test_cgo_engine.py 13.2 KB
Newer Older
1
2
3
4
import os
import threading
import unittest
import time
QuanluZhang's avatar
QuanluZhang committed
5
import torch
6
import torch.nn as nn
7
from pytorch_lightning.utilities.seed import seed_everything
QuanluZhang's avatar
QuanluZhang committed
8
9

from pathlib import Path
10

11
import nni
12
import nni.runtime.platform.test
13
import json
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
try:
    from nni.common.device import GPUDevice
    from nni.retiarii.execution.cgo_engine import CGOExecutionEngine
    from nni.retiarii import Model
    from nni.retiarii.graph import Node

    from nni.retiarii import Model, submit_models
    from nni.retiarii.integration import RetiariiAdvisor
    from nni.retiarii.execution import set_execution_engine
    from nni.retiarii.execution.logical_optimizer.opt_dedup_input import DedupInputOptimizer
    from nni.retiarii.execution.logical_optimizer.logical_plan import LogicalPlan
    from nni.retiarii.utils import import_

    from nni.retiarii import serialize
    import nni.retiarii.evaluator.pytorch.lightning as pl
    from nni.retiarii.evaluator.pytorch.cgo.evaluator import MultiModelSupervisedLearningModule, _MultiModelSupervisedLearningModule
    import nni.retiarii.evaluator.pytorch.cgo.trainer as cgo_trainer

    module_import_failed = False
except ImportError:
    module_import_failed = True

import pytest
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import Dataset
from sklearn.datasets import load_diabetes


class _model_cpu(nn.Module):
    def __init__(self):
        super().__init__()
        self.M_1_stem = M_1_stem()
        self.M_2_stem = M_2_stem()
        self.M_1_flatten = torch.nn.Flatten()
        self.M_2_flatten = torch.nn.Flatten()
        self.M_1_fc1 = torch.nn.Linear(out_features=256, in_features=1024)
        self.M_2_fc1 = torch.nn.Linear(out_features=256, in_features=1024)
        self.M_1_fc2 = torch.nn.Linear(out_features=10, in_features=256)
        self.M_2_fc2 = torch.nn.Linear(out_features=10, in_features=256)
        self.M_1_softmax = torch.nn.Softmax()
        self.M_2_softmax = torch.nn.Softmax()

    def forward(self, *_inputs):
        M_1__inputs_to_M_2_stem = _inputs[0]
        M_1_stem = self.M_1_stem(_inputs[0])
        M_2_stem = self.M_2_stem(M_1__inputs_to_M_2_stem)
        M_1_flatten = self.M_1_flatten(M_1_stem)
        M_2_flatten = self.M_2_flatten(M_2_stem)
        M_1_fc1 = self.M_1_fc1(M_1_flatten)
        M_2_fc1 = self.M_2_fc1(M_2_flatten)
        M_1_fc2 = self.M_1_fc2(M_1_fc1)
        M_2_fc2 = self.M_2_fc2(M_2_fc1)
        M_1_softmax = self.M_1_softmax(M_1_fc2)
        M_2_softmax = self.M_2_softmax(M_2_fc2)
        return M_1_softmax, M_2_softmax


class _model_gpu(nn.Module):
    def __init__(self):
        super().__init__()
        self.M_1_stem = M_1_stem().to('cuda:0')
        self.M_2_stem = M_2_stem().to('cuda:1')
        self.M_1_flatten = torch.nn.Flatten().to('cuda:0')
        self.M_2_flatten = torch.nn.Flatten().to('cuda:1')
        self.M_1_fc1 = torch.nn.Linear(out_features=256, in_features=1024).to('cuda:0')
        self.M_2_fc1 = torch.nn.Linear(out_features=256, in_features=1024).to('cuda:1')
        self.M_1_fc2 = torch.nn.Linear(out_features=10, in_features=256).to('cuda:0')
        self.M_2_fc2 = torch.nn.Linear(out_features=10, in_features=256).to('cuda:1')
        self.M_1_softmax = torch.nn.Softmax().to('cuda:0')
        self.M_2_softmax = torch.nn.Softmax().to('cuda:1')

