preprocess.py 3.97 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import os
import pandas as pd
import numpy as np
import json
import torch
import torch.nn as nn
from keras.preprocessing.image import load_img
from sklearn.model_selection import StratifiedKFold
import settings
import utils

DATA_DIR = settings.DATA_DIR

def prepare_metadata():
    print('creating metadata')
    meta = utils.generate_metadata(train_images_dir=settings.TRAIN_DIR,
                                   test_images_dir=settings.TEST_DIR,
                                   depths_filepath=settings.DEPTHS_FILE
                                   )
    meta.to_csv(settings.META_FILE, index=None)

43
def cov_to_class(val):
chicm-ms's avatar
chicm-ms committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    for i in range(0, 11):
        if val * 10 <= i :
            return i

def generate_stratified_metadata():
    train_df = pd.read_csv(os.path.join(DATA_DIR, "train.csv"), index_col="id", usecols=[0])
    depths_df = pd.read_csv(os.path.join(DATA_DIR, "depths.csv"), index_col="id")
    train_df = train_df.join(depths_df)
    train_df["masks"] = [np.array(load_img(os.path.join(DATA_DIR, "train", "masks", "{}.png".format(idx)), grayscale=True)) / 255 for idx in train_df.index]
    train_df["coverage"] = train_df.masks.map(np.sum) / pow(settings.ORIG_H, 2)
    train_df["coverage_class"] = train_df.coverage.map(cov_to_class)
    train_df["salt_exists"] = train_df.coverage_class.map(lambda x: 0 if x == 0 else 1)
    train_df["is_train"] = 1
    train_df["file_path_image"] = train_df.index.map(lambda x: os.path.join(settings.TRAIN_IMG_DIR, '{}.png'.format(x)))
    train_df["file_path_mask"] = train_df.index.map(lambda x: os.path.join(settings.TRAIN_MASK_DIR, '{}.png'.format(x)))

60
    train_df.to_csv(os.path.join(settings.DATA_DIR, 'train_meta2.csv'),
chicm-ms's avatar
chicm-ms committed
61
62
63
64
65
66
67
        columns=['file_path_image','file_path_mask','is_train','z','salt_exists', 'coverage_class', 'coverage'])
    train_splits = {}

    kf = StratifiedKFold(n_splits=10)
    for i, (train_index, valid_index) in enumerate(kf.split(train_df.index.values.reshape(-1), train_df.coverage_class.values.reshape(-1))):
        train_splits[str(i)] = {
            'train_index': train_index.tolist(),
68
            'val_index': valid_index.tolist()
chicm-ms's avatar
chicm-ms committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        }
    with open(os.path.join(settings.DATA_DIR, 'train_split.json'), 'w') as f:
        json.dump(train_splits, f, indent=4)

    print('done')


def test():
    meta = pd.read_csv(settings.META_FILE)
    meta_train = meta[meta['is_train'] == 1]
    print(type(meta_train))

    cv = utils.KFoldBySortedValue()
    for train_idx, valid_idx in cv.split(meta_train[settings.DEPTH_COLUMN].values.reshape(-1)):
        print(len(train_idx), len(valid_idx))
        print(train_idx[:10])
        print(valid_idx[:10])
        #break

    meta_train_split, meta_valid_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]
    print(type(meta_train_split))
    print(meta_train_split[settings.X_COLUMN].values[:10])

if __name__ == '__main__':
    generate_stratified_metadata()