test_highlevel_apis.py 49.1 KB
Newer Older
1
import math
2
3
import random
import unittest
4
from collections import Counter
5

6
7
import pytest

8
import nni
9
10
11
import nni.retiarii.nn.pytorch as nn
import torch
import torch.nn.functional as F
Yuge Zhang's avatar
Yuge Zhang committed
12
from nni.retiarii import InvalidMutation, Sampler, basic_unit
13
14
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
15
from nni.retiarii.evaluator import FunctionalEvaluator
16
from nni.retiarii.execution.utils import _unpack_if_only_one
17
from nni.retiarii.experiment.pytorch import preprocess_model
18
19
20
from nni.retiarii.graph import Model
from nni.retiarii.nn.pytorch.api import ValueChoice
from nni.retiarii.nn.pytorch.mutator import process_evaluator_mutations, process_inline_mutation, extract_mutation_from_pt_module
21
from nni.retiarii.serializer import model_wrapper
22
from nni.retiarii.utils import ContextStack, NoContextError, original_state_dict_hooks
23
24


25
class EnumerateSampler(Sampler):
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


44
@basic_unit
45
46
47
48
49
50
51
52
53
54
55
56
57
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


58
59
60
61
62
63
64
65
66
67
def _apply_all_mutators(model, mutators, samplers):
    if not isinstance(samplers, list):
        samplers = [samplers for _ in range(len(mutators))]
    assert len(samplers) == len(mutators)
    model_new = model
    for mutator, sampler in zip(mutators, samplers):
        model_new = mutator.bind_sampler(sampler).apply(model_new)
    return model_new


68
class GraphIR(unittest.TestCase):
69
70
    # graph engine will have an extra mutator for parameter choices
    value_choice_incr = 1
71
72
    # graph engine has an extra mutator to apply the depth choice to nodes
    repeat_incr = 1
73
74
    # graph engine parse the model into graph
    graph_engine = True
75
76
77
78
79
80
81
82
83
84
85

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

86
87
88
89
90
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

91
    def test_layer_choice(self):
92
        @model_wrapper
93
94
95
96
97
98
99
100
101
102
103
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

104
        model, mutators = self._get_model_with_mutators(Net())
105
        self.assertEqual(len(mutators), 1)
106
        mutator = mutators[0].bind_sampler(EnumerateSampler())
107
108
109
110
111
112
113
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

114
    def test_layer_choice_multiple(self):
115
        @model_wrapper
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            self.assertEqual(self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3)).size(),
                             torch.Size([1, i, 3, 3]))

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            model_new = self._get_converted_pytorch_model(model_new)
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            inp = torch.randn(1, 3, 3, 3)
            a = getattr(orig_model.module, str(i - 1))(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

155
    def test_nested_layer_choice(self):
156
        @model_wrapper
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 3, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 1, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 5, 5, 5]))

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_nested_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)

        for i in range(3):
            model_new = self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            if i == 0:
                a = getattr(getattr(orig_model.module, '0'), '0')(input)
            elif i == 1:
                a = getattr(orig_model.module, '1')(input)
            elif i == 2:
                a = getattr(getattr(orig_model.module, '0'), '2')(input)
            b = model_new(input)
            self.assertLess((a - b).abs().max().item(), 1E-4)

216
    def test_input_choice(self):
217
        @model_wrapper
218
219
220
221
222
223
224
225
226
227
228
229
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

230
        model, mutators = self._get_model_with_mutators(Net())
231
        self.assertEqual(len(mutators), 1)
232
        mutator = mutators[0].bind_sampler(EnumerateSampler())
233
234
235
236
237
238
239
240
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
241
        @model_wrapper
242
243
244
245
246
247
248
249
250
251
252
253
254
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
255
            model, mutators = self._get_model_with_mutators(Net(reduction))
256
            self.assertEqual(len(mutators), 1)
257
            mutator = mutators[0].bind_sampler(EnumerateSampler())
258
259
260
261
262
263
264
265
266
267
268
269
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
270
        @model_wrapper
271
272
273
274
275
276
277
278
279
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

280
        model, mutators = self._get_model_with_mutators(Net())
281
        self.assertEqual(len(mutators), 1)
282
        mutator = mutators[0].bind_sampler(EnumerateSampler())
283
284
285
286
287
288
289
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

290
    def test_value_choice_as_parameter(self):
291
        @model_wrapper
292
293
294
295
296
297
298
299
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