    def forward(self, *_inputs):
        M_1__inputs_to_M_1_stem = _inputs[0].to("cuda:0")
        M_1__inputs_to_M_2_stem = _inputs[0].to("cuda:1")
        M_1_stem = self.M_1_stem(M_1__inputs_to_M_1_stem)
        M_2_stem = self.M_2_stem(M_1__inputs_to_M_2_stem)
        M_1_flatten = self.M_1_flatten(M_1_stem)
        M_2_flatten = self.M_2_flatten(M_2_stem)
        M_1_fc1 = self.M_1_fc1(M_1_flatten)
        M_2_fc1 = self.M_2_fc1(M_2_flatten)
        M_1_fc2 = self.M_1_fc2(M_1_fc1)
        M_2_fc2 = self.M_2_fc2(M_2_fc1)
        M_1_softmax = self.M_1_softmax(M_1_fc2)
        M_2_softmax = self.M_2_softmax(M_2_fc2)
        return M_1_softmax, M_2_softmax


class M_1_stem(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(out_channels=32, in_channels=1, kernel_size=5)
        self.pool1 = torch.nn.MaxPool2d(kernel_size=2)
        self.conv2 = torch.nn.Conv2d(out_channels=64, in_channels=32, kernel_size=5)
        self.pool2 = torch.nn.MaxPool2d(kernel_size=2)

    def forward(self, *_inputs):
        conv1 = self.conv1(_inputs[0])
        pool1 = self.pool1(conv1)
        conv2 = self.conv2(pool1)
        pool2 = self.pool2(conv2)
        return pool2


class M_2_stem(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(out_channels=32, in_channels=1, kernel_size=5)
        self.pool1 = torch.nn.MaxPool2d(kernel_size=2)
        self.conv2 = torch.nn.Conv2d(out_channels=64, in_channels=32, kernel_size=5)
        self.pool2 = torch.nn.MaxPool2d(kernel_size=2)

    def forward(self, *_inputs):
        conv1 = self.conv1(_inputs[0])
        pool1 = self.pool1(conv1)
        conv2 = self.conv2(pool1)
        pool2 = self.pool2(conv2)
        return pool2


def _reset():
    # this is to not affect other tests in sdk
    nni.trial._intermediate_seq = 0
    nni.trial._params = {'foo': 'bar', 'parameter_id': 0}
    nni.runtime.platform.test._last_metric = None
    nni.retiarii.integration_api._advisor = None
    nni.retiarii.execution.api._execution_engine = None
142
143
    
    seed_everything(42)
144
145
146
147
148
149
150


def _new_trainer():
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)

151
    multi_module = _MultiModelSupervisedLearningModule(nn.CrossEntropyLoss, {'acc': pl._AccuracyWithLogits})
152
153
154
155

    lightning = pl.Lightning(multi_module, cgo_trainer.Trainer(use_cgo=True,
                                                               max_epochs=1,
                                                               limit_train_batches=0.25,
156
                                                               enable_progress_bar=False),
157
158
159
                             train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                             val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))
    return lightning
160
161
162


def _load_mnist(n_models: int = 1):
163
    path = Path(__file__).parent / 'mnist_pytorch.json'
QuanluZhang's avatar
QuanluZhang committed
164
    with open(path) as f:
165
        mnist_model = Model._load(nni.load(fp=f))
166
167
        mnist_model.evaluator = _new_trainer()

168
169
170
171
    if n_models == 1:
        return mnist_model
    else:
        models = [mnist_model]
172
173
174
175
        for i in range(n_models - 1):
            forked_model = mnist_model.fork()
            forked_model.evaluator = _new_trainer()
            models.append(forked_model)
176
        return models
177
178


179
def _get_final_result():
180
    result = nni.load(nni.runtime.platform.test._last_metric)['value']
181
182
183
184
    if isinstance(result, list):
        return [float(_) for _ in result]
    else:
        if isinstance(result, str) and '[' in result:
185
            return nni.load(result)
186
187
188
        return [float(result)]


189
class CGOEngineTest(unittest.TestCase):
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def setUp(self):
        if module_import_failed:
            self.skipTest('test skip due to failed import of nni.retiarii.evaluator.pytorch.lightning')

    def test_multi_model_trainer_cpu(self):
        _reset()
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
        test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)

        multi_module = _MultiModelSupervisedLearningModule(nn.CrossEntropyLoss, {'acc': pl._AccuracyWithLogits}, n_models=2)

        lightning = pl.Lightning(multi_module, cgo_trainer.Trainer(use_cgo=True,
                                                                   max_epochs=1,
                                                                   limit_train_batches=0.25),
                                 train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                 val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))

        lightning._execute(_model_cpu)

