test_cgo_engine.py 13.7 KB
Newer Older
1
2
3
4
import os
import threading
import unittest
import time
QuanluZhang's avatar
QuanluZhang committed
5
import torch
6
import torch.nn as nn
7
from pytorch_lightning.utilities.seed import seed_everything
QuanluZhang's avatar
QuanluZhang committed
8
9

from pathlib import Path
10

11
import nni
12
import nni.runtime.platform.test
13
from nni.runtime.tuner_command_channel import legacy as protocol
14
import json
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
try:
    from nni.common.device import GPUDevice
    from nni.retiarii.execution.cgo_engine import CGOExecutionEngine
    from nni.retiarii import Model
    from nni.retiarii.graph import Node

    from nni.retiarii import Model, submit_models
    from nni.retiarii.integration import RetiariiAdvisor
    from nni.retiarii.execution import set_execution_engine
    from nni.retiarii.execution.logical_optimizer.opt_dedup_input import DedupInputOptimizer
    from nni.retiarii.execution.logical_optimizer.logical_plan import LogicalPlan
    from nni.retiarii.utils import import_

    from nni.retiarii import serialize
    import nni.retiarii.evaluator.pytorch.lightning as pl
    from nni.retiarii.evaluator.pytorch.cgo.evaluator import MultiModelSupervisedLearningModule, _MultiModelSupervisedLearningModule
    import nni.retiarii.evaluator.pytorch.cgo.trainer as cgo_trainer

    module_import_failed = False
except ImportError:
    module_import_failed = True

import pytest
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import Dataset
from sklearn.datasets import load_diabetes


class _model_cpu(nn.Module):
    def __init__(self):
        super().__init__()
        self.M_1_stem = M_1_stem()
        self.M_2_stem = M_2_stem()
        self.M_1_flatten = torch.nn.Flatten()
        self.M_2_flatten = torch.nn.Flatten()
        self.M_1_fc1 = torch.nn.Linear(out_features=256, in_features=1024)
        self.M_2_fc1 = torch.nn.Linear(out_features=256, in_features=1024)
        self.M_1_fc2 = torch.nn.Linear(out_features=10, in_features=256)
        self.M_2_fc2 = torch.nn.Linear(out_features=10, in_features=256)
        self.M_1_softmax = torch.nn.Softmax()
        self.M_2_softmax = torch.nn.Softmax()

    def forward(self, *_inputs):
        M_1__inputs_to_M_2_stem = _inputs[0]
        M_1_stem = self.M_1_stem(_inputs[0])
        M_2_stem = self.M_2_stem(M_1__inputs_to_M_2_stem)
        M_1_flatten = self.M_1_flatten(M_1_stem)
        M_2_flatten = self.M_2_flatten(M_2_stem)
        M_1_fc1 = self.M_1_fc1(M_1_flatten)
        M_2_fc1 = self.M_2_fc1(M_2_flatten)
        M_1_fc2 = self.M_1_fc2(M_1_fc1)
        M_2_fc2 = self.M_2_fc2(M_2_fc1)
        M_1_softmax = self.M_1_softmax(M_1_fc2)
        M_2_softmax = self.M_2_softmax(M_2_fc2)
        return M_1_softmax, M_2_softmax


class _model_gpu(nn.Module):
    def __init__(self):
        super().__init__()
        self.M_1_stem = M_1_stem().to('cuda:0')
        self.M_2_stem = M_2_stem().to('cuda:1')
        self.M_1_flatten = torch.nn.Flatten().to('cuda:0')
        self.M_2_flatten = torch.nn.Flatten().to('cuda:1')
        self.M_1_fc1 = torch.nn.Linear(out_features=256, in_features=1024).to('cuda:0')
        self.M_2_fc1 = torch.nn.Linear(out_features=256, in_features=1024).to('cuda:1')
        self.M_1_fc2 = torch.nn.Linear(out_features=10, in_features=256).to('cuda:0')
        self.M_2_fc2 = torch.nn.Linear(out_features=10, in_features=256).to('cuda:1')
        self.M_1_softmax = torch.nn.Softmax().to('cuda:0')
        self.M_2_softmax = torch.nn.Softmax().to('cuda:1')

