# Copyright (c) Microsoft Corporation # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, # to any person obtaining a copy of this software and associated # documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os import pandas as pd import numpy as np import json import torch import torch.nn as nn from keras.preprocessing.image import load_img from sklearn.model_selection import StratifiedKFold import settings import utils DATA_DIR = settings.DATA_DIR def prepare_metadata(): print('creating metadata') meta = utils.generate_metadata(train_images_dir=settings.TRAIN_DIR, test_images_dir=settings.TEST_DIR, depths_filepath=settings.DEPTHS_FILE ) meta.to_csv(settings.META_FILE, index=None) def cov_to_class(val): for i in range(0, 11): if val * 10 <= i : return i def generate_stratified_metadata(): train_df = pd.read_csv(os.path.join(DATA_DIR, "train.csv"), index_col="id", usecols=[0]) depths_df = pd.read_csv(os.path.join(DATA_DIR, "depths.csv"), index_col="id") train_df = train_df.join(depths_df) train_df["masks"] = [np.array(load_img(os.path.join(DATA_DIR, "train", "masks", "{}.png".format(idx)), grayscale=True)) / 255 for idx in train_df.index] train_df["coverage"] = train_df.masks.map(np.sum) / pow(settings.ORIG_H, 2) train_df["coverage_class"] = train_df.coverage.map(cov_to_class) train_df["salt_exists"] = train_df.coverage_class.map(lambda x: 0 if x == 0 else 1) train_df["is_train"] = 1 train_df["file_path_image"] = train_df.index.map(lambda x: os.path.join(settings.TRAIN_IMG_DIR, '{}.png'.format(x))) train_df["file_path_mask"] = train_df.index.map(lambda x: os.path.join(settings.TRAIN_MASK_DIR, '{}.png'.format(x))) train_df.to_csv(os.path.join(settings.DATA_DIR, 'train_meta2.csv'), columns=['file_path_image','file_path_mask','is_train','z','salt_exists', 'coverage_class', 'coverage']) train_splits = {} kf = StratifiedKFold(n_splits=10) for i, (train_index, valid_index) in enumerate(kf.split(train_df.index.values.reshape(-1), train_df.coverage_class.values.reshape(-1))): train_splits[str(i)] = { 'train_index': train_index.tolist(), 'val_index': valid_index.tolist() } with open(os.path.join(settings.DATA_DIR, 'train_split.json'), 'w') as f: json.dump(train_splits, f, indent=4) print('done') def test(): meta = pd.read_csv(settings.META_FILE) meta_train = meta[meta['is_train'] == 1] print(type(meta_train)) cv = utils.KFoldBySortedValue() for train_idx, valid_idx in cv.split(meta_train[settings.DEPTH_COLUMN].values.reshape(-1)): print(len(train_idx), len(valid_idx)) print(train_idx[:10]) print(valid_idx[:10]) #break meta_train_split, meta_valid_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx] print(type(meta_train_split)) print(meta_train_split[settings.X_COLUMN].values[:10]) if __name__ == '__main__': generate_stratified_metadata()