search.py 2.13 KB
Newer Older
Chi Song's avatar
Chi Song committed
1
2
import logging
import time
3
4
5
6
7
8
9
10
11
from argparse import ArgumentParser

import torch
import torch.nn as nn

import datasets
from macro import GeneralNetwork
from micro import MicroNetwork
from nni.nas.pytorch import enas
12
13
from nni.nas.pytorch.callbacks import (ArchitectureCheckpoint,
                                       LRSchedulerCallback)
14
15
from utils import accuracy, reward_accuracy

16
logger = logging.getLogger('nni')
Chi Song's avatar
Chi Song committed
17
18


19
20
21
if __name__ == "__main__":
    parser = ArgumentParser("enas")
    parser.add_argument("--batch-size", default=128, type=int)
22
    parser.add_argument("--log-frequency", default=10, type=int)
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    parser.add_argument("--search-for", choices=["macro", "micro"], default="macro")
    args = parser.parse_args()

    dataset_train, dataset_valid = datasets.get_dataset("cifar10")
    if args.search_for == "macro":
        model = GeneralNetwork()
        num_epochs = 310
        mutator = None
    elif args.search_for == "micro":
        model = MicroNetwork(num_layers=6, out_channels=20, num_nodes=5, dropout_rate=0.1, use_aux_heads=True)
        num_epochs = 150
        mutator = enas.EnasMutator(model, tanh_constant=1.1, cell_exit_extra_step=True)
    else:
        raise AssertionError

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9, weight_decay=1.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0.001)

    trainer = enas.EnasTrainer(model,
                               loss=criterion,
                               metrics=accuracy,
                               reward_function=reward_accuracy,
                               optimizer=optimizer,
47
                               callbacks=[LRSchedulerCallback(lr_scheduler), ArchitectureCheckpoint("./checkpoints")],
48
49
50
51
                               batch_size=args.batch_size,
                               num_epochs=num_epochs,
                               dataset_train=dataset_train,
                               dataset_valid=dataset_valid,
52
53
54
                               log_frequency=args.log_frequency,
                               mutator=mutator)
    trainer.train()