models.py 7.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys

import numpy as np
import tensorflow as tf


class Model(object):
    def __init__(self,
                 images,
                 labels,
                 cutout_size=None,
                 batch_size=32,
                 eval_batch_size=100,
                 clip_mode=None,
                 grad_bound=None,
                 l2_reg=1e-4,
                 lr_init=0.1,
                 lr_dec_start=0,
                 lr_dec_every=100,
                 lr_dec_rate=0.1,
                 keep_prob=1.0,
                 optim_algo=None,
                 sync_replicas=False,
                 num_aggregate=None,
                 num_replicas=None,
                 data_format="NHWC",
                 name="generic_model",
                 seed=None,
                 ):
        """
        Args:
                lr_dec_every: number of epochs to decay
        """
        print("-" * 80)
        print("Build model {}".format(name))

        self.cutout_size = cutout_size
        self.batch_size = batch_size
        self.eval_batch_size = eval_batch_size
        self.clip_mode = clip_mode
        self.grad_bound = grad_bound
        self.l2_reg = l2_reg
        self.lr_init = lr_init
        self.lr_dec_start = lr_dec_start
        self.lr_dec_rate = lr_dec_rate
        self.keep_prob = keep_prob
        self.optim_algo = optim_algo
        self.sync_replicas = sync_replicas
        self.num_aggregate = num_aggregate
        self.num_replicas = num_replicas
        self.data_format = data_format
        self.name = name
        self.seed = seed

        self.global_step = None
        self.valid_acc = None
        self.test_acc = None
        print("Build data ops")
        with tf.device("/cpu:0"):
            # training data
            self.num_train_examples = np.shape(images["train"])[0]

            self.num_train_batches = (
                self.num_train_examples + self.batch_size - 1) // self.batch_size
            x_train, y_train = tf.train.shuffle_batch(
                [images["train"], labels["train"]],
                batch_size=self.batch_size,
                capacity=50000,
                enqueue_many=True,
                min_after_dequeue=0,
                num_threads=16,
                seed=self.seed,
                allow_smaller_final_batch=True,
            )
            self.lr_dec_every = lr_dec_every * self.num_train_batches

            def _pre_process(x):
                x = tf.pad(x, [[4, 4], [4, 4], [0, 0]])
                x = tf.random_crop(x, [32, 32, 3], seed=self.seed)
                x = tf.image.random_flip_left_right(x, seed=self.seed)
                if self.cutout_size is not None:
                    mask = tf.ones(
                        [self.cutout_size, self.cutout_size], dtype=tf.int32)
                    start = tf.random_uniform(
                        [2], minval=0, maxval=32, dtype=tf.int32)
                    mask = tf.pad(mask, [[self.cutout_size + start[0], 32 - start[0]],
                                         [self.cutout_size + start[1], 32 - start[1]]])
                    mask = mask[self.cutout_size: self.cutout_size + 32,
                                self.cutout_size: self.cutout_size + 32]
                    mask = tf.reshape(mask, [32, 32, 1])
                    mask = tf.tile(mask, [1, 1, 3])
                    x = tf.where(tf.equal(mask, 0), x=x, y=tf.zeros_like(x))
                if self.data_format == "NCHW":
                    x = tf.transpose(x, [2, 0, 1])

                return x
            self.x_train = tf.map_fn(_pre_process, x_train, back_prop=False)
            self.y_train = y_train

            # valid data
            self.x_valid, self.y_valid = None, None
            if images["valid"] is not None:
                images["valid_original"] = np.copy(images["valid"])
                labels["valid_original"] = np.copy(labels["valid"])
                if self.data_format == "NCHW":
                    images["valid"] = tf.transpose(
                        images["valid"], [0, 3, 1, 2])
                self.num_valid_examples = np.shape(images["valid"])[0]
                self.num_valid_batches = (
                    (self.num_valid_examples + self.eval_batch_size - 1)
                    // self.eval_batch_size)
                self.x_valid, self.y_valid = tf.train.batch(
                    [images["valid"], labels["valid"]],
                    batch_size=self.eval_batch_size,
                    capacity=5000,
                    enqueue_many=True,
                    num_threads=1,
                    allow_smaller_final_batch=True,
                )

            # test data
            if self.data_format == "NCHW":
                images["test"] = tf.transpose(images["test"], [0, 3, 1, 2])
            self.num_test_examples = np.shape(images["test"])[0]
            self.num_test_batches = (
                (self.num_test_examples + self.eval_batch_size - 1)
                // self.eval_batch_size)
            self.x_test, self.y_test = tf.train.batch(
                [images["test"], labels["test"]],
                batch_size=self.eval_batch_size,
                capacity=10000,
                enqueue_many=True,
                num_threads=1,
                allow_smaller_final_batch=True,
            )

        # cache images and labels
        self.images = images
        self.labels = labels

    def eval_once(self, sess, eval_set, child_model, verbose=False):
        """Expects self.acc and self.global_step to be defined.

        Args:
                sess: tf.Session() or one of its wrap arounds.
                feed_dict: can be used to give more information to sess.run().
                eval_set: "valid" or "test"
        """

        assert self.global_step is not None
        global_step = sess.run(self.global_step)
        print("Eval at {}".format(global_step))

        if eval_set == "valid":
            assert self.x_valid is not None
            assert self.valid_acc is not None
            num_examples = self.num_valid_examples
            num_batches = self.num_valid_batches
            acc_op = self.valid_acc
        elif eval_set == "test":
            assert self.test_acc is not None
            num_examples = self.num_test_examples
            num_batches = self.num_test_batches
            acc_op = self.test_acc
        else:
            raise NotImplementedError("Unknown eval_set '{}'".format(eval_set))

        total_acc = 0
        total_exp = 0

        for batch_id in range(num_batches):
            acc = sess.run(acc_op)

            total_acc += acc
            total_exp += self.eval_batch_size
            if verbose:
                sys.stdout.write(
                    "\r{:<5d}/{:>5d}".format(total_acc, total_exp))
        if verbose:
            print("")
        print("{}_accuracy: {:<6.4f}".format(
            eval_set, float(total_acc) / total_exp))
        return float(total_acc) / total_exp

    def _model(self, images, is_training, reuse=None):
        raise NotImplementedError("Abstract method")

    def _build_train(self):
        raise NotImplementedError("Abstract method")

    def _build_valid(self):
        raise NotImplementedError("Abstract method")

    def _build_test(self):
        raise NotImplementedError("Abstract method")