amc_train.py 9.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import sys
import os
import time
import argparse
import shutil
import math
import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim
from tensorboardX import SummaryWriter
chicm-ms's avatar
chicm-ms committed
16
from torchvision.models import resnet
17

liuzhe-lz's avatar
liuzhe-lz committed
18
19
20
from nni.algorithms.compression.pytorch.pruning.amc.lib.net_measure import measure_model
from nni.algorithms.compression.pytorch.pruning.amc.lib.utils import get_output_folder
from nni.compression.pytorch import ModelSpeedup
21
22
23
24

from data import get_dataset
from utils import AverageMeter, accuracy, progress_bar

25
sys.path.append('../../models')
26
27
28
29
30
from mobilenet import MobileNet
from mobilenet_v2 import MobileNetV2

def parse_args():
    parser = argparse.ArgumentParser(description='AMC train / fine-tune script')
chicm-ms's avatar
chicm-ms committed
31
32
33
    parser.add_argument('--model_type', default='mobilenet', type=str,
        choices=['mobilenet', 'mobilenetv2', 'resnet18', 'resnet34', 'resnet50'],
        help='name of the model to train')
34
    parser.add_argument('--dataset', default='cifar10', type=str, help='name of the dataset to train')
chicm-ms's avatar
chicm-ms committed
35
36
37
38
39
40
    parser.add_argument('--lr', default=0.05, type=float, help='learning rate')
    parser.add_argument('--n_gpu', default=4, type=int, help='number of GPUs to use')
    parser.add_argument('--batch_size', default=256, type=int, help='batch size')
    parser.add_argument('--n_worker', default=32, type=int, help='number of data loader worker')
    parser.add_argument('--lr_type', default='cos', type=str, help='lr scheduler (exp/cos/step3/fixed)')
    parser.add_argument('--n_epoch', default=150, type=int, help='number of epochs to train')
41
42
43
44
45
    parser.add_argument('--wd', default=4e-5, type=float, help='weight decay')
    parser.add_argument('--seed', default=None, type=int, help='random seed to set')
    parser.add_argument('--data_root', default='./data', type=str, help='dataset path')
    # resume
    parser.add_argument('--ckpt_path', default=None, type=str, help='checkpoint path to fine tune')
chicm-ms's avatar
chicm-ms committed
46
47
    parser.add_argument('--mask_path', default=None, type=str, help='mask path for speedup')

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    # run eval
    parser.add_argument('--eval', action='store_true', help='Simply run eval')
    parser.add_argument('--calc_flops', action='store_true', help='Calculate flops')

    return parser.parse_args()

def get_model(args):
    print('=> Building model..')

    if args.dataset == 'imagenet':
        n_class = 1000
    elif args.dataset == 'cifar10':
        n_class = 10
    else:
        raise NotImplementedError

    if args.model_type == 'mobilenet':
chicm-ms's avatar
chicm-ms committed
65
        net = MobileNet(n_class=n_class)
66
    elif args.model_type == 'mobilenetv2':
chicm-ms's avatar
chicm-ms committed
67
        net = MobileNetV2(n_class=n_class)
chicm-ms's avatar
chicm-ms committed
68
69
70
71
    elif args.model_type.startswith('resnet'):
        net = resnet.__dict__[args.model_type](pretrained=True)
        in_features = net.fc.in_features
        net.fc = nn.Linear(in_features, n_class)
72
73
74
75
    else:
        raise NotImplementedError

    if args.ckpt_path is not None:
chicm-ms's avatar
chicm-ms committed
76
        # the checkpoint can be state_dict exported by amc_search.py or saved by amc_train.py
77
        print('=> Loading checkpoint {} ..'.format(args.ckpt_path))
chicm-ms's avatar
chicm-ms committed
78
        net.load_state_dict(torch.load(args.ckpt_path, torch.device('cpu')))
chicm-ms's avatar
chicm-ms committed
79
80
81
        if args.mask_path is not None:
            SZ = 224 if args.dataset == 'imagenet' else 32
            data = torch.randn(2, 3, SZ, SZ)
chicm-ms's avatar
chicm-ms committed
82
            ms = ModelSpeedup(net, data, args.mask_path, torch.device('cpu'))
chicm-ms's avatar
chicm-ms committed
83
            ms.speedup_model()
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    net.to(args.device)
    if torch.cuda.is_available() and args.n_gpu > 1:
        net = torch.nn.DataParallel(net, list(range(args.n_gpu)))
    return net

def train(epoch, train_loader, device):
    print('\nEpoch: %d' % epoch)
    net.train()

    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, targets)

        loss.backward()
        optimizer.step()

