test_convert.py 23.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
Reference: We use tested models from https://github.com/pytorch/pytorch/blob/master/test/jit/test_models.py.
"""

import os
import sys
import unittest

import numpy as np
import torch
import torch.nn.functional as F
import torchvision

import nni.retiarii.nn.pytorch as nn
from nni.retiarii import blackbox_module
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
from nni.retiarii.utils import get_records

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

38
39
40
41
42
43
44
45
46
47
48
49
50
# NOTE: blackbox module cannot be placed within class or function
@blackbox_module
class Linear(nn.Module):
    def __init__(self, d_embed, d_proj):
        super().__init__()
        self.linear = nn.Linear(d_embed, d_proj)

    def forward(self, input):
        if len(input.size()) <= 2:
            return self.linear(input)
        size = input.size()[:2]
        out = self.linear(input.view(size[0] * size[1], -1))
        return out.view(size[0], size[1], -1)
51
52
53
54
55
56

class TestConvert(unittest.TestCase):
    @staticmethod
    def _match_state_dict(current_values, expected_format):
        result = {}
        for k, v in expected_format.items():
57
            for idx, cv in enumerate(current_values):
58
59
                if cv.shape == v.shape:
                    result[k] = cv
60
                    current_values.pop(idx)
61
62
63
64
65
66
67
68
                    break
        return result

    def checkExportImport(self, model, input):
        script_module = torch.jit.script(model)
        model_ir = convert_to_graph(script_module, model)
        model_code = model_to_pytorch_script(model_ir)

69
70
71
        from .inject_nn import remove_inject_pytorch_nn
        remove_inject_pytorch_nn()

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        converted_model = exec_vars['converted_model']
        converted_state_dict = self._match_state_dict(list(model.state_dict().values()),
                                                      dict(converted_model.state_dict()))
        converted_model.load_state_dict(converted_state_dict)
        with torch.no_grad():
            expected_output = model.eval()(*input)
            converted_output = converted_model.eval()(*input)
        self.assertEqual(len(converted_output), len(expected_output))
        for a, b in zip(converted_output, expected_output):
            self.assertLess((a - b).abs().max().item(), 1E-4)
        return converted_model

    def setUp(self):
        # FIXME
        import nni.retiarii.debug_configs
        nni.retiarii.debug_configs.framework = 'pytorch'

    def test_dcgan_models(self):
        class DCGANGenerator(nn.Module):
            def __init__(self, nz, ngf, nc):
                super(DCGANGenerator, self).__init__()
                self.main = nn.Sequential(
                    # input is Z, going into a convolution
                    nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
                    nn.BatchNorm2d(ngf * 8),
                    nn.ReLU(True),
                    # state size. (ngf*8) x 4 x 4
                    nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 4),
                    nn.ReLU(True),
                    # state size. (ngf*4) x 8 x 8
                    nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 2),
                    nn.ReLU(True),
                    # state size. (ngf*2) x 16 x 16
                    nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf),
                    nn.ReLU(True),
                    # state size. (ngf) x 32 x 32
                    nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
                    nn.Tanh()
                    # state size. (nc) x 64 x 64
                )

            def forward(self, input):
                return self.main(input)

        class DCGANDiscriminator(nn.Module):
            def __init__(self, nc, ndf):
                super(DCGANDiscriminator, self).__init__()
                self.main = nn.Sequential(
                    # input is (nc) x 64 x 64
                    nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf) x 32 x 32
                    nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 2),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*2) x 16 x 16
                    nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 4),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*4) x 8 x 8
                    nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 8),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*8) x 4 x 4
                    nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
                    nn.Sigmoid()
                )

            def forward(self, input):
                return self.main(input).view(-1, 1).squeeze(1)

        bs, nz, ngf, nc, ndf = 5, 6, 9, 3, 10
        input = (torch.rand(bs, nz, 1, 1),)
        model = DCGANGenerator(nz, ngf, nc)
        self.checkExportImport(model, input)

    def test_neural_style(self):
154
        class TransformerNet(nn.Module):
155
156
157
158
            def __init__(self):
                super(TransformerNet, self).__init__()
                # Initial convolution layers
                self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
159
                self.in1 = nn.InstanceNorm2d(32, affine=True)
160
                self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
161
                self.in2 = nn.InstanceNorm2d(64, affine=True)
162
                self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
163
                self.in3 = nn.InstanceNorm2d(128, affine=True)
164
165
166
167
168
169
170
171
                # Residual layers
                self.res1 = ResidualBlock(128)
                self.res2 = ResidualBlock(128)
                self.res3 = ResidualBlock(128)
                self.res4 = ResidualBlock(128)
                self.res5 = ResidualBlock(128)
                # Upsampling Layers
                self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
172
                self.in4 = nn.InstanceNorm2d(64, affine=True)
173
                self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
174
                self.in5 = nn.InstanceNorm2d(32, affine=True)
175
176
                self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
                # Non-linearities
177
                self.relu = nn.ReLU()
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