        result = _get_final_result()
        assert len(result) == 2

        for _ in result:
            assert _ > 0.8

    def test_multi_model_trainer_gpu(self):
        _reset()
        if not (torch.cuda.is_available() and torch.cuda.device_count() >= 2):
            pytest.skip('test requires GPU and torch+cuda')
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
        test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)

        multi_module = _MultiModelSupervisedLearningModule(nn.CrossEntropyLoss, {'acc': pl._AccuracyWithLogits}, n_models=2)

        lightning = pl.Lightning(multi_module, cgo_trainer.Trainer(use_cgo=True,
                                                                   max_epochs=1,
                                                                   limit_train_batches=0.25),
                                 train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                 val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))

        lightning._execute(_model_gpu)

        result = _get_final_result()
        assert len(result) == 2

        for _ in result:
            assert _ > 0.8

    def _build_logical_with_mnist(self, n_models: int):
        lp = LogicalPlan()
        models = _load_mnist(n_models=n_models)
        for m in models:
            lp.add_model(m)
        return lp, models

    def test_add_model(self):
        _reset()

        lp, models = self._build_logical_with_mnist(3)

        for node in lp.logical_graph.hidden_nodes:
            old_nodes = [m.root_graph.get_node_by_id(node.id) for m in models]

            self.assertTrue(any([old_nodes[0].__repr__() == Node.__repr__(x) for x in old_nodes]))

    def test_dedup_input_four_devices(self):
        _reset()

        lp, models = self._build_logical_with_mnist(3)

        opt = DedupInputOptimizer()
        opt.convert(lp)

        advisor = RetiariiAdvisor()
        available_devices = [GPUDevice("test", 0), GPUDevice("test", 1), GPUDevice("test", 2), GPUDevice("test", 3)]
        cgo = CGOExecutionEngine(devices=available_devices, batch_waiting_time=0)

        phy_models = cgo._assemble(lp)
        self.assertTrue(len(phy_models) == 1)
        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()
        cgo.join()

    def test_dedup_input_two_devices(self):
        _reset()

        lp, models = self._build_logical_with_mnist(3)

        opt = DedupInputOptimizer()
        opt.convert(lp)

        advisor = RetiariiAdvisor()
        available_devices = [GPUDevice("test", 0), GPUDevice("test", 1)]
        cgo = CGOExecutionEngine(devices=available_devices, batch_waiting_time=0)

        phy_models = cgo._assemble(lp)
        self.assertTrue(len(phy_models) == 2)
        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()
        cgo.join()
294

295
    def test_submit_models(self):
296
297
        _reset()
        nni.retiarii.debug_configs.framework = 'pytorch'
298
        os.makedirs('generated', exist_ok=True)
299
        from nni.runtime import protocol
QuanluZhang's avatar
QuanluZhang committed
300
        import nni.runtime.platform.test as tt
301
302
        protocol._set_out_file(open('generated/debug_protocol_out_file.py', 'wb'))
        protocol._set_in_file(open('generated/debug_protocol_out_file.py', 'rb'))
303
304

        models = _load_mnist(2)
305

306
        advisor = RetiariiAdvisor()
307
308
309
        cgo_engine = CGOExecutionEngine(devices=[GPUDevice("test", 0), GPUDevice("test", 1),
                                                 GPUDevice("test", 2), GPUDevice("test", 3)], batch_waiting_time=0)
        set_execution_engine(cgo_engine)
310
        submit_models(*models)
311
        time.sleep(3)
312
313
314

        if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
            cmd, data = protocol.receive()
315
            params = nni.load(data)
316

QuanluZhang's avatar
QuanluZhang committed
317
            tt.init_params(params)
318

319
            trial_thread = threading.Thread(target=CGOExecutionEngine.trial_execute_graph)
320
321
322
323
            trial_thread.start()
            last_metric = None
            while True:
                time.sleep(1)
QuanluZhang's avatar
QuanluZhang committed
324
325
                if tt._last_metric:
                    metric = tt.get_last_metric()
326
327
                    if metric == last_metric:
                        continue
328
329
                    if 'value' in metric:
                        metric['value'] = json.dumps(metric['value'])
330
331
332
                    advisor.handle_report_metric_data(metric)
                    last_metric = metric
                if not trial_thread.is_alive():
333
                    trial_thread.join()
334
335
336
                    break

            trial_thread.join()
337

338
339
340
        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()
341
        cgo_engine.join()
342
343
344


if __name__ == '__main__':
345
    unittest.main()