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))
        # timing
        batch_time.update(time.time() - end)
        end = time.time()

        progress_bar(batch_idx, len(train_loader), 'Loss: {:.3f} | Acc1: {:.3f}% | Acc5: {:.3f}%'
                     .format(losses.avg, top1.avg, top5.avg))
    writer.add_scalar('loss/train', losses.avg, epoch)
    writer.add_scalar('acc/train_top1', top1.avg, epoch)
    writer.add_scalar('acc/train_top5', top5.avg, epoch)

def test(epoch, test_loader, device, save=True):
    global best_acc
    net.eval()

    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = net(inputs)
            loss = criterion(outputs, targets)

            # measure accuracy and record loss
            prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(prec1.item(), inputs.size(0))
            top5.update(prec5.item(), inputs.size(0))
            # timing
            batch_time.update(time.time() - end)
            end = time.time()

            progress_bar(batch_idx, len(test_loader), 'Loss: {:.3f} | Acc1: {:.3f}% | Acc5: {:.3f}%'
                         .format(losses.avg, top1.avg, top5.avg))

    if save:
        writer.add_scalar('loss/test', losses.avg, epoch)
        writer.add_scalar('acc/test_top1', top1.avg, epoch)
        writer.add_scalar('acc/test_top5', top5.avg, epoch)

        is_best = False
        if top1.avg > best_acc:
            best_acc = top1.avg
            is_best = True

        print('Current best acc: {}'.format(best_acc))
        save_checkpoint({
            'epoch': epoch,
            'model': args.model_type,
            'dataset': args.dataset,
            'state_dict': net.module.state_dict() if isinstance(net, nn.DataParallel) else net.state_dict(),
            'acc': top1.avg,
            'optimizer': optimizer.state_dict(),
        }, is_best, checkpoint_dir=log_dir)

def adjust_learning_rate(optimizer, epoch):
    if args.lr_type == 'cos':  # cos without warm-up
        lr = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.n_epoch))
    elif args.lr_type == 'exp':
        step = 1
        decay = 0.96
        lr = args.lr * (decay ** (epoch // step))
    elif args.lr_type == 'fixed':
        lr = args.lr
    else:
        raise NotImplementedError
    print('=> lr: {}'.format(lr))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    return lr

def save_checkpoint(state, is_best, checkpoint_dir='.'):
chicm-ms's avatar
chicm-ms committed
189
    filename = os.path.join(checkpoint_dir, 'ckpt.pth')
190
191
192
    print('=> Saving checkpoint to {}'.format(filename))
    torch.save(state, filename)
    if is_best:
chicm-ms's avatar
chicm-ms committed
193
        shutil.copyfile(filename, filename.replace('.pth', '.best.pth'))
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

if __name__ == '__main__':
    args = parse_args()

    if torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True
    args.device = torch.device('cuda') if torch.cuda.is_available() and args.n_gpu > 0 else torch.device('cpu')

    best_acc = 0  # best test accuracy
    start_epoch = 0  # start from epoch 0 or last checkpoint epoch

    if args.seed is not None:
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed(args.seed)

    print('=> Preparing data..')
    train_loader, val_loader, n_class = get_dataset(args.dataset, args.batch_size, args.n_worker,
                                                    data_root=args.data_root)

    net = get_model(args)  # for measure

    if args.calc_flops:
        IMAGE_SIZE = 224 if args.dataset == 'imagenet' else 32
chicm-ms's avatar
chicm-ms committed
218
        n_flops, n_params = measure_model(net, IMAGE_SIZE, IMAGE_SIZE, args.device)
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        print('=> Model Parameter: {:.3f} M, FLOPs: {:.3f}M'.format(n_params / 1e6, n_flops / 1e6))
        exit(0)

    criterion = nn.CrossEntropyLoss()
    print('Using SGD...')
    print('weight decay  = {}'.format(args.wd))
    optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wd)

    if args.eval:  # just run eval
        print('=> Start evaluation...')
        test(0, val_loader, args.device, save=False)
    else:  # train
        print('=> Start training...')
        print('Training {} on {}...'.format(args.model_type, args.dataset))
        train_type = 'train' if args.ckpt_path is None else 'finetune'
        log_dir = get_output_folder('./logs', '{}_{}_{}'.format(args.model_type, args.dataset, train_type))
        print('=> Saving logs to {}'.format(log_dir))
        # tf writer
        writer = SummaryWriter(logdir=log_dir)

        for epoch in range(start_epoch, start_epoch + args.n_epoch):
            lr = adjust_learning_rate(optimizer, epoch)
            train(epoch, train_loader, args.device)
            test(epoch, val_loader, args.device)

        writer.close()
        print('=> Best top-1 acc: {}%'.format(best_acc))