            def forward(self, X):
                y = self.relu(self.in1(self.conv1(X)))
                y = self.relu(self.in2(self.conv2(y)))
                y = self.relu(self.in3(self.conv3(y)))
                y = self.res1(y)
                y = self.res2(y)
                y = self.res3(y)
                y = self.res4(y)
                y = self.res5(y)
                y = self.relu(self.in4(self.deconv1(y)))
                y = self.relu(self.in5(self.deconv2(y)))
                y = self.deconv3(y)
                return y

193
        class ConvLayer(nn.Module):
194
195
196
            def __init__(self, in_channels, out_channels, kernel_size, stride):
                super(ConvLayer, self).__init__()
                reflection_padding = kernel_size // 2
197
198
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
199
200
201
202
203
204

            def forward(self, x):
                out = self.reflection_pad(x)
                out = self.conv2d(out)
                return out

205
        class ResidualBlock(nn.Module):
206
207
208
209
210
211
212
213
            """ResidualBlock
            introduced in: https://arxiv.org/abs/1512.03385
            recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
            """

            def __init__(self, channels):
                super(ResidualBlock, self).__init__()
                self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
214
                self.in1 = nn.InstanceNorm2d(channels, affine=True)
215
                self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
216
217
                self.in2 = nn.InstanceNorm2d(channels, affine=True)
                self.relu = nn.ReLU()
218
219
220
221
222
223
224
225

            def forward(self, x):
                residual = x
                out = self.relu(self.in1(self.conv1(x)))
                out = self.in2(self.conv2(out))
                out = out + residual
                return out

226
        class UpsampleConvLayer(nn.Module):
227
228
229
230
231
232
233
234
235
236
            """UpsampleConvLayer
            Upsamples the input and then does a convolution. This method gives better results
            compared to ConvTranspose2d.
            ref: http://distill.pub/2016/deconv-checkerboard/
            """

            def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
                super(UpsampleConvLayer, self).__init__()
                self.upsample = upsample
                if upsample:
237
                    self.upsample_layer = nn.Upsample(mode='nearest', scale_factor=upsample)
238
                reflection_padding = kernel_size // 2
239
240
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

            def forward(self, x):
                x_in = x
                if self.upsample:
                    x_in = self.upsample_layer(x_in)
                out = self.reflection_pad(x_in)
                out = self.conv2d(out)
                return out

        model = TransformerNet()
        input = (torch.rand(5, 3, 16, 16),)
        self.checkExportImport(model, input)

    def test_mnist(self):
        # eval() is present because dropout makes this nondeterministic
        self.checkExportImport(MnistNet().eval(), (torch.rand(5, 1, 28, 28),))

    def test_reinforcement_learning(self):
        class Policy(nn.Module):
            def __init__(self):
                super(Policy, self).__init__()
                self.affine1 = nn.Linear(4, 128)
                self.affine2 = nn.Linear(128, 2)

            def forward(self, x):
                x = F.relu(self.affine1(x))
                action_scores = self.affine2(x)
                return F.softmax(action_scores, dim=1)

        self.checkExportImport(Policy(), (torch.rand(1, 4),))

    def test_snli(self):

        class Encoder(nn.Module):

            def __init__(self, config):
                super(Encoder, self).__init__()
278
279
280
281
282
283
284
285
286
                #self.config = config
                input_size = config["d_proj"] if config["projection"] else config["d_embed"]
                dropout = 0 if config["n_layers"] == 1 else config["dp_ratio"]
                self.rnn = nn.LSTM(input_size=input_size, hidden_size=config["d_hidden"],
                                   num_layers=config["n_layers"], dropout=dropout,
                                   bidirectional=config["birnn"])
                self.n_cells = config["n_cells"]
                self.d_hidden = config["d_hidden"]
                self.birnn = config["birnn"]
287
288
289

            def forward(self, inputs):
                batch_size = inputs.size()[1]
290
                state_shape = self.n_cells, batch_size, self.d_hidden
291
292
                h0 = c0 = inputs.new_zeros(state_shape)
                outputs, (ht, ct) = self.rnn(inputs, (h0, c0))
293
                return ht[-1] if not self.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1)
294
295
296
297
298

        class SNLIClassifier(nn.Module):

