search.py 2.2 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

Chi Song's avatar
Chi Song committed
4
5
import logging
import time
6
7
8
9
10
11
12
13
14
from argparse import ArgumentParser

import torch
import torch.nn as nn

import datasets
from macro import GeneralNetwork
from micro import MicroNetwork
from nni.nas.pytorch import enas
15
16
from nni.nas.pytorch.callbacks import (ArchitectureCheckpoint,
                                       LRSchedulerCallback)
17
18
from utils import accuracy, reward_accuracy

19
logger = logging.getLogger('nni')
Chi Song's avatar
Chi Song committed
20
21


22
23
24
if __name__ == "__main__":
    parser = ArgumentParser("enas")
    parser.add_argument("--batch-size", default=128, type=int)
25
    parser.add_argument("--log-frequency", default=10, type=int)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    parser.add_argument("--search-for", choices=["macro", "micro"], default="macro")
    args = parser.parse_args()

    dataset_train, dataset_valid = datasets.get_dataset("cifar10")
    if args.search_for == "macro":
        model = GeneralNetwork()
        num_epochs = 310
        mutator = None
    elif args.search_for == "micro":
        model = MicroNetwork(num_layers=6, out_channels=20, num_nodes=5, dropout_rate=0.1, use_aux_heads=True)
        num_epochs = 150
        mutator = enas.EnasMutator(model, tanh_constant=1.1, cell_exit_extra_step=True)
    else:
        raise AssertionError

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9, weight_decay=1.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0.001)

    trainer = enas.EnasTrainer(model,
                               loss=criterion,
                               metrics=accuracy,
                               reward_function=reward_accuracy,
                               optimizer=optimizer,
50
                               callbacks=[LRSchedulerCallback(lr_scheduler), ArchitectureCheckpoint("./checkpoints")],
51
52
53
54
                               batch_size=args.batch_size,
                               num_epochs=num_epochs,
                               dataset_train=dataset_train,
                               dataset_valid=dataset_valid,
55
56
57
                               log_frequency=args.log_frequency,
                               mutator=mutator)
    trainer.train()