test_highlevel_apis.py 46.3 KB
Newer Older
1
import math
2
3
import random
import unittest
4
from collections import Counter
5

6
7
import pytest

8
9
10
import nni.retiarii.nn.pytorch as nn
import torch
import torch.nn.functional as F
Yuge Zhang's avatar
Yuge Zhang committed
11
from nni.retiarii import InvalidMutation, Sampler, basic_unit
12
13
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
14
from nni.retiarii.evaluator import FunctionalEvaluator
15
from nni.retiarii.execution.utils import _unpack_if_only_one
16
17
18
from nni.retiarii.graph import Model
from nni.retiarii.nn.pytorch.api import ValueChoice
from nni.retiarii.nn.pytorch.mutator import process_evaluator_mutations, process_inline_mutation, extract_mutation_from_pt_module
19
from nni.retiarii.serializer import model_wrapper
20
from nni.retiarii.utils import ContextStack, NoContextError, original_state_dict_hooks
21
22


23
class EnumerateSampler(Sampler):
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


42
@basic_unit
43
44
45
46
47
48
49
50
51
52
53
54
55
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


56
57
58
59
60
61
62
63
64
65
def _apply_all_mutators(model, mutators, samplers):
    if not isinstance(samplers, list):
        samplers = [samplers for _ in range(len(mutators))]
    assert len(samplers) == len(mutators)
    model_new = model
    for mutator, sampler in zip(mutators, samplers):
        model_new = mutator.bind_sampler(sampler).apply(model_new)
    return model_new


66
class GraphIR(unittest.TestCase):
67
68
    # graph engine will have an extra mutator for parameter choices
    value_choice_incr = 1
69
70
    # graph engine has an extra mutator to apply the depth choice to nodes
    repeat_incr = 1
71
72
73
74
75
76
77
78
79
80
81

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

82
83
84
85
86
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

87
    def test_layer_choice(self):
88
        @model_wrapper
89
90
91
92
93
94
95
96
97
98
99
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

100
        model, mutators = self._get_model_with_mutators(Net())
101
        self.assertEqual(len(mutators), 1)
102
        mutator = mutators[0].bind_sampler(EnumerateSampler())
103
104
105
106
107
108
109
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

110
    def test_layer_choice_multiple(self):
111
        @model_wrapper
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            self.assertEqual(self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3)).size(),
                             torch.Size([1, i, 3, 3]))

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def test_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            model_new = self._get_converted_pytorch_model(model_new)
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            inp = torch.randn(1, 3, 3, 3)
            a = getattr(orig_model.module, str(i - 1))(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

151
    def test_nested_layer_choice(self):
152
        @model_wrapper
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 3, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 1, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 5, 5, 5]))

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def test_nested_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)

        for i in range(3):
            model_new = self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            if i == 0:
                a = getattr(getattr(orig_model.module, '0'), '0')(input)
            elif i == 1:
                a = getattr(orig_model.module, '1')(input)
            elif i == 2:
                a = getattr(getattr(orig_model.module, '0'), '2')(input)
            b = model_new(input)
            self.assertLess((a - b).abs().max().item(), 1E-4)

212
    def test_input_choice(self):
213
        @model_wrapper
214
215
216
217
218
219
220
221
222
223
224
225
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

226
        model, mutators = self._get_model_with_mutators(Net())
227
        self.assertEqual(len(mutators), 1)
228
        mutator = mutators[0].bind_sampler(EnumerateSampler())
229
230
231
232
233
234
235
236
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
237
        @model_wrapper
238
239
240
241
242
243
244
245
246
247
248
249
250
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
251
            model, mutators = self._get_model_with_mutators(Net(reduction))
252
            self.assertEqual(len(mutators), 1)
253
            mutator = mutators[0].bind_sampler(EnumerateSampler())
254
255
256
257
258
259
260
261
262
263
264
265
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
266
        @model_wrapper
267
268
269
270
271
272
273
274
275
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

276
        model, mutators = self._get_model_with_mutators(Net())
277
        self.assertEqual(len(mutators), 1)
278
        mutator = mutators[0].bind_sampler(EnumerateSampler())
279
280
281
282
283
284
285
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

