"demo/mono_det_demo.py" did not exist on "997b026b5cfdea764a5303b94b6bd219ca0a5ff1"
test_convert.py 23.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
Reference: We use tested models from https://github.com/pytorch/pytorch/blob/master/test/jit/test_models.py.
"""

import os
import sys
import unittest

import numpy as np
import torch
import torch.nn.functional as F
import torchvision

import nni.retiarii.nn.pytorch as nn
15
from nni.retiarii import basic_unit
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

37
38
# NOTE: serialize module cannot be placed within class or function
@basic_unit
39
40
41
42
43
44
45
46
47
48
49
class Linear(nn.Module):
    def __init__(self, d_embed, d_proj):
        super().__init__()
        self.linear = nn.Linear(d_embed, d_proj)

    def forward(self, input):
        if len(input.size()) <= 2:
            return self.linear(input)
        size = input.size()[:2]
        out = self.linear(input.view(size[0] * size[1], -1))
        return out.view(size[0], size[1], -1)
50
51
52
53
54
55

class TestConvert(unittest.TestCase):
    @staticmethod
    def _match_state_dict(current_values, expected_format):
        result = {}
        for k, v in expected_format.items():
56
            for idx, cv in enumerate(current_values):
57
58
                if cv.shape == v.shape:
                    result[k] = cv
59
                    current_values.pop(idx)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                    break
        return result

    def checkExportImport(self, model, input):
        script_module = torch.jit.script(model)
        model_ir = convert_to_graph(script_module, model)
        model_code = model_to_pytorch_script(model_ir)

        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        converted_model = exec_vars['converted_model']
        converted_state_dict = self._match_state_dict(list(model.state_dict().values()),
                                                      dict(converted_model.state_dict()))
        converted_model.load_state_dict(converted_state_dict)
        with torch.no_grad():
            expected_output = model.eval()(*input)
            converted_output = converted_model.eval()(*input)
        self.assertEqual(len(converted_output), len(expected_output))
        for a, b in zip(converted_output, expected_output):
            self.assertLess((a - b).abs().max().item(), 1E-4)
        return converted_model

    def setUp(self):
        # FIXME
        import nni.retiarii.debug_configs
        nni.retiarii.debug_configs.framework = 'pytorch'

    def test_dcgan_models(self):
        class DCGANGenerator(nn.Module):
            def __init__(self, nz, ngf, nc):
                super(DCGANGenerator, self).__init__()
                self.main = nn.Sequential(
                    # input is Z, going into a convolution
                    nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
                    nn.BatchNorm2d(ngf * 8),
                    nn.ReLU(True),
                    # state size. (ngf*8) x 4 x 4
                    nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 4),
                    nn.ReLU(True),
                    # state size. (ngf*4) x 8 x 8
                    nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 2),
                    nn.ReLU(True),
                    # state size. (ngf*2) x 16 x 16
                    nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf),
                    nn.ReLU(True),
                    # state size. (ngf) x 32 x 32
                    nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
                    nn.Tanh()
                    # state size. (nc) x 64 x 64
                )

            def forward(self, input):
                return self.main(input)

        class DCGANDiscriminator(nn.Module):
            def __init__(self, nc, ndf):
                super(DCGANDiscriminator, self).__init__()
                self.main = nn.Sequential(
                    # input is (nc) x 64 x 64
                    nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf) x 32 x 32
                    nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 2),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*2) x 16 x 16
                    nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 4),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*4) x 8 x 8
                    nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 8),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*8) x 4 x 4
                    nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
                    nn.Sigmoid()
                )

            def forward(self, input):
                return self.main(input).view(-1, 1).squeeze(1)

        bs, nz, ngf, nc, ndf = 5, 6, 9, 3, 10
        input = (torch.rand(bs, nz, 1, 1),)
        model = DCGANGenerator(nz, ngf, nc)
        self.checkExportImport(model, input)

    def test_neural_style(self):
150
        class TransformerNet(nn.Module):
151
152
153
154
            def __init__(self):
                super(TransformerNet, self).__init__()
                # Initial convolution layers
                self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
155
                self.in1 = nn.InstanceNorm2d(32, affine=True)
156
                self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
157
                self.in2 = nn.InstanceNorm2d(64, affine=True)
158
                self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
159
                self.in3 = nn.InstanceNorm2d(128, affine=True)
160
161
162
163
164
165
166
167
                # Residual layers
                self.res1 = ResidualBlock(128)
                self.res2 = ResidualBlock(128)
                self.res3 = ResidualBlock(128)
                self.res4 = ResidualBlock(128)
                self.res5 = ResidualBlock(128)
                # Upsampling Layers
                self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
168
                self.in4 = nn.InstanceNorm2d(64, affine=True)
169
                self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
170
                self.in5 = nn.InstanceNorm2d(32, affine=True)
171
172
                self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
                # Non-linearities
173
                self.relu = nn.ReLU()
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