    def forward(self, *_inputs):
        M_1__inputs_to_M_1_stem = _inputs[0].to("cuda:0")
        M_1__inputs_to_M_2_stem = _inputs[0].to("cuda:1")
        M_1_stem = self.M_1_stem(M_1__inputs_to_M_1_stem)
        M_2_stem = self.M_2_stem(M_1__inputs_to_M_2_stem)
        M_1_flatten = self.M_1_flatten(M_1_stem)
        M_2_flatten = self.M_2_flatten(M_2_stem)
        M_1_fc1 = self.M_1_fc1(M_1_flatten)
        M_2_fc1 = self.M_2_fc1(M_2_flatten)
        M_1_fc2 = self.M_1_fc2(M_1_fc1)
        M_2_fc2 = self.M_2_fc2(M_2_fc1)
        M_1_softmax = self.M_1_softmax(M_1_fc2)
        M_2_softmax = self.M_2_softmax(M_2_fc2)
        return M_1_softmax, M_2_softmax


class M_1_stem(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(out_channels=32, in_channels=1, kernel_size=5)
        self.pool1 = torch.nn.MaxPool2d(kernel_size=2)
        self.conv2 = torch.nn.Conv2d(out_channels=64, in_channels=32, kernel_size=5)
        self.pool2 = torch.nn.MaxPool2d(kernel_size=2)

    def forward(self, *_inputs):
        conv1 = self.conv1(_inputs[0])
        pool1 = self.pool1(conv1)
        conv2 = self.conv2(pool1)
        pool2 = self.pool2(conv2)
        return pool2


class M_2_stem(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(out_channels=32, in_channels=1, kernel_size=5)
        self.pool1 = torch.nn.MaxPool2d(kernel_size=2)
        self.conv2 = torch.nn.Conv2d(out_channels=64, in_channels=32, kernel_size=5)
        self.pool2 = torch.nn.MaxPool2d(kernel_size=2)

    def forward(self, *_inputs):
        conv1 = self.conv1(_inputs[0])
        pool1 = self.pool1(conv1)
        conv2 = self.conv2(pool1)
        pool2 = self.pool2(conv2)
        return pool2


def _reset():
    # this is to not affect other tests in sdk
    nni.trial._intermediate_seq = 0
    nni.trial._params = {'foo': 'bar', 'parameter_id': 0}
    nni.runtime.platform.test._last_metric = None
    nni.retiarii.integration_api._advisor = None
    nni.retiarii.execution.api._execution_engine = None
143
144
    
    seed_everything(42)
145
146
147
148
149
150
151


def _new_trainer():
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)

152
    multi_module = _MultiModelSupervisedLearningModule(nn.CrossEntropyLoss, {'acc': pl._AccuracyWithLogits})
153
154
155
156

    lightning = pl.Lightning(multi_module, cgo_trainer.Trainer(use_cgo=True,
                                                               max_epochs=1,
                                                               limit_train_batches=0.25,
157
                                                               enable_progress_bar=False),
158
159
160
                             train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                             val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))
    return lightning
161
162
163


def _load_mnist(n_models: int = 1):
164
    path = Path(__file__).parent / 'mnist_pytorch.json'
QuanluZhang's avatar
QuanluZhang committed
165
    with open(path) as f:
166
        mnist_model = Model._load(nni.load(fp=f))
167
168
        mnist_model.evaluator = _new_trainer()

169
170
171
172
    if n_models == 1:
        return mnist_model
    else:
        models = [mnist_model]
173
174
175
176
        for i in range(n_models - 1):
            forked_model = mnist_model.fork()
            forked_model.evaluator = _new_trainer()
            models.append(forked_model)
177
        return models
178
179


180
def _get_final_result():
181
    result = nni.load(nni.runtime.platform.test._last_metric)['value']
182
183
184
185
    if isinstance(result, list):
        return [float(_) for _ in result]
    else:
        if isinstance(result, str) and '[' in result:
186
            return nni.load(result)
187
188
189
        return [float(result)]


190
class CGOEngineTest(unittest.TestCase):
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def setUp(self):
        if module_import_failed:
            self.skipTest('test skip due to failed import of nni.retiarii.evaluator.pytorch.lightning')

    def test_multi_model_trainer_cpu(self):
        _reset()
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
        test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)

        multi_module = _MultiModelSupervisedLearningModule(nn.CrossEntropyLoss, {'acc': pl._AccuracyWithLogits}, n_models=2)

        lightning = pl.Lightning(multi_module, cgo_trainer.Trainer(use_cgo=True,
                                                                   max_epochs=1,
                                                                   limit_train_batches=0.25),
                                 train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                 val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))

        lightning._execute(_model_cpu)

        result = _get_final_result()
        assert len(result) == 2

        for _ in result:
            assert _ > 0.8

    def test_multi_model_trainer_gpu(self):
        _reset()
        if not (torch.cuda.is_available() and torch.cuda.device_count() >= 2):
            pytest.skip('test requires GPU and torch+cuda')
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
        test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)

