index.rst 8.83 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
Neural Network Intelligence
2
===========================
Yuge Zhang's avatar
Yuge Zhang committed
3
4
5

..  toctree::
    :maxdepth: 2
6
    :caption: Get Started
Yuge Zhang's avatar
Yuge Zhang committed
7
8
    :hidden:

9
10
11
    installation
    quickstart
    Learning NNI <tutorials>
12
13
14

..  toctree::
    :maxdepth: 2
15
    :caption: Full-scale Materials
16
17
    :hidden:

liuzhe-lz's avatar
liuzhe-lz committed
18
    Hyperparameter Optimization <hpo/index>
Yuge Zhang's avatar
Yuge Zhang committed
19
    Neural Architecture Search <nas/index>
J-shang's avatar
J-shang committed
20
    Model Compression <compression/index>
Yuge Zhang's avatar
Yuge Zhang committed
21
    Feature Engineering <feature_engineering>
22
    Experiment <experiment/overview>
23
24
25
26
27
28

..  toctree::
    :maxdepth: 2
    :caption: References
    :hidden:

Yuge Zhang's avatar
Yuge Zhang committed
29
30
31
    nnictl Commands <reference/nnictl>
    Experiment Configuration <reference/experiment_config>
    Python API <reference/_modules/nni>
J-shang's avatar
J-shang committed
32
    API Reference <reference/python_api_ref>
33
34
35
36
37
38

..  toctree::
    :maxdepth: 2
    :caption: Misc
    :hidden:

QuanluZhang's avatar
QuanluZhang committed
39
40
41
    Use Cases and Solutions <misc/community_sharings>
    Research and Publications <misc/research_publications>
    FAQ <misc/faq>
liuzhe-lz's avatar
liuzhe-lz committed
42
    notes/build_from_source
Yuge Zhang's avatar
Yuge Zhang committed
43
    Contribution Guide <notes/contributing>
Yuge Zhang's avatar
Yuge Zhang committed
44
45
    Change Log <Release>

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate**:

* :doc:`Hyperparameter Tuning </hpo/overview>`,
* :doc:`Neural Architecture Search </nas/index>`,
* :doc:`Model Compression </compression/index>`,
* :doc:`Feature Engineering </FeatureEngineering/Overview>`.

.. Can't use section title here due to the limitation of toc

.. raw:: html
   
   <h2>Get Started Now</h2>

To install the current release:

.. code-block:: bash

   $ pip install nni

See the :doc:`installation guide </installation>` if you need additional help on installation.

67
Then, please read :doc:`quickstart` and :doc:`tutorials` to start your journey with NNI!
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

.. Please keep this part sync with readme

.. raw:: html

   <h2>Latest Updates

.. image:: ../img/release_icon.png
   :class: release-icon

.. raw:: html

   </h2>

* **New release**: `v2.6 is available <https://github.com/microsoft/nni/releases/tag/v2.6>`_ - *released on Jan-19-2022*
* **New demo available**: `Youtube entry <https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw>`_ | `Bilibili 入口 <https://space.bilibili.com/1649051673>`_ - *last updated on May-26-2021*
* **New webinar**: `Introducing Retiarii, A deep learning exploratory-training framework on NNI <https://note.microsoft.com/MSR-Webinar-Retiarii-Registration-Live.html>`_ - *scheduled on June-24-2021*
* **New community channel**: `Discussions <https://github.com/microsoft/nni/discussions>`_
* **New emoticons release**: :doc:`nnSpider <nnSpider>`

88
89
.. raw:: html

90
91
92
93
   <h2>Why choose NNI?</h2>

   <h3>NNI makes AutoML techniques plug-and-play.</h3>

94
95
96
   <div class="codesnippet-card-container">

.. codesnippetcard::
97
   :icon: ../img/thumbnails/hpo-small.svg
98
   :title: Hyper-parameter Tuning
liuzhe-lz's avatar
liuzhe-lz committed
99
   :link: tutorials/hpo_quickstart_pytorch/main
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

   .. code-block::

      params = nni.get_next_parameter()

      class Net(nn.Module):
          ...

      model = Net()
      optimizer = optim.SGD(model.parameters(),
                            params['lr'],
                            params['momentum'])

      for epoch in range(10):
          train(...)

      accuracy = test(model)
      nni.report_final_result(accuracy)

.. codesnippetcard::
120
   :icon: ../img/thumbnails/pruning-small.svg
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
   :title: Model Pruning
   :link: tutorials/pruning_quick_start_mnist

   .. code-block::

      # define a config_list
      config = [{
          'sparsity': 0.8,
          'op_types': ['Conv2d']
      }]

      # generate masks for simulated pruning
      wrapped_model, masks = \
          L1NormPruner(model, config). \
          compress()

137
      # apply the masks for real speedup
138
139
140
141
      ModelSpeedup(unwrapped_model, input, masks). \
          speedup_model()

.. codesnippetcard::
142
   :icon: ../img/thumbnails/quantization-small.svg
143
   :title: Quantization
144
   :link: tutorials/quantization_speedup
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

   .. code-block::

      # define a config_list
      config = [{
          'quant_types': ['input', 'weight'],
          'quant_bits': {'input': 8, 'weight': 8},
          'op_types': ['Conv2d']
      }]

      # in case quantizer needs a extra training
      quantizer = QAT_Quantizer(model, config)
      quantizer.compress()
      # Training...

