    {"parameter": {"choice_str": "dog"}, "value": {"default": 1.2, "tmp": 2}}]
        else:
            data = [{"parameter": {"choice_num": 20}, "value": 1.1},
                    {"parameter": {"choice_num": 60}, "value": {"default": 1.2, "tmp": 2}}]
        tuner.import_data(data)
        logger.info("Imported data successfully at the beginning")
        # generate parameters
        parameters = tuner.generate_multiple_parameters(list(range(3)))
        for i in range(3):
            tuner.receive_trial_result(i, parameters[i], random.uniform(-100, 100))
liuzhe-lz's avatar
liuzhe-lz committed
303
304
        if not support_middle:
            return
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        # import data in the middle
        if stype == "choice_str":
            data = [{"parameter": {"choice_str": "cat"}, "value": 1.1},
                    {"parameter": {"choice_str": "dog"}, "value": {"default": 1.2, "tmp": 2}},
                    {"parameter": {"choice_str": "cow"}, "value": 1.3}]
        else:
            data = [{"parameter": {"choice_num": 20}, "value": 1.1},
                    {"parameter": {"choice_num": 60}, "value": {"default": 1.2, "tmp": 2}},
                    {"parameter": {"choice_num": 50}, "value": 1.3}]
        tuner.import_data(data)
        logger.info("Imported data successfully in the middle")
        # generate parameters again
        parameters = tuner.generate_multiple_parameters([3])
        tuner.receive_trial_result(3, parameters[0], random.uniform(-100, 100))

320
    def test_grid_search(self):
321
        self.exhaustive = True
322
        tuner_fn = lambda: GridSearchTuner()
liuzhe-lz's avatar
liuzhe-lz committed
323
324
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn, support_middle=False)
325
326

    def test_tpe(self):
327
328
        tuner_fn = TpeTuner
        self.search_space_test_all(TpeTuner)
329
        self.import_data_test(tuner_fn)
330
331

    def test_random_search(self):
332
        tuner_fn = RandomTuner
333
334
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
335
336

    def test_anneal(self):
337
338
339
        tuner_fn = lambda: HyperoptTuner("anneal")
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
340
341

    def test_smac(self):
342
        if not smac_imported:
343
            return  # smac doesn't work on windows
344
345
        tuner_fn = lambda: SMACTuner()
        self.search_space_test_all(tuner_fn,
346
                                   supported_types=["choice", "randint", "uniform", "quniform", "loguniform"])
347
        self.import_data_test(tuner_fn)
348
349

    def test_batch(self):
350
        self.exhaustive = True
351
352
        tuner_fn = lambda: BatchTuner()
        self.search_space_test_all(tuner_fn,
353
                                   supported_types=["choice"])
354
        self.import_data_test(tuner_fn)
355
356
357

    def test_evolution(self):
        # Needs enough population size, otherwise it will throw a runtime error
358
359
360
        tuner_fn = lambda: EvolutionTuner(population_size=100)
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
361
362

    def test_gp(self):
363
        self.test_round = 1  # NOTE: GP tuner got hanged for multiple testing round
364
365
        tuner_fn = lambda: GPTuner()
        self.search_space_test_all(tuner_fn,
366
367
                                   supported_types=["choice", "randint", "uniform", "quniform", "loguniform",
                                                    "qloguniform"],
368
369
                                   ignore_types=["normal", "lognormal", "qnormal", "qlognormal"],
                                   fail_types=["choice_str", "choice_mixed"])
370
        self.import_data_test(tuner_fn, "choice_num")
371
372

    def test_metis(self):
373
        self.test_round = 1  # NOTE: Metis tuner got hanged for multiple testing round
374
375
        tuner_fn = lambda: MetisTuner()
        self.search_space_test_all(tuner_fn,
376
377
                                   supported_types=["choice", "randint", "uniform", "quniform"],
                                   fail_types=["choice_str", "choice_mixed"])
378
        self.import_data_test(tuner_fn, "choice_num")
379
380
381
382
383
384
385

    def test_networkmorphism(self):
        pass

    def test_ppo(self):
        pass

RayMeng8's avatar
RayMeng8 committed
386
387
388
389
390
391
392
393
394
    def test_pbt(self):
        self.search_space_test_all(lambda: PBTTuner(
            all_checkpoint_dir=os.path.expanduser("~/nni/checkpoint/test/"),
            population_size=12
        ))
        self.search_space_test_all(lambda: PBTTuner(
            all_checkpoint_dir=os.path.expanduser("~/nni/checkpoint/test/"),
            population_size=100
        ))
QuanluZhang's avatar
QuanluZhang committed
395
        self.import_data_test_for_pbt()
RayMeng8's avatar
RayMeng8 committed
396

98may's avatar
98may committed
397
    def test_dngo(self):
Yuge Zhang's avatar
Yuge Zhang committed
398
        tuner_fn = lambda: DNGOTuner(trials_per_update=100, num_epochs_per_training=1)
98may's avatar
98may committed
399
400
401
402
        self.search_space_test_all(tuner_fn, fail_types=["choice_str", "choice_mixed",
                                                         "normal", "lognormal", "qnormal", "qlognormal"])
        self.import_data_test(tuner_fn, stype='choice_num')

liuzhe-lz's avatar
liuzhe-lz committed
403
404
405
406
    def test_regularized_evolution_tuner(self):
        tuner_fn = lambda: RegularizedEvolutionTuner()
        self.nas_search_space_test_all(tuner_fn)

407
408
409
410
411
412
413
414
    def tearDown(self):
        file_list = glob.glob("smac3*") + ["param_config_space.pcs", "scenario.txt", "model_path"]
        for file in file_list:
            if os.path.exists(file):
                if os.path.isdir(file):
                    shutil.rmtree(file)
                else:
                    os.remove(file)
Deshui Yu's avatar
Deshui Yu committed
415
416
417
418


if __name__ == '__main__':
    main()