300
        model, mutators = self._get_model_with_mutators(Net())
301
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
302
303
304
305
306
307
308
309
310
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
311
        @model_wrapper
312
313
314
315
316
317
318
319
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

320
        model, mutators = self._get_model_with_mutators(Net())
321
322
323
324
        self.assertEqual(len(mutators), self.value_choice_incr + 1)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
325
326
327
328
329
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

330
    def test_value_choice_as_two_parameters(self):
331
        @model_wrapper
332
333
334
335
336
337
338
339
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

340
        model, mutators = self._get_model_with_mutators(Net())
341
342
343
344
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
345
        input = torch.randn(1, 3, 5, 5)
346
        self.assertEqual(self._get_converted_pytorch_model(model1)(input).size(),
347
                         torch.Size([1, 6, 3, 3]))
348
        self.assertEqual(self._get_converted_pytorch_model(model2)(input).size(),
349
350
351
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
352
        @model_wrapper
353
354
355
356
357
358
359
360
361
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

362
        model, mutators = self._get_model_with_mutators(Net())
363
364
365
366
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
367
368
369
370
371
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

372
    def test_value_choice_in_functional(self):
373
        @model_wrapper
374
375
376
377
378
379
380
381
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

382
        model, mutators = self._get_model_with_mutators(Net())
383
        self.assertEqual(len(mutators), 1)
384
        mutator = mutators[0].bind_sampler(EnumerateSampler())
385
386
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
387
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
388
389
390
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

391
    def test_value_choice_in_layer_choice(self):
392
        @model_wrapper
393
394
395
396
397
398
399
400
401
402
403
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

404
        model, mutators = self._get_model_with_mutators(Net())
405
        self.assertEqual(len(mutators), 3 + self.value_choice_incr)
406
407
408
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
409
            model_new = _apply_all_mutators(model, mutators, sampler)
410
411
412
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

413
    def test_shared(self):
414
        @model_wrapper
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

431
        model, mutators = self._get_model_with_mutators(Net())
432
433
434
435
436
437
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

438
        model, mutators = self._get_model_with_mutators(Net(shared=False))
439
440
441
442
443
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
444
            model_new = model
445
            for mutator in mutators:
446
                model_new = mutator.bind_sampler(sampler).apply(model_new)
447
448
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
449
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
450
451
452
453
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
454

455
    def test_valuechoice_getitem(self):
456
        @model_wrapper
457
458
459
460
461
462
463
464
465
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

466
        model, mutators = self._get_model_with_mutators(Net())
467
468
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
469
        input = torch.randn(1, 3, 5, 5)
470
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
471
                         torch.Size([1, 6, 3, 3]))
472
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
473
474
                         torch.Size([1, 8, 1, 1]))

475
        @model_wrapper
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

490
        model, mutators = self._get_model_with_mutators(Net2())
491
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
492
        input = torch.randn(1, 3, 5, 5)
493
        self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, EnumerateSampler()))(input)
494

495
    def test_valuechoice_getitem_functional(self):
496
        @model_wrapper
497
498
499
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
500
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
501
502
503
504

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

505
        model, mutators = self._get_model_with_mutators(Net())
506
507
508
509
510
511
512
513
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

514
    def test_valuechoice_getitem_functional_expression(self):
515
        @model_wrapper
516
517
518
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
519
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
520
521
522
523
524
525

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

526
        model, mutators = self._get_model_with_mutators(Net())
527
528
529
530
531
532
533
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    def test_valuechoice_multi(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                choice1 = nn.ValueChoice([{"in": 1, "out": 3}, {"in": 2, "out": 6}, {"in": 3, "out": 9}])
                choice2 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                choice3 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                self.conv1 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice2), 1)
                self.conv2 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice3), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler()] + [RandomSampler() for _ in range(self.value_choice_incr + 1)]

        for i in range(10):
            model_new = _apply_all_mutators(model, mutators, samplers)
            result = self._get_converted_pytorch_model(model_new)(torch.randn(1, i % 3 + 1, 3, 3))
            self.assertIn(result.size(), [torch.Size([1, round((i % 3 + 1) * 3 * k), 3, 3]) for k in [2.5, 3.0, 3.5]])

    def test_valuechoice_inconsistent_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([3, 5], label='a'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([3, 6], label='a'), 1)

            def forward(self, x):
                return torch.cat([self.conv1(x), self.conv2(x)], 1)

        with pytest.raises(AssertionError):
            self._get_model_with_mutators(Net())