286
    def test_value_choice_as_parameter(self):
287
        @model_wrapper
288
289
290
291
292
293
294
295
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

296
        model, mutators = self._get_model_with_mutators(Net())
297
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
298
299
300
301
302
303
304
305
306
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
307
        @model_wrapper
308
309
310
311
312
313
314
315
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

316
        model, mutators = self._get_model_with_mutators(Net())
317
318
319
320
        self.assertEqual(len(mutators), self.value_choice_incr + 1)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
321
322
323
324
325
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

326
    def test_value_choice_as_two_parameters(self):
327
        @model_wrapper
328
329
330
331
332
333
334
335
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

336
        model, mutators = self._get_model_with_mutators(Net())
337
338
339
340
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
341
        input = torch.randn(1, 3, 5, 5)
342
        self.assertEqual(self._get_converted_pytorch_model(model1)(input).size(),
343
                         torch.Size([1, 6, 3, 3]))
344
        self.assertEqual(self._get_converted_pytorch_model(model2)(input).size(),
345
346
347
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
348
        @model_wrapper
349
350
351
352
353
354
355
356
357
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

358
        model, mutators = self._get_model_with_mutators(Net())
359
360
361
362
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
363
364
365
366
367
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

368
    def test_value_choice_in_functional(self):
369
        @model_wrapper
370
371
372
373
374
375
376
377
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

378
        model, mutators = self._get_model_with_mutators(Net())
379
        self.assertEqual(len(mutators), 1)
380
        mutator = mutators[0].bind_sampler(EnumerateSampler())
381
382
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
383
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
384
385
386
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

387
    def test_value_choice_in_layer_choice(self):
388
        @model_wrapper
389
390
391
392
393
394
395
396
397
398
399
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

400
        model, mutators = self._get_model_with_mutators(Net())
401
        self.assertEqual(len(mutators), 3 + self.value_choice_incr)
402
403
404
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
405
            model_new = _apply_all_mutators(model, mutators, sampler)
406
407
408
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

409
    def test_shared(self):
410
        @model_wrapper
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

427
        model, mutators = self._get_model_with_mutators(Net())
428
429
430
431
432
433
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

434
        model, mutators = self._get_model_with_mutators(Net(shared=False))
435
436
437
438
439
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
440
            model_new = model
441
            for mutator in mutators:
442
                model_new = mutator.bind_sampler(sampler).apply(model_new)
443
444
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
445
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
446
447
448
449
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
450

451
    def test_valuechoice_getitem(self):
452
        @model_wrapper
453
454
455
456
457
458
459
460
461
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

462
        model, mutators = self._get_model_with_mutators(Net())
463
464
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
465
        input = torch.randn(1, 3, 5, 5)
466
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
467
                         torch.Size([1, 6, 3, 3]))
468
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
469
470
                         torch.Size([1, 8, 1, 1]))

471
        @model_wrapper
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

486
        model, mutators = self._get_model_with_mutators(Net2())
487
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
488
        input = torch.randn(1, 3, 5, 5)
489
        self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, EnumerateSampler()))(input)
490

491
    def test_valuechoice_getitem_functional(self):
492
        @model_wrapper
493
494
495
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
496
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
497
498
499
500

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

501
        model, mutators = self._get_model_with_mutators(Net())
502
503
504
505
506
507
508
509
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

510
    def test_valuechoice_getitem_functional_expression(self):
511
        @model_wrapper
512
513
514
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
515
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
516
517
518
519
520
521

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

522
        model, mutators = self._get_model_with_mutators(Net())
523
524
525
526
527
528
529
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
530