      # export calibration config and
161
      # generate TensorRT engine for real speedup
162
163
164
165
166
167
168
      calibration_config = quantizer.export_model(
          model_path, calibration_path)
      engine = ModelSpeedupTensorRT(
          model, input_shape, config=calib_config)
      engine.compress()

.. codesnippetcard::
169
   :icon: ../img/thumbnails/multi-trial-nas-small.svg
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
   :title: Neural Architecture Search
   :link: tutorials/hello_nas

   .. code-block:: diff

      # define model space
      -   self.conv2 = nn.Conv2d(32, 64, 3, 1)
      +   self.conv2 = nn.LayerChoice([
      +       nn.Conv2d(32, 64, 3, 1),
      +       DepthwiseSeparableConv(32, 64)
      +   ])
      # search strategy + evaluator
      strategy = RegularizedEvolution()
      evaluator = FunctionalEvaluator(
          train_eval_fn)

      # run experiment
      RetiariiExperiment(model_space,
          evaluator, strategy).run()

.. codesnippetcard::
191
   :icon: ../img/thumbnails/one-shot-nas-small.svg
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
   :title: One-shot NAS
   :link: nas/index

   .. code-block::

      # define model space
      space = AnySearchSpace()

      # get a darts trainer
      trainer = DartsTrainer(space, loss, metrics)
      trainer.fit()

      # get final searched architecture
      arch = trainer.export()

.. codesnippetcard::
208
   :icon: ../img/thumbnails/feature-engineering-small.svg
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
   :title: Feature Engineering
   :link: FeatureEngineering/Overview

   .. code-block::

      selector = GBDTSelector()
      selector.fit(
          X_train, y_train,
          lgb_params=lgb_params,
          eval_ratio=eval_ratio,
          early_stopping_rounds=10,
          importance_type='gain',
          num_boost_round=1000)

      # get selected features
      features = selector.get_selected_features()

.. End of code snippet card

.. raw:: html
Yuge Zhang's avatar
Yuge Zhang committed
229

230
   </div>
Yuge Zhang's avatar
Yuge Zhang committed
231

232
233
234
   <h3>NNI eases the effort to scale and manage AutoML experiments.</h3>

.. codesnippetcard::
235
   :icon: ../img/thumbnails/training-service-small.svg
236
237
238
239
240
241
242
243
244
245
   :title: Training Service
   :link: experiment/training_service
   :seemore: See more here.

   An AutoML experiment requires many trials to explore feasible and potentially good-performing models.
   **Training service** aims to make the tuning process easily scalable in a distributed platforms.
   It provides a unified user experience for diverse computation resources (e.g., local machine, remote servers, AKS).
   Currently, NNI supports **more than 9** kinds of training services.

.. codesnippetcard::
246
   :icon: ../img/thumbnails/web-portal-small.svg
247
248
249
250
251
252
253
254
255
256
   :title: Web Portal
   :link: experiment/web_portal
   :seemore: See more here.

   Web portal visualizes the tuning process, exposing the ability to inspect, monitor and control the experiment.

   .. image:: ../static/img/webui.gif
      :width: 100%

.. codesnippetcard::
257
   :icon: ../img/thumbnails/experiment-management-small.svg
258
259
260
261
262
263
264
265
266
   :title: Experiment Management
   :link: experiment/exp_management
   :seemore: See more here.

   The DNN model tuning often requires more than one experiment.
   Users might try different tuning algorithms, fine-tune their search space, or switch to another training service.
   **Experiment management** provides the power to aggregate and compare tuning results from multiple experiments,
   so that the tuning workflow becomes clean and organized.

Yuge Zhang's avatar
Yuge Zhang committed
267
268
.. raw:: html

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
   <h2>Get Support and Contribute Back</h2>

NNI is maintained on the `NNI GitHub repository <https://github.com/microsoft/nni>`_. We collect feedbacks and new proposals/ideas on GitHub. You can:

* Open a `GitHub issue <https://github.com/microsoft/nni/issues>`_ for bugs and feature requests.
* Open a `pull request <https://github.com/microsoft/nni/pulls>`_ to contribute code (make sure to read the `contribution guide </contribution>` before doing this).
* Participate in `NNI Discussion <https://github.com/microsoft/nni/discussions>`_ for general questions and new ideas.
* Join the following IM groups.

.. list-table::
   :header-rows: 1
   :widths: auto

   * - Gitter
     - WeChat
   * -
       .. image:: https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png
     -
       .. image:: https://github.com/scarlett2018/nniutil/raw/master/wechat.png
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

.. raw:: html

   <h2>Citing NNI</h2>

If you use NNI in a scientific publication, please consider citing NNI in your references.

   Microsoft. Neural Network Intelligence (version |release|). https://github.com/microsoft/nni

Bibtex entry (please replace the version with the particular version you are using): ::

   @software{nni2021,
      author = {{Microsoft}},
      month = {1},
      title = {{Neural Network Intelligence}},
      url = {https://github.com/microsoft/nni},
      version = {2.0},
      year = {2021}
   }