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    def test_valuechoice_hybrid_arch_hparams(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        model, mutators = preprocess_model(Net(), evaluator, [], full_ir=self.graph_engine)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(model1.evaluator.trace_kwargs['x'], 1)
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))
        self.assertEqual(model2.evaluator.trace_kwargs['y'], 4)

    def test_valuechoice_hybrid_arch_hparams_conflict_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5], label='123'))

            def forward(self, x):
                return self.conv(x)

        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([3, 5], label='123'))
        with pytest.raises(ValueError, match='share'):
            preprocess_model(Net(), evaluator, [], full_ir=self.graph_engine)

614
615
616
617
618
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

619
        @model_wrapper
620
621
622
623
624
625
626
627
628
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [3, 4, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

    def test_repeat_static(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), 4)

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 4)
        sampler = RandomSampler()

        result = []
        for _ in range(50):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        for x in [1, 2, 3]:
            self.assertIn(float(x), result)
662

Yuge Zhang's avatar
Yuge Zhang committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    def test_repeat_complex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(nn.LayerChoice([AddOne(), nn.Identity()], label='lc'), (3, 5), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
678
679
        self.assertEqual(len(mutators), 2 + self.repeat_incr + self.value_choice_incr)
        self.assertEqual(set([mutator.label for mutator in mutators if mutator.label is not None]), {'lc', 'rep'})
Yuge Zhang's avatar
Yuge Zhang committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

        sampler = RandomSampler()
        for _ in range(10):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result = self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item()
            self.assertIn(result, [0., 3., 4., 5.])

        # independent layer choice
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), (2, 3), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
700
        self.assertEqual(len(mutators), 4 + self.repeat_incr + self.value_choice_incr)
Yuge Zhang's avatar
Yuge Zhang committed
701
702
703
704
705
706
707
708
709
710

        result = []
        for _ in range(20):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        self.assertIn(1., result)

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    def test_repeat_valuechoice(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), nn.ValueChoice([1, 3, 5]))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [1, 3, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
    def test_repeat_valuechoicex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), nn.ValueChoice([0, 2, 4]) + 1)

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [1, 3, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

753
754
755
756
757
758
759
760
761
762
763
764
    def test_repeat_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.Repeat(lambda index: nn.Conv2d(3, 3, 1), (2, 5))

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
765
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
766
767
768
        inp = torch.randn(1, 3, 5, 5)

        for i in range(4):
769
            model_new = self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, samplers))
770
771
772
773
774
775
776
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)

            a = nn.Sequential(*orig_model.module.blocks[:i + 2])(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

777
    def test_cell(self):
778
        @model_wrapper
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

797
        @model_wrapper
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)], num_nodes=4)

            def forward(self, x):
                return self.cell([x])

        raw_model, mutators = self._get_model_with_mutators(Net2())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    def test_cell_predecessors(self):
        from typing import List, Tuple

        class Preprocessor(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 16)

            def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
                return [self.linear(x[0]), x[1]]

        class Postprocessor(nn.Module):
            def forward(self, this: torch.Tensor, prev: List[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
                return prev[-1], this

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': nn.Linear(16, 16),
                    'second': nn.Linear(16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2,
                preprocessor=Preprocessor(), postprocessor=Postprocessor(), merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            result = self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16))
            self.assertTrue(result[0].size() == torch.Size([1, 16]))
            self.assertTrue(result[1].size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
853
    def test_nasbench201_cell(self):
854
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench201Cell([
                    lambda x, y: nn.Linear(x, y),
                    lambda x, y: nn.Linear(x, y, bias=False)
                ], 10, 16)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))

874
    def test_autoactivation(self):
875
        @model_wrapper
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.act = nn.AutoActivation()

            def forward(self, x):
                return self.act(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 10]))

892
893

class Python(GraphIR):
894
895
    # Python engine doesn't have the extra mutator
    value_choice_incr = 0
896
    repeat_incr = 0
897
    graph_engine = False
898

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
915
    def test_valuechoice_getitem_functional(self): ...
916
917

    @unittest.skip
918
    def test_valuechoice_getitem_functional_expression(self): ...
Yuge Zhang's avatar
Yuge Zhang committed
919