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    def test_valuechoice_multi(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                choice1 = nn.ValueChoice([{"in": 1, "out": 3}, {"in": 2, "out": 6}, {"in": 3, "out": 9}])
                choice2 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                choice3 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                self.conv1 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice2), 1)
                self.conv2 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice3), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler()] + [RandomSampler() for _ in range(self.value_choice_incr + 1)]

        for i in range(10):
            model_new = _apply_all_mutators(model, mutators, samplers)
            result = self._get_converted_pytorch_model(model_new)(torch.randn(1, i % 3 + 1, 3, 3))
            self.assertIn(result.size(), [torch.Size([1, round((i % 3 + 1) * 3 * k), 3, 3]) for k in [2.5, 3.0, 3.5]])

    def test_valuechoice_inconsistent_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([3, 5], label='a'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([3, 6], label='a'), 1)

            def forward(self, x):
                return torch.cat([self.conv1(x), self.conv2(x)], 1)

        with pytest.raises(AssertionError):
            self._get_model_with_mutators(Net())

568
569
570
571
572
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

573
        @model_wrapper
574
575
576
577
578
579
580
581
582
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [3, 4, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

    def test_repeat_static(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), 4)

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 4)
        sampler = RandomSampler()

        result = []
        for _ in range(50):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        for x in [1, 2, 3]:
            self.assertIn(float(x), result)
616

Yuge Zhang's avatar
Yuge Zhang committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    def test_repeat_complex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(nn.LayerChoice([AddOne(), nn.Identity()], label='lc'), (3, 5), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
632
633
        self.assertEqual(len(mutators), 2 + self.repeat_incr + self.value_choice_incr)
        self.assertEqual(set([mutator.label for mutator in mutators if mutator.label is not None]), {'lc', 'rep'})
Yuge Zhang's avatar
Yuge Zhang committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

        sampler = RandomSampler()
        for _ in range(10):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result = self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item()
            self.assertIn(result, [0., 3., 4., 5.])

        # independent layer choice
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), (2, 3), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
654
        self.assertEqual(len(mutators), 4 + self.repeat_incr + self.value_choice_incr)
Yuge Zhang's avatar
Yuge Zhang committed
655
656
657
658
659
660
661
662
663
664

        result = []
        for _ in range(20):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        self.assertIn(1., result)

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def test_repeat_valuechoice(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), nn.ValueChoice([1, 3, 5]))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [1, 3, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    def test_repeat_valuechoicex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), nn.ValueChoice([0, 2, 4]) + 1)

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [1, 3, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

707
708
709
710
711
712
713
714
715
716
717
718
    def test_repeat_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.Repeat(lambda index: nn.Conv2d(3, 3, 1), (2, 5))

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
719
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
720
721
722
        inp = torch.randn(1, 3, 5, 5)

        for i in range(4):
723
            model_new = self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, samplers))
724
725
726
727
728
729
730
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)

            a = nn.Sequential(*orig_model.module.blocks[:i + 2])(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

731
    def test_cell(self):
732
        @model_wrapper
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

751
        @model_wrapper
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)], num_nodes=4)

            def forward(self, x):
                return self.cell([x])

        raw_model, mutators = self._get_model_with_mutators(Net2())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    def test_cell_predecessors(self):
        from typing import List, Tuple

        class Preprocessor(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 16)

            def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
                return [self.linear(x[0]), x[1]]

        class Postprocessor(nn.Module):
            def forward(self, this: torch.Tensor, prev: List[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
                return prev[-1], this

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': nn.Linear(16, 16),
                    'second': nn.Linear(16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2,
                preprocessor=Preprocessor(), postprocessor=Postprocessor(), merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            result = self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16))
            self.assertTrue(result[0].size() == torch.Size([1, 16]))
            self.assertTrue(result[1].size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
807
    def test_nasbench201_cell(self):
808
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench201Cell([
                    lambda x, y: nn.Linear(x, y),
                    lambda x, y: nn.Linear(x, y, bias=False)
                ], 10, 16)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))

828
    def test_autoactivation(self):
829
        @model_wrapper
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.act = nn.AutoActivation()

            def forward(self, x):
                return self.act(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 10]))

846
847

class Python(GraphIR):
848
849
    # Python engine doesn't have the extra mutator
    value_choice_incr = 0
850
    repeat_incr = 0
851

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
868
    def test_valuechoice_getitem_functional(self): ...
869
870