        multi_module = _MultiModelSupervisedLearningModule(nn.CrossEntropyLoss, {'acc': pl._AccuracyWithLogits}, n_models=2)

        lightning = pl.Lightning(multi_module, cgo_trainer.Trainer(use_cgo=True,
                                                                   max_epochs=1,
                                                                   limit_train_batches=0.25),
                                 train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                 val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))

        lightning._execute(_model_gpu)

        result = _get_final_result()
        assert len(result) == 2

        for _ in result:
            assert _ > 0.8

    def _build_logical_with_mnist(self, n_models: int):
        lp = LogicalPlan()
        models = _load_mnist(n_models=n_models)
        for m in models:
            lp.add_model(m)
        return lp, models

    def test_add_model(self):
        _reset()

        lp, models = self._build_logical_with_mnist(3)

        for node in lp.logical_graph.hidden_nodes:
            old_nodes = [m.root_graph.get_node_by_id(node.id) for m in models]

            self.assertTrue(any([old_nodes[0].__repr__() == Node.__repr__(x) for x in old_nodes]))

    def test_dedup_input_four_devices(self):
        _reset()

        lp, models = self._build_logical_with_mnist(3)

        opt = DedupInputOptimizer()
        opt.convert(lp)

266
267
268
269
270
        advisor = RetiariiAdvisor('ws://_placeholder_')
        advisor._channel = protocol.LegacyCommandChannel()
        advisor.default_worker.start()
        advisor.assessor_worker.start()

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        available_devices = [GPUDevice("test", 0), GPUDevice("test", 1), GPUDevice("test", 2), GPUDevice("test", 3)]
        cgo = CGOExecutionEngine(devices=available_devices, batch_waiting_time=0)

        phy_models = cgo._assemble(lp)
        self.assertTrue(len(phy_models) == 1)
        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()
        cgo.join()

    def test_dedup_input_two_devices(self):
        _reset()

        lp, models = self._build_logical_with_mnist(3)

        opt = DedupInputOptimizer()
        opt.convert(lp)

289
290
291
292
293
        advisor = RetiariiAdvisor('ws://_placeholder_')
        advisor._channel = protocol.LegacyCommandChannel()
        advisor.default_worker.start()
        advisor.assessor_worker.start()

294
295
296
297
298
299
300
301
302
        available_devices = [GPUDevice("test", 0), GPUDevice("test", 1)]
        cgo = CGOExecutionEngine(devices=available_devices, batch_waiting_time=0)

        phy_models = cgo._assemble(lp)
        self.assertTrue(len(phy_models) == 2)
        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()
        cgo.join()
303

304
    def test_submit_models(self):
305
306
        _reset()
        nni.retiarii.debug_configs.framework = 'pytorch'
307
        os.makedirs('generated', exist_ok=True)
QuanluZhang's avatar
QuanluZhang committed
308
        import nni.runtime.platform.test as tt
309
310
        protocol._set_out_file(open('generated/debug_protocol_out_file.py', 'wb'))
        protocol._set_in_file(open('generated/debug_protocol_out_file.py', 'rb'))
311
312

        models = _load_mnist(2)
313

314
315
316
317
318
        advisor = RetiariiAdvisor('ws://_placeholder_')
        advisor._channel = protocol.LegacyCommandChannel()
        advisor.default_worker.start()
        advisor.assessor_worker.start()

319
320
321
        cgo_engine = CGOExecutionEngine(devices=[GPUDevice("test", 0), GPUDevice("test", 1),
                                                 GPUDevice("test", 2), GPUDevice("test", 3)], batch_waiting_time=0)
        set_execution_engine(cgo_engine)
322
        submit_models(*models)
323
        time.sleep(3)
324
325
326

        if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
            cmd, data = protocol.receive()
327
            params = nni.load(data)
328

QuanluZhang's avatar
QuanluZhang committed
329
            tt.init_params(params)
330

331
            trial_thread = threading.Thread(target=CGOExecutionEngine.trial_execute_graph)
332
333
334
335
            trial_thread.start()
            last_metric = None
            while True:
                time.sleep(1)
QuanluZhang's avatar
QuanluZhang committed
336
337
                if tt._last_metric:
                    metric = tt.get_last_metric()
338
339
                    if metric == last_metric:
                        continue
340
341
                    if 'value' in metric:
                        metric['value'] = json.dumps(metric['value'])
342
343
344
                    advisor.handle_report_metric_data(metric)
                    last_metric = metric
                if not trial_thread.is_alive():
345
                    trial_thread.join()
346
347
348
                    break

            trial_thread.join()
349

350
351
352
        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()
353
        cgo_engine.join()
354
355
356


if __name__ == '__main__':
357
    unittest.main()