utils.py 7.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys
import numpy as np
import tensorflow as tf


user_flags = []


def DEFINE_string(name, default_value, doc_string):
    tf.app.flags.DEFINE_string(name, default_value, doc_string)
    global user_flags
    user_flags.append(name)


def DEFINE_integer(name, default_value, doc_string):
    tf.app.flags.DEFINE_integer(name, default_value, doc_string)
    global user_flags
    user_flags.append(name)


def DEFINE_float(name, default_value, doc_string):
    tf.app.flags.DEFINE_float(name, default_value, doc_string)
    global user_flags
    user_flags.append(name)


def DEFINE_boolean(name, default_value, doc_string):
    tf.app.flags.DEFINE_boolean(name, default_value, doc_string)
    global user_flags
    user_flags.append(name)


def print_user_flags(line_limit=80):
    print("-" * 80)

    global user_flags
    FLAGS = tf.app.flags.FLAGS

    for flag_name in sorted(user_flags):
        value = "{}".format(getattr(FLAGS, flag_name))
        log_string = flag_name
        log_string += "." * (line_limit - len(flag_name) - len(value))
        log_string += value
        print(log_string)


def get_C(x, data_format):
    """
    Args:
        x: tensor of shape [N, H, W, C] or [N, C, H, W]
    """
    if data_format == "NHWC":
        return x.get_shape()[3].value
    elif data_format == "NCHW":
        return x.get_shape()[1].value
    else:
        raise ValueError(
            "Unknown data_format '{0}'".format(data_format))

def get_HW(x, data_format):
    """
    Args:
        x: tensor of shape [N, H, W, C] or [N, C, H, W]
    """
    return x.get_shape()[2].value

def get_strides(stride, data_format):
    """
    Args:
        x: tensor of shape [N, H, W, C] or [N, C, H, W]
    """
    if data_format == "NHWC":
        return [1, stride, stride, 1]
    elif data_format == "NCHW":
        return [1, 1, stride, stride]
    else:
        raise ValueError(
            "Unknown data_format '{0}'".format(data_format))


class TextColors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'


class Logger(object):
    def __init__(self, output_file):
        self.terminal = sys.stdout
        self.log = open(output_file, "a")

    def write(self, message):
        self.terminal.write(message)
        self.terminal.flush()
        self.log.write(message)
        self.log.flush()


def count_model_params(tf_variables):
    """
    Args:
        tf_variables: list of all model variables
    """

    num_vars = 0
    for var in tf_variables:
        num_vars += np.prod([dim.value for dim in var.get_shape()])
    return num_vars


def get_train_ops(
        loss,
        tf_variables,
        train_step,
        clip_mode=None,
        grad_bound=None,
        l2_reg=1e-4,
        lr_warmup_val=None,
        lr_warmup_steps=100,
        lr_init=0.1,
        lr_dec_start=0,
        lr_dec_every=10000,
        lr_dec_rate=0.1,
        lr_dec_min=None,
        lr_cosine=False,
        lr_max=None,
        lr_min=None,
        lr_T_0=None,
        lr_T_mul=None,
        num_train_batches=None,
        optim_algo=None,
        sync_replicas=False,
        num_aggregate=None,
        num_replicas=None,
        get_grad_norms=False,
        moving_average=None):
    """
    Args:
        clip_mode: "global", "norm", or None.
        moving_average: store the moving average of parameters
    """

    if l2_reg > 0:
        l2_losses = []
        for var in tf_variables:
            l2_losses.append(tf.reduce_sum(var ** 2))
        l2_loss = tf.add_n(l2_losses)
        loss += l2_reg * l2_loss

    grads = tf.gradients(loss, tf_variables)
    grad_norm = tf.global_norm(grads)

    grad_norms = {}
    for v, g in zip(tf_variables, grads):
        if v is None or g is None:
            continue
        if isinstance(g, tf.IndexedSlices):
            grad_norms[v.name] = tf.sqrt(tf.reduce_sum(g.values ** 2))
        else:
            grad_norms[v.name] = tf.sqrt(tf.reduce_sum(g ** 2))

