@@ -41,6 +41,7 @@ Pruning algorithms compress the original network by removing redundant weights o
| [NetAdapt Pruner](https://nni.readthedocs.io/en/latest/Compression/Pruner.html#netadapt-pruner) | Automatically simplify a pretrained network to meet the resource budget by iterative pruning [Reference Paper](https://arxiv.org/abs/1804.03230) |
| [SimulatedAnnealing Pruner](https://nni.readthedocs.io/en/latest/Compression/Pruner.html#simulatedannealing-pruner) | Automatic pruning with a guided heuristic search method, Simulated Annealing algorithm [Reference Paper](https://arxiv.org/abs/1907.03141) |
| [AutoCompress Pruner](https://nni.readthedocs.io/en/latest/Compression/Pruner.html#autocompress-pruner) | Automatic pruning by iteratively call SimulatedAnnealing Pruner and ADMM Pruner [Reference Paper](https://arxiv.org/abs/1907.03141) |
| [AMC Pruner](https://nni.readthedocs.io/en/latest/Compression/Pruner.html#amc-pruner) | AMC: AutoML for Model Compression and Acceleration on Mobile Devices [Reference Paper](https://arxiv.org/pdf/1802.03494.pdf) |
You can refer to this [benchmark](https://github.com/microsoft/nni/tree/master/docs/en_US/CommunitySharings/ModelCompressionComparison.md) for the performance of these pruners on some benchmark problems.