data_utils.py 2.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import sys
import pickle
import numpy as np
import tensorflow as tf


def _read_data(data_path, train_files):
    """Reads CIFAR-10 format data. Always returns NHWC format.

    Returns:
        images: np tensor of size [N, H, W, C]
        labels: np tensor of size [N]
    """
    images, labels = [], []
    for file_name in train_files:
        print(file_name)
        full_name = os.path.join(data_path, file_name)
        with open(full_name, "rb") as finp:
            data = pickle.load(finp, encoding='latin1')
            batch_images = data["data"].astype(np.float32) / 255.0
            batch_labels = np.array(data["labels"], dtype=np.int32)
            images.append(batch_images)
            labels.append(batch_labels)
    images = np.concatenate(images, axis=0)
    labels = np.concatenate(labels, axis=0)
    images = np.reshape(images, [-1, 3, 32, 32])
    images = np.transpose(images, [0, 2, 3, 1])

    return images, labels


def read_data(data_path, num_valids=5000):
    print("-" * 80)
    print("Reading data")

    images, labels = {}, {}

    train_files = [
        "data_batch_1",
        "data_batch_2",
        "data_batch_3",
        "data_batch_4",
        "data_batch_5",
    ]
    test_file = [
        "test_batch",
    ]
    images["train"], labels["train"] = _read_data(data_path, train_files)

    if num_valids:
        images["valid"] = images["train"][-num_valids:]
        labels["valid"] = labels["train"][-num_valids:]

        images["train"] = images["train"][:-num_valids]
        labels["train"] = labels["train"][:-num_valids]
    else:
        images["valid"], labels["valid"] = None, None

    images["test"], labels["test"] = _read_data(data_path, test_file)

    print("Prepropcess: [subtract mean], [divide std]")
    mean = np.mean(images["train"], axis=(0, 1, 2), keepdims=True)
    std = np.std(images["train"], axis=(0, 1, 2), keepdims=True)

    print("mean: {}".format(np.reshape(mean * 255.0, [-1])))
    print("std: {}".format(np.reshape(std * 255.0, [-1])))

    images["train"] = (images["train"] - mean) / std
    if num_valids:
        images["valid"] = (images["valid"] - mean) / std
    images["test"] = (images["test"] - mean) / std

    return images, labels