    @unittest.skip
871
    def test_valuechoice_getitem_functional_expression(self): ...
Yuge Zhang's avatar
Yuge Zhang committed
872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    def test_hyperparameter_choice(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.aux = nn.ModelParameterChoice([False, True])

            def forward(self, x):
                return x

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
        self.assertEqual(self._get_converted_pytorch_model(model1).aux, False)
        self.assertEqual(self._get_converted_pytorch_model(model2).aux, True)

    def test_hyperparameter_choice_parameter(self):
        class Inner(nn.Module):
            def __init__(self):
                super().__init__()
                self.aux = torch.nn.Parameter(
                    torch.zeros(1, nn.ModelParameterChoice([64, 128, 256], label='a'), 3, 3)
                )

            def forward(self):
                return self.aux
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.choice = nn.ModelParameterChoice([64, 128, 256], label='a')
                self.inner = Inner()

            def forward(self):
                param = self.inner()
                assert param.size(1) == self.choice
                return param

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        result_pool = set()
        for _ in range(20):
            model = _apply_all_mutators(model, mutators, sampler)
            result = self._get_converted_pytorch_model(model)()
            result_pool.add(result.size(1))
        self.assertSetEqual(result_pool, {64, 128, 256})

    def test_hyperparameter_choice_no_model_wrapper(self):
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.choice = nn.ModelParameterChoice([64, 128, 256], label='a')

        with self.assertRaises(NoContextError):
            model = Net()

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    def test_cell_loose_end(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='loose_end')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        any_not_all = False
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            model = self._get_converted_pytorch_model(model)
            indices = model.cell.output_node_indices
            assert all(i > 2 for i in indices)
            self.assertTrue(model(torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 16 * len(indices)]))
            if len(indices) < 4:
                any_not_all = True
        self.assertTrue(any_not_all)

    def test_cell_complex(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16),
                    'second': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16)).size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
980
981
    def test_nasbench101_cell(self):
        # this is only supported in python engine for now.
982
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench101Cell([lambda x: nn.Linear(x, x), lambda x: nn.Linear(x, x, bias=False)],
                                               10, 16, lambda x, y: nn.Linear(x, y), max_num_nodes=5, max_num_edges=7)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())

        succeeded = 0
        sampler = RandomSampler()
        while succeeded <= 10:
            try:
                model = raw_model
                for mutator in mutators:
                    model = mutator.bind_sampler(sampler).apply(model)
                succeeded += 1
            except InvalidMutation:
                continue
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))
1005
1006
1007
1008
1009


class Shared(unittest.TestCase):
    # This kind of tests are general across execution engines

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    def test_value_choice_api_purely(self):
        a = nn.ValueChoice([1, 2], label='a')
        b = nn.ValueChoice([3, 4], label='b')
        c = nn.ValueChoice([5, 6], label='c')
        d = a + b + 3 * c
        for i, choice in enumerate(d.inner_choices()):
            if i == 0:
                assert choice.candidates == [1, 2]
            elif i == 1:
                assert choice.candidates == [3, 4]
            elif i == 2:
                assert choice.candidates == [5, 6]
        assert d.evaluate([2, 3, 5]) == 20
1023
1024
        expect = [x + y + 3 * z for x in [1, 2] for y in [3, 4] for z in [5, 6]]
        assert list(d.all_options()) == expect
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

        a = nn.ValueChoice(['cat', 'dog'])
        b = nn.ValueChoice(['milk', 'coffee'])
        assert (a + b).evaluate(['dog', 'coffee']) == 'dogcoffee'
        assert (a + 2 * b).evaluate(['cat', 'milk']) == 'catmilkmilk'

        assert (3 - nn.ValueChoice([1, 2])).evaluate([1]) == 2

        with pytest.raises(TypeError):
            a + nn.ValueChoice([1, 3])

        a = nn.ValueChoice([1, 17])
        a = (abs(-a * 3) % 11) ** 5
        assert 'abs' in repr(a)
        with pytest.raises(ValueError):
            a.evaluate([42])
        assert a.evaluate([17]) == 7 ** 5

        a = round(7 / nn.ValueChoice([2, 5]))
        assert a.evaluate([2]) == 4

        a = ~(77 ^ (nn.ValueChoice([1, 4]) & 5))
        assert a.evaluate([4]) == ~(77 ^ (4 & 5))

        a = nn.ValueChoice([5, 3]) * nn.ValueChoice([6.5, 7.5])
        assert math.floor(a.evaluate([5, 7.5])) == int(5 * 7.5)

        a = nn.ValueChoice([1, 3])
        b = nn.ValueChoice([2, 4])
        with pytest.raises(RuntimeError):
            min(a, b)
        with pytest.raises(RuntimeError):
            if a < b:
                ...