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    def test_hyperparameter_choice(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.aux = nn.ModelParameterChoice([False, True])

            def forward(self, x):
                return x

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
        self.assertEqual(self._get_converted_pytorch_model(model1).aux, False)
        self.assertEqual(self._get_converted_pytorch_model(model2).aux, True)

    def test_hyperparameter_choice_parameter(self):
        class Inner(nn.Module):
            def __init__(self):
                super().__init__()
                self.aux = torch.nn.Parameter(
                    torch.zeros(1, nn.ModelParameterChoice([64, 128, 256], label='a'), 3, 3)
                )

            def forward(self):
                return self.aux
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.choice = nn.ModelParameterChoice([64, 128, 256], label='a')
                self.inner = Inner()

            def forward(self):
                param = self.inner()
                assert param.size(1) == self.choice
                return param

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        result_pool = set()
        for _ in range(20):
            model = _apply_all_mutators(model, mutators, sampler)
            result = self._get_converted_pytorch_model(model)()
            result_pool.add(result.size(1))
        self.assertSetEqual(result_pool, {64, 128, 256})

    def test_hyperparameter_choice_no_model_wrapper(self):
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.choice = nn.ModelParameterChoice([64, 128, 256], label='a')

        with self.assertRaises(NoContextError):
            model = Net()

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    def test_cell_loose_end(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='loose_end')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        any_not_all = False
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            model = self._get_converted_pytorch_model(model)
            indices = model.cell.output_node_indices
            assert all(i > 2 for i in indices)
            self.assertTrue(model(torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 16 * len(indices)]))
            if len(indices) < 4:
                any_not_all = True
        self.assertTrue(any_not_all)

    def test_cell_complex(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16),
                    'second': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16)).size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
1027
1028
    def test_nasbench101_cell(self):
        # this is only supported in python engine for now.
1029
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench101Cell([lambda x: nn.Linear(x, x), lambda x: nn.Linear(x, x, bias=False)],
                                               10, 16, lambda x, y: nn.Linear(x, y), max_num_nodes=5, max_num_edges=7)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())

        succeeded = 0
        sampler = RandomSampler()
        while succeeded <= 10:
            try:
                model = raw_model
                for mutator in mutators:
                    model = mutator.bind_sampler(sampler).apply(model)
                succeeded += 1
            except InvalidMutation:
                continue
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))
1052
1053
1054
1055
1056


class Shared(unittest.TestCase):
    # This kind of tests are general across execution engines

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
    def test_value_choice_api_purely(self):
        a = nn.ValueChoice([1, 2], label='a')
        b = nn.ValueChoice([3, 4], label='b')
        c = nn.ValueChoice([5, 6], label='c')
        d = a + b + 3 * c
        for i, choice in enumerate(d.inner_choices()):
            if i == 0:
                assert choice.candidates == [1, 2]
            elif i == 1:
                assert choice.candidates == [3, 4]
            elif i == 2:
                assert choice.candidates == [5, 6]
        assert d.evaluate([2, 3, 5]) == 20
1070
1071
        expect = [x + y + 3 * z for x in [1, 2] for y in [3, 4] for z in [5, 6]]
        assert list(d.all_options()) == expect
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

        a = nn.ValueChoice(['cat', 'dog'])
        b = nn.ValueChoice(['milk', 'coffee'])
        assert (a + b).evaluate(['dog', 'coffee']) == 'dogcoffee'
        assert (a + 2 * b).evaluate(['cat', 'milk']) == 'catmilkmilk'

        assert (3 - nn.ValueChoice([1, 2])).evaluate([1]) == 2

        with pytest.raises(TypeError):
            a + nn.ValueChoice([1, 3])

        a = nn.ValueChoice([1, 17])
        a = (abs(-a * 3) % 11) ** 5
        assert 'abs' in repr(a)
        with pytest.raises(ValueError):
            a.evaluate([42])
        assert a.evaluate([17]) == 7 ** 5

        a = round(7 / nn.ValueChoice([2, 5]))
        assert a.evaluate([2]) == 4

        a = ~(77 ^ (nn.ValueChoice([1, 4]) & 5))
        assert a.evaluate([4]) == ~(77 ^ (4 & 5))

        a = nn.ValueChoice([5, 3]) * nn.ValueChoice([6.5, 7.5])
        assert math.floor(a.evaluate([5, 7.5])) == int(5 * 7.5)

        a = nn.ValueChoice([1, 3])
        b = nn.ValueChoice([2, 4])
        with pytest.raises(RuntimeError):
            min(a, b)
        with pytest.raises(RuntimeError):
            if a < b:
                ...