            def __init__(self, config):
                super(SNLIClassifier, self).__init__()
299
300
                self.embed = nn.Embedding(config["n_embed"], config["d_embed"])
                self.projection = Linear(config["d_embed"], config["d_proj"])
301
                self.encoder = Encoder(config)
302
                self.dropout = nn.Dropout(p=config["dp_ratio"])
303
                self.relu = nn.ReLU()
304
305
                seq_in_size = 2 * config["d_hidden"]
                if config["birnn"]:
306
307
308
309
310
311
312
313
314
315
316
317
                    seq_in_size *= 2
                lin_config = [seq_in_size] * 2
                self.out = nn.Sequential(
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
318
319
320
                    Linear(seq_in_size, config["d_out"]))
                self.fix_emb = config["fix_emb"]
                self.project = config["projection"]
321
322
323
324

            def forward(self, premise, hypothesis):
                prem_embed = self.embed(premise)
                hypo_embed = self.embed(hypothesis)
325
                if self.fix_emb:
326
327
                    prem_embed = prem_embed.detach()
                    hypo_embed = hypo_embed.detach()
328
                if self.project:
329
330
331
332
333
334
335
                    prem_embed = self.relu(self.projection(prem_embed))
                    hypo_embed = self.relu(self.projection(hypo_embed))
                premise = self.encoder(prem_embed)
                hypothesis = self.encoder(hypo_embed)
                scores = self.out(torch.cat([premise, hypothesis], 1))
                return scores

336
337
338
339
340
341
342
343
344
345
346
347
348
        Config = {
            "n_embed": 100,
            "d_embed": 100,
            "d_proj": 300,
            "dp_ratio": 0.0,  # For deterministic testing TOD": change by fixing seed in checkTrace?,
            "d_hidden": 30,
            "birnn": True,
            "d_out": 300,
            "fix_emb": True,
            "projection": True,
            "n_layers": 2,
            "n_cells": 4  # 2 * n_layers because birnn = True,
        }
349
350
351
352

        premise = torch.LongTensor(48, 64).random_(0, 100)
        hypothesis = torch.LongTensor(24, 64).random_(0, 100)

353
        self.checkExportImport(SNLIClassifier(Config), (premise, hypothesis))
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    def test_super_resolution(self):
        class Net(nn.Module):

            def __init__(self, upscale_factor):
                super(Net, self).__init__()

                self.relu = nn.ReLU()
                self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
                self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
                self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
                self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
                self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

            def forward(self, x):
                x = self.relu(self.conv1(x))
                x = self.relu(self.conv2(x))
                x = self.relu(self.conv3(x))
                x = self.pixel_shuffle(self.conv4(x))
                return x

        net = Net(upscale_factor=4)
        self.checkExportImport(net, (torch.rand(5, 1, 32, 32),))

378
    @unittest.skip('Need to support Loop')  # FIXME
379
    def test_time_sequence_prediction(self):
380
        class Sequence(nn.Module): #torch.jit.ScriptModule
381
382
383
384
385
386
            def __init__(self):
                super(Sequence, self).__init__()
                self.lstm1 = nn.LSTMCell(1, 51)
                self.lstm2 = nn.LSTMCell(51, 51)
                self.linear = nn.Linear(51, 1)

387
            #@torch.jit.script_method
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            def forward(self, input):
                # TODO: add future as input with default val
                # see https://github.com/pytorch/pytorch/issues/8724
                outputs = torch.empty((3, 0))
                h_t = torch.zeros((3, 51))
                c_t = torch.zeros((3, 51))
                h_t2 = torch.zeros((3, 51))
                c_t2 = torch.zeros((3, 51))

                output = torch.zeros([3, 51])
                future = 2

                # TODO: chunk call should appear as the for loop iterable
                # We hard-code it to 4 for now.
                a, b, c, d = input.chunk(input.size(1), dim=1)
                for input_t in (a, b, c, d):
                    h_t, c_t = self.lstm1(input_t, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                for _ in range(future):  # if we should predict the future
                    h_t, c_t = self.lstm1(output, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                return outputs

        class Traced(nn.Module):
            def __init__(self):
                super(Traced, self).__init__()
                self.seq = Sequence()

            def forward(self, input):
                return self.seq.forward(input)

        self.checkExportImport(Traced(), (torch.rand(3, 4),))