        assert nn.ValueChoice.min(a, b).evaluate([3, 2]) == 2
        assert nn.ValueChoice.max(a, b).evaluate([3, 2]) == 3
        assert nn.ValueChoice.max(1, 2, 3) == 3
        assert nn.ValueChoice.max([1, 3, 2]) == 3

        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([3]) == 'b'
        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([2]) == 'a'

        with pytest.raises(RuntimeError):
            assert int(nn.ValueChoice([2.5, 3.5])).evalute([2.5]) == 2

        assert nn.ValueChoice.to_int(nn.ValueChoice([2.5, 3.5])).evaluate([2.5]) == 2
        assert nn.ValueChoice.to_float(nn.ValueChoice(['2.5', '3.5'])).evaluate(['3.5']) == 3.5

    def test_make_divisible(self):
        def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = nn.ValueChoice.max(min_value, nn.ValueChoice.to_int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            return nn.ValueChoice.condition(new_value < min_ratio * value, new_value + divisor, new_value)

        def original_make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            if new_value < min_ratio * value:
                new_value += divisor
            return new_value

        values = [4, 8, 16, 32, 64, 128]
        divisors = [2, 3, 5, 7, 15]
        with pytest.raises(RuntimeError):
            original_make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        result = make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        for value in values:
            for divisor in divisors:
                lst = [value if choice.label == 'value' else divisor for choice in result.inner_choices()]
                assert result.evaluate(lst) == original_make_divisible(value, divisor)

1101
1102
1103
        assert len(list(result.all_options())) == 30
        assert max(result.all_options()) == 135

1104
1105
1106
1107
1108
1109
1110
1111
1112
    def test_valuechoice_in_evaluator(self):
        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=2)
        assert process_evaluator_mutations(evaluator, []) == []

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        mutators = process_evaluator_mutations(evaluator, [])
1113
        assert len(mutators) == 3
1114
1115
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
1116
1117
        samplers = [EnumerateSampler() for _ in range(3)]
        model = _apply_all_mutators(init_model, mutators, samplers)
1118
        assert model.evaluator.trace_kwargs['x'] == 1
1119
        model = _apply_all_mutators(init_model, mutators, samplers)
1120
1121
1122
1123
1124
        assert model.evaluator.trace_kwargs['x'] == 2

        # share label
        evaluator = FunctionalEvaluator(foo, t=ValueChoice([1, 2], label='x'), x=ValueChoice([1, 2], label='x'))
        mutators = process_evaluator_mutations(evaluator, [])
1125
        assert len(mutators) == 2
1126
1127
1128
1129
1130

        # getitem
        choice = ValueChoice([{"a": 1, "b": 2}, {"a": 3, "b": 4}])
        evaluator = FunctionalEvaluator(foo, t=1, x=choice['a'], y=choice['b'])
        mutators = process_evaluator_mutations(evaluator, [])
1131
        assert len(mutators) == 2
1132
1133
1134
1135
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        sampler = RandomSampler()
        for _ in range(10):
1136
            model = _apply_all_mutators(init_model, mutators, sampler)
1137
            assert (model.evaluator.trace_kwargs['x'], model.evaluator.trace_kwargs['y']) in [(1, 2), (3, 4)]
1138
1139
1140
1141
1142
1143
1144

    def test_retiarii_nn_import(self):
        dummy = torch.zeros(1, 16, 32, 24)
        nn.init.uniform_(dummy)

        conv = nn.Conv2d(1, 3, 1)
        param = nn.Parameter(torch.zeros(1, 3, 24, 24))