            def forward(self, X):
                y = self.relu(self.in1(self.conv1(X)))
                y = self.relu(self.in2(self.conv2(y)))
                y = self.relu(self.in3(self.conv3(y)))
                y = self.res1(y)
                y = self.res2(y)
                y = self.res3(y)
                y = self.res4(y)
                y = self.res5(y)
                y = self.relu(self.in4(self.deconv1(y)))
                y = self.relu(self.in5(self.deconv2(y)))
                y = self.deconv3(y)
                return y

189
        class ConvLayer(nn.Module):
190
191
192
            def __init__(self, in_channels, out_channels, kernel_size, stride):
                super(ConvLayer, self).__init__()
                reflection_padding = kernel_size // 2
193
194
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
195
196
197
198
199
200

            def forward(self, x):
                out = self.reflection_pad(x)
                out = self.conv2d(out)
                return out

201
        class ResidualBlock(nn.Module):
202
203
204
205
206
207
208
209
            """ResidualBlock
            introduced in: https://arxiv.org/abs/1512.03385
            recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
            """

            def __init__(self, channels):
                super(ResidualBlock, self).__init__()
                self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
210
                self.in1 = nn.InstanceNorm2d(channels, affine=True)
211
                self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
212
213
                self.in2 = nn.InstanceNorm2d(channels, affine=True)
                self.relu = nn.ReLU()
214
215
216
217
218
219
220
221

            def forward(self, x):
                residual = x
                out = self.relu(self.in1(self.conv1(x)))
                out = self.in2(self.conv2(out))
                out = out + residual
                return out

222
        class UpsampleConvLayer(nn.Module):
223
224
225
226
227
228
229
230
231
232
            """UpsampleConvLayer
            Upsamples the input and then does a convolution. This method gives better results
            compared to ConvTranspose2d.
            ref: http://distill.pub/2016/deconv-checkerboard/
            """

            def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
                super(UpsampleConvLayer, self).__init__()
                self.upsample = upsample
                if upsample:
233
                    self.upsample_layer = nn.Upsample(mode='nearest', scale_factor=upsample)
234
                reflection_padding = kernel_size // 2
235
236
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

            def forward(self, x):
                x_in = x
                if self.upsample:
                    x_in = self.upsample_layer(x_in)
                out = self.reflection_pad(x_in)
                out = self.conv2d(out)
                return out

        model = TransformerNet()
        input = (torch.rand(5, 3, 16, 16),)
        self.checkExportImport(model, input)

    def test_mnist(self):
        # eval() is present because dropout makes this nondeterministic
        self.checkExportImport(MnistNet().eval(), (torch.rand(5, 1, 28, 28),))

    def test_reinforcement_learning(self):
        class Policy(nn.Module):
            def __init__(self):
                super(Policy, self).__init__()
                self.affine1 = nn.Linear(4, 128)
                self.affine2 = nn.Linear(128, 2)

            def forward(self, x):
                x = F.relu(self.affine1(x))
                action_scores = self.affine2(x)
                return F.softmax(action_scores, dim=1)

        self.checkExportImport(Policy(), (torch.rand(1, 4),))

    def test_snli(self):

        class Encoder(nn.Module):

            def __init__(self, config):
                super(Encoder, self).__init__()
274
275
276
277
278
279
280
281
282
                #self.config = config
                input_size = config["d_proj"] if config["projection"] else config["d_embed"]
                dropout = 0 if config["n_layers"] == 1 else config["dp_ratio"]
                self.rnn = nn.LSTM(input_size=input_size, hidden_size=config["d_hidden"],
                                   num_layers=config["n_layers"], dropout=dropout,
                                   bidirectional=config["birnn"])
                self.n_cells = config["n_cells"]
                self.d_hidden = config["d_hidden"]
                self.birnn = config["birnn"]
283
284
285

            def forward(self, inputs):
                batch_size = inputs.size()[1]
286
                state_shape = self.n_cells, batch_size, self.d_hidden
287
288
                h0 = c0 = inputs.new_zeros(state_shape)
                outputs, (ht, ct) = self.rnn(inputs, (h0, c0))
289
                return ht[-1] if not self.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1)
290
291
292
293
294

        class SNLIClassifier(nn.Module):