425
    @unittest.skip('incorrectly assigned weights')  # FIXME
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    def test_vae(self):
        class VAE(nn.Module):
            def __init__(self):
                super(VAE, self).__init__()

                self.fc1 = nn.Linear(784, 400)
                self.fc21 = nn.Linear(400, 20)
                self.fc22 = nn.Linear(400, 20)
                self.fc3 = nn.Linear(20, 400)
                self.fc4 = nn.Linear(400, 784)

            def encode(self, x):
                h1 = F.relu(self.fc1(x))
                return self.fc21(h1), self.fc22(h1)

            def reparameterize(self, mu, logvar):
                if self.training:
                    std = torch.exp(0.5 * logvar)
                    eps = torch.randn_like(std)
                    return eps.mul(std).add_(mu)
                else:
                    return mu

            def decode(self, z):
                h3 = F.relu(self.fc3(z))
                return torch.sigmoid(self.fc4(h3))

            def forward(self, x):
                mu, logvar = self.encode(x.view(-1, 784))
                z = self.reparameterize(mu, logvar)
                return self.decode(z), mu, logvar

        self.checkExportImport(VAE().eval(), (torch.rand(128, 1, 28, 28),))

    def test_torchvision_resnet18(self):
461
462
        from .inject_nn import inject_pytorch_nn
        inject_pytorch_nn()
463
464
465
466
467
468
469
470
471
472
473
474
        self.checkExportImport(torchvision.models.resnet18().eval(), (torch.ones(1, 3, 224, 224),))

    def test_resnet(self):
        def conv1x1(in_planes, out_planes, stride=1):
            """1x1 convolution"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

        def conv3x3(in_planes, out_planes, stride=1):
            """3x3 convolution with padding"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                             padding=1, bias=False)

475
        class BasicBlock(nn.Module): #torch.jit.ScriptModule
476
477
478
479
480
481
482
483
484
485
486
487
488
            expansion = 1
            __constants__ = ['downsample']

            def __init__(self, inplanes, planes, stride=1, downsample=None):
                super(BasicBlock, self).__init__()
                self.conv1 = conv3x3(inplanes, planes, stride)
                self.bn1 = nn.BatchNorm2d(planes)
                self.relu = nn.ReLU(inplace=True)
                self.conv2 = conv3x3(planes, planes)
                self.bn2 = nn.BatchNorm2d(planes)
                self.downsample = downsample
                self.stride = stride

489
490
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            def forward(self, x):
                residual = x

                out = self.conv1(x)
                out = self.bn1(out)
                out = self.relu(out)

                out = self.conv2(out)
                out = self.bn2(out)

                if self.downsample is not None:
                    residual = self.downsample(x)

                out += residual
                out = self.relu(out)

                return out

509
510
        # NOTE: cannot inherit torch.jit.ScriptModule, otherwise, there would be error: 'RecursiveScriptModule' object has no attribute 'graph'
        class ResNet(nn.Module): #torch.jit.ScriptModule
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
            __constants__ = ['layer1', 'layer2', 'layer3', 'layer4']

            def __init__(self, block, layers, num_classes=1000):
                super(ResNet, self).__init__()
                self.inplanes = 64
                self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                       bias=False)
                self.bn1 = nn.BatchNorm2d(64)
                self.relu = nn.ReLU(inplace=True)
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                self.layer1 = self._make_layer(block, 64, layers[0])
                self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
                self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
                self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(512 * block.expansion, num_classes)

                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    elif isinstance(m, nn.BatchNorm2d):
                        torch.nn.init.constant_(m.weight, 1)
                        torch.nn.init.constant_(m.bias, 0)

            def _make_layer(self, block, planes, blocks, stride=1):
                downsample = None
                if stride != 1 or self.inplanes != planes * block.expansion:
                    downsample = nn.Sequential(
                        conv1x1(self.inplanes, planes * block.expansion, stride),
                        nn.BatchNorm2d(planes * block.expansion),
                    )

                layers = []
                layers.append(block(self.inplanes, planes, stride, downsample))
                self.inplanes = planes * block.expansion
                for _ in range(1, blocks):
                    layers.append(block(self.inplanes, planes))

                return nn.Sequential(*layers)

551
552
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            def forward(self, x):
                x = self.conv1(x)
                x = self.bn1(x)
                x = self.relu(x)
                x = self.maxpool(x)

                x = self.layer1(x)
                x = self.layer2(x)
                x = self.layer3(x)
                x = self.layer4(x)

                x = self.avgpool(x)
                x = x.view(x.size(0), -1)
                x = self.fc(x)

                return x

        resnet18 = ResNet(BasicBlock, [2, 2, 2, 2])

572
        self.checkExportImport(resnet18, (torch.randn(1, 3, 224, 224),))
573
574

    def test_alexnet(self):
575
576
        from .inject_nn import inject_pytorch_nn
        inject_pytorch_nn()
577
578
579
        x = torch.ones(1, 3, 224, 224)
        model = torchvision.models.AlexNet()
        self.checkExportImport(model, (x,))