        assert nn.ValueChoice.min(a, b).evaluate([3, 2]) == 2
        assert nn.ValueChoice.max(a, b).evaluate([3, 2]) == 3
        assert nn.ValueChoice.max(1, 2, 3) == 3
        assert nn.ValueChoice.max([1, 3, 2]) == 3

        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([3]) == 'b'
        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([2]) == 'a'

        with pytest.raises(RuntimeError):
            assert int(nn.ValueChoice([2.5, 3.5])).evalute([2.5]) == 2

        assert nn.ValueChoice.to_int(nn.ValueChoice([2.5, 3.5])).evaluate([2.5]) == 2
        assert nn.ValueChoice.to_float(nn.ValueChoice(['2.5', '3.5'])).evaluate(['3.5']) == 3.5

    def test_make_divisible(self):
        def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = nn.ValueChoice.max(min_value, nn.ValueChoice.to_int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            return nn.ValueChoice.condition(new_value < min_ratio * value, new_value + divisor, new_value)

        def original_make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            if new_value < min_ratio * value:
                new_value += divisor
            return new_value

        values = [4, 8, 16, 32, 64, 128]
        divisors = [2, 3, 5, 7, 15]
        with pytest.raises(RuntimeError):
            original_make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        result = make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        for value in values:
            for divisor in divisors:
                lst = [value if choice.label == 'value' else divisor for choice in result.inner_choices()]
                assert result.evaluate(lst) == original_make_divisible(value, divisor)

1148
1149
1150
        assert len(list(result.all_options())) == 30
        assert max(result.all_options()) == 135

1151
1152
1153
1154
1155
1156
1157
1158
1159
    def test_valuechoice_in_evaluator(self):
        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=2)
        assert process_evaluator_mutations(evaluator, []) == []

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        mutators = process_evaluator_mutations(evaluator, [])
1160
        assert len(mutators) == 3
1161
1162
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
1163
1164
        samplers = [EnumerateSampler() for _ in range(3)]
        model = _apply_all_mutators(init_model, mutators, samplers)
1165
        assert model.evaluator.trace_kwargs['x'] == 1
1166
        model = _apply_all_mutators(init_model, mutators, samplers)
1167
1168
1169
1170
1171
        assert model.evaluator.trace_kwargs['x'] == 2

        # share label
        evaluator = FunctionalEvaluator(foo, t=ValueChoice([1, 2], label='x'), x=ValueChoice([1, 2], label='x'))
        mutators = process_evaluator_mutations(evaluator, [])
1172
        assert len(mutators) == 2
1173
1174
1175
1176
1177

        # getitem
        choice = ValueChoice([{"a": 1, "b": 2}, {"a": 3, "b": 4}])
        evaluator = FunctionalEvaluator(foo, t=1, x=choice['a'], y=choice['b'])
        mutators = process_evaluator_mutations(evaluator, [])
1178
        assert len(mutators) == 2
1179
1180
1181
1182
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        sampler = RandomSampler()
        for _ in range(10):
1183
            model = _apply_all_mutators(init_model, mutators, sampler)
1184
            assert (model.evaluator.trace_kwargs['x'], model.evaluator.trace_kwargs['y']) in [(1, 2), (3, 4)]
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    def test_valuechoice_in_evaluator_nested(self):
        @nni.trace
        class FooClass:
            def __init__(self, a):
                self.a = a

        obj = FooClass(ValueChoice([1, 2, 3], label='t'))

        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=obj, v=ValueChoice([1, 2, 3], label='t') + ValueChoice([10, 20, 30]))
        mutators = process_evaluator_mutations(evaluator, [])
        assert len(mutators) == 3
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        samplers = [RandomSampler() for _ in range(3)]
        for _ in range(10):
            model = _apply_all_mutators(init_model, mutators, samplers)
            a, v = model.evaluator.trace_kwargs['t'].trace_kwargs['a'], model.evaluator.trace_kwargs['v']
            assert v % 10 == a
            assert a in [1, 2, 3]
            assert v // 10 in [1, 2, 3]

1210
1211
1212
1213
1214
1215
    def test_retiarii_nn_import(self):
        dummy = torch.zeros(1, 16, 32, 24)
        nn.init.uniform_(dummy)

        conv = nn.Conv2d(1, 3, 1)
        param = nn.Parameter(torch.zeros(1, 3, 24, 24))