            def __init__(self, config):
                super(SNLIClassifier, self).__init__()
295
296
                self.embed = nn.Embedding(config["n_embed"], config["d_embed"])
                self.projection = Linear(config["d_embed"], config["d_proj"])
297
                self.encoder = Encoder(config)
298
                self.dropout = nn.Dropout(p=config["dp_ratio"])
299
                self.relu = nn.ReLU()
300
301
                seq_in_size = 2 * config["d_hidden"]
                if config["birnn"]:
302
303
304
305
306
307
308
309
310
311
312
313
                    seq_in_size *= 2
                lin_config = [seq_in_size] * 2
                self.out = nn.Sequential(
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
314
315
316
                    Linear(seq_in_size, config["d_out"]))
                self.fix_emb = config["fix_emb"]
                self.project = config["projection"]
317
318
319
320

            def forward(self, premise, hypothesis):
                prem_embed = self.embed(premise)
                hypo_embed = self.embed(hypothesis)
321
                if self.fix_emb:
322
323
                    prem_embed = prem_embed.detach()
                    hypo_embed = hypo_embed.detach()
324
                if self.project:
325
326
327
328
329
330
331
                    prem_embed = self.relu(self.projection(prem_embed))
                    hypo_embed = self.relu(self.projection(hypo_embed))
                premise = self.encoder(prem_embed)
                hypothesis = self.encoder(hypo_embed)
                scores = self.out(torch.cat([premise, hypothesis], 1))
                return scores

332
333
334
335
336
337
338
339
340
341
342
343
344
        Config = {
            "n_embed": 100,
            "d_embed": 100,
            "d_proj": 300,
            "dp_ratio": 0.0,  # For deterministic testing TOD": change by fixing seed in checkTrace?,
            "d_hidden": 30,
            "birnn": True,
            "d_out": 300,
            "fix_emb": True,
            "projection": True,
            "n_layers": 2,
            "n_cells": 4  # 2 * n_layers because birnn = True,
        }
345
346
347
348

        premise = torch.LongTensor(48, 64).random_(0, 100)
        hypothesis = torch.LongTensor(24, 64).random_(0, 100)

349
        self.checkExportImport(SNLIClassifier(Config), (premise, hypothesis))
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

    def test_super_resolution(self):
        class Net(nn.Module):

            def __init__(self, upscale_factor):
                super(Net, self).__init__()

                self.relu = nn.ReLU()
                self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
                self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
                self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
                self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
                self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

            def forward(self, x):
                x = self.relu(self.conv1(x))
                x = self.relu(self.conv2(x))
                x = self.relu(self.conv3(x))
                x = self.pixel_shuffle(self.conv4(x))
                return x

        net = Net(upscale_factor=4)
        self.checkExportImport(net, (torch.rand(5, 1, 32, 32),))

374
    @unittest.skip('Need to support Loop')  # FIXME
375
    def test_time_sequence_prediction(self):
376
        class Sequence(nn.Module): #torch.jit.ScriptModule
377
378
379
380
381
382
            def __init__(self):
                super(Sequence, self).__init__()
                self.lstm1 = nn.LSTMCell(1, 51)
                self.lstm2 = nn.LSTMCell(51, 51)
                self.linear = nn.Linear(51, 1)

383
            #@torch.jit.script_method
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            def forward(self, input):
                # TODO: add future as input with default val
                # see https://github.com/pytorch/pytorch/issues/8724
                outputs = torch.empty((3, 0))
                h_t = torch.zeros((3, 51))
                c_t = torch.zeros((3, 51))
                h_t2 = torch.zeros((3, 51))
                c_t2 = torch.zeros((3, 51))

                output = torch.zeros([3, 51])
                future = 2

                # TODO: chunk call should appear as the for loop iterable
                # We hard-code it to 4 for now.
                a, b, c, d = input.chunk(input.size(1), dim=1)
                for input_t in (a, b, c, d):
                    h_t, c_t = self.lstm1(input_t, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                for _ in range(future):  # if we should predict the future
                    h_t, c_t = self.lstm1(output, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                return outputs

        class Traced(nn.Module):
            def __init__(self):
                super(Traced, self).__init__()
                self.seq = Sequence()

            def forward(self, input):
                return self.seq.forward(input)

        self.checkExportImport(Traced(), (torch.rand(3, 4),))