    if clip_mode is not None:
        assert grad_bound is not None, "Need grad_bound to clip gradients."
        if clip_mode == "global":
            grads, _ = tf.clip_by_global_norm(grads, grad_bound)
        elif clip_mode == "norm":
            clipped = []
            for g in grads:
                if isinstance(g, tf.IndexedSlices):
                    c_g = tf.clip_by_norm(g.values, grad_bound)
                    c_g = tf.IndexedSlices(g.indices, c_g)
                else:
                    c_g = tf.clip_by_norm(g, grad_bound)
                clipped.append(g)
            grads = clipped
        else:
            raise NotImplementedError("Unknown clip_mode {}".format(clip_mode))

    if lr_cosine:
        assert lr_max is not None, "Need lr_max to use lr_cosine"
        assert lr_min is not None, "Need lr_min to use lr_cosine"
        assert lr_T_0 is not None, "Need lr_T_0 to use lr_cosine"
        assert lr_T_mul is not None, "Need lr_T_mul to use lr_cosine"
        assert num_train_batches is not None, ("Need num_train_batches to use"
                                               " lr_cosine")

        curr_epoch = train_step // num_train_batches

        last_reset = tf.Variable(0, dtype=tf.int32, trainable=False,
                                 name="last_reset")
        T_i = tf.Variable(lr_T_0, dtype=tf.int32, trainable=False, name="T_i")
        T_curr = curr_epoch - last_reset

        def _update():
            update_last_reset = tf.assign(
                last_reset, curr_epoch, use_locking=True)
            update_T_i = tf.assign(T_i, T_i * lr_T_mul, use_locking=True)
            with tf.control_dependencies([update_last_reset, update_T_i]):
                rate = tf.to_float(T_curr) / tf.to_float(T_i) * 3.1415926
                lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + tf.cos(rate))
            return lr

        def _no_update():
            rate = tf.to_float(T_curr) / tf.to_float(T_i) * 3.1415926
            lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + tf.cos(rate))
            return lr

        learning_rate = tf.cond(
            tf.greater_equal(T_curr, T_i), _update, _no_update)
    else:
        learning_rate = tf.train.exponential_decay(
            lr_init, tf.maximum(train_step - lr_dec_start, 0), lr_dec_every,
            lr_dec_rate, staircase=True)
        if lr_dec_min is not None:
            learning_rate = tf.maximum(learning_rate, lr_dec_min)

    if lr_warmup_val is not None:
        learning_rate = tf.cond(tf.less(train_step, lr_warmup_steps),
                                lambda: lr_warmup_val, lambda: learning_rate)

    if optim_algo == "momentum":
        opt = tf.train.MomentumOptimizer(
            learning_rate, 0.9, use_locking=True, use_nesterov=True)
    elif optim_algo == "sgd":
        opt = tf.train.GradientDescentOptimizer(
            learning_rate, use_locking=True)
    elif optim_algo == "adam":
        opt = tf.train.AdamOptimizer(learning_rate, beta1=0.0, epsilon=1e-3,
                                     use_locking=True)
    else:
        raise ValueError("Unknown optim_algo {}".format(optim_algo))

    if sync_replicas:
        assert num_aggregate is not None, "Need num_aggregate to sync."
        assert num_replicas is not None, "Need num_replicas to sync."

        opt = tf.train.SyncReplicasOptimizer(
            opt,
            replicas_to_aggregate=num_aggregate,
            total_num_replicas=num_replicas,
            use_locking=True)

    if moving_average is not None:
        opt = tf.contrib.opt.MovingAverageOptimizer(
            opt, average_decay=moving_average)

    train_op = opt.apply_gradients(
        zip(grads, tf_variables), global_step=train_step)

    if get_grad_norms:
        return train_op, learning_rate, grad_norm, opt, grad_norms
    else:
        return train_op, learning_rate, grad_norm, opt