421
    @unittest.skip('incorrectly assigned weights')  # FIXME
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    def test_vae(self):
        class VAE(nn.Module):
            def __init__(self):
                super(VAE, self).__init__()

                self.fc1 = nn.Linear(784, 400)
                self.fc21 = nn.Linear(400, 20)
                self.fc22 = nn.Linear(400, 20)
                self.fc3 = nn.Linear(20, 400)
                self.fc4 = nn.Linear(400, 784)

            def encode(self, x):
                h1 = F.relu(self.fc1(x))
                return self.fc21(h1), self.fc22(h1)

            def reparameterize(self, mu, logvar):
                if self.training:
                    std = torch.exp(0.5 * logvar)
                    eps = torch.randn_like(std)
                    return eps.mul(std).add_(mu)
                else:
                    return mu

            def decode(self, z):
                h3 = F.relu(self.fc3(z))
                return torch.sigmoid(self.fc4(h3))

            def forward(self, x):
                mu, logvar = self.encode(x.view(-1, 784))
                z = self.reparameterize(mu, logvar)
                return self.decode(z), mu, logvar

        self.checkExportImport(VAE().eval(), (torch.rand(128, 1, 28, 28),))

    def test_torchvision_resnet18(self):
457
458
459
460
461
462
        from .inject_nn import inject_pytorch_nn, remove_inject_pytorch_nn
        try:
            inject_pytorch_nn()
            self.checkExportImport(torchvision.models.resnet18().eval(), (torch.ones(1, 3, 224, 224),))
        finally:
            remove_inject_pytorch_nn()
463
464
465
466
467
468
469
470
471
472
473

    def test_resnet(self):
        def conv1x1(in_planes, out_planes, stride=1):
            """1x1 convolution"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

        def conv3x3(in_planes, out_planes, stride=1):
            """3x3 convolution with padding"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                             padding=1, bias=False)

474
        class BasicBlock(nn.Module): #torch.jit.ScriptModule
475
476
477
478
479
480
481
482
483
484
485
486
487
            expansion = 1
            __constants__ = ['downsample']

            def __init__(self, inplanes, planes, stride=1, downsample=None):
                super(BasicBlock, self).__init__()
                self.conv1 = conv3x3(inplanes, planes, stride)
                self.bn1 = nn.BatchNorm2d(planes)
                self.relu = nn.ReLU(inplace=True)
                self.conv2 = conv3x3(planes, planes)
                self.bn2 = nn.BatchNorm2d(planes)
                self.downsample = downsample
                self.stride = stride

488
489
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
            def forward(self, x):
                residual = x

                out = self.conv1(x)
                out = self.bn1(out)
                out = self.relu(out)

                out = self.conv2(out)
                out = self.bn2(out)

                if self.downsample is not None:
                    residual = self.downsample(x)

                out += residual
                out = self.relu(out)

                return out

508
509
        # NOTE: cannot inherit torch.jit.ScriptModule, otherwise, there would be error: 'RecursiveScriptModule' object has no attribute 'graph'
        class ResNet(nn.Module): #torch.jit.ScriptModule
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
            __constants__ = ['layer1', 'layer2', 'layer3', 'layer4']

            def __init__(self, block, layers, num_classes=1000):
                super(ResNet, self).__init__()
                self.inplanes = 64
                self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                       bias=False)
                self.bn1 = nn.BatchNorm2d(64)
                self.relu = nn.ReLU(inplace=True)
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                self.layer1 = self._make_layer(block, 64, layers[0])
                self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
                self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
                self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(512 * block.expansion, num_classes)

                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    elif isinstance(m, nn.BatchNorm2d):
                        torch.nn.init.constant_(m.weight, 1)
                        torch.nn.init.constant_(m.bias, 0)

            def _make_layer(self, block, planes, blocks, stride=1):
                downsample = None
                if stride != 1 or self.inplanes != planes * block.expansion:
                    downsample = nn.Sequential(
                        conv1x1(self.inplanes, planes * block.expansion, stride),
                        nn.BatchNorm2d(planes * block.expansion),
                    )

                layers = []
                layers.append(block(self.inplanes, planes, stride, downsample))
                self.inplanes = planes * block.expansion
                for _ in range(1, blocks):
                    layers.append(block(self.inplanes, planes))

                return nn.Sequential(*layers)

550
551
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
            def forward(self, x):
                x = self.conv1(x)
                x = self.bn1(x)
                x = self.relu(x)
                x = self.maxpool(x)

                x = self.layer1(x)
                x = self.layer2(x)
                x = self.layer3(x)
                x = self.layer4(x)

                x = self.avgpool(x)
                x = x.view(x.size(0), -1)
                x = self.fc(x)

                return x

        resnet18 = ResNet(BasicBlock, [2, 2, 2, 2])

571
        self.checkExportImport(resnet18, (torch.randn(1, 3, 224, 224),))
572
573

    def test_alexnet(self):
574
575
576
577
578
579
580
581
        from .inject_nn import inject_pytorch_nn, remove_inject_pytorch_nn
        try:
            inject_pytorch_nn()
            x = torch.ones(1, 3, 224, 224)
            model = torchvision.models.AlexNet()
            self.checkExportImport(model, (x,))
        finally:
            remove_inject_pytorch_nn()