evaluator.rst 7.57 KB
Newer Older
1
2
Model Evaluator
===============
3

4
A model evaluator is for training and validating each generated model. They are necessary to evaluate the performance of new explored models.
5

Yuge Zhang's avatar
Yuge Zhang committed
6
7
.. _functional-evaluator:

8
9
Customize Evaluator with Any Function
-------------------------------------
10

11
The simplest way to customize a new evaluator is with :class:`FunctionalEvaluator <nni.retiarii.evaluator.FunctionalEvaluator>`, which is very easy when training code is already available. Users only need to write a fit function that wraps everything, which usually includes training, validating and testing of a single model. This function takes one positional arguments (``model_cls``) and possible keyword arguments. The keyword arguments (other than ``model_cls``) are fed to :class:`FunctionalEvaluator <nni.retiarii.evaluator.FunctionalEvaluator>` as its initialization parameters (note that they will be :doc:`serialized <./serialization>`). In this way, users get everything under their control, but expose less information to the framework and as a result, further optimizations like :ref:`CGO <cgo-execution-engine>` might be not feasible. An example is as belows:
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
.. code-block:: python

    from nni.retiarii.evaluator import FunctionalEvaluator
    from nni.retiarii.experiment.pytorch import RetiariiExperiment

    def fit(model_cls, dataloader):
        model = model_cls()
        train(model, dataloader)
        acc = test(model, dataloader)
        nni.report_final_result(acc)

    # The dataloader will be serialized, thus ``nni.trace`` is needed here.
    # See serialization tutorial for more details.
    evaluator = FunctionalEvaluator(fit, dataloader=nni.trace(DataLoader)(foo, bar))
    experiment = RetiariiExperiment(base_model, evaluator, mutators, strategy)

.. tip::

    When using customized evaluators, if you want to visualize models, you need to export your model and save it into ``$NNI_OUTPUT_DIR/model.onnx`` in your evaluator. An example here:

    .. code-block:: python

        def fit(model_cls):
            model = model_cls()
            onnx_path = Path(os.environ.get('NNI_OUTPUT_DIR', '.')) / 'model.onnx'
            onnx_path.parent.mkdir(exist_ok=True)
            dummy_input = torch.randn(10, 3, 224, 224)
            torch.onnx.export(model, dummy_input, onnx_path)
            # the rest of training code here

    If the conversion is successful, the model will be able to be visualized with powerful tools `Netron <https://netron.app/>`__.
44

45
46
.. _lightning-evaluator:

47
48
Evaluators with PyTorch-Lightning
---------------------------------
49

50
51
Use Built-in Evaluators
^^^^^^^^^^^^^^^^^^^^^^^
52

53
NNI provides some commonly used model evaluators for users' convenience. These evaluators are built upon the awesome library PyTorch-Lightning. Read the :doc:`reference </reference/nas/evaluator>` for their detailed usages.
54

55
56
* :class:`nni.retiarii.evaluator.pytorch.Classification`: for classification tasks.
* :class:`nni.retiarii.evaluator.pytorch.Regression`: for regression tasks.
57

58
59
60
We recommend to read the :doc:`serialization tutorial <serialization>` before using these evaluators. A few notes to summarize the tutorial:

1. :class:`nni.retiarii.evaluator.pytorch.DataLoader` should be used in place of ``torch.utils.data.DataLoader``.
Yuge Zhang's avatar
Yuge Zhang committed
61
2. The datasets used in data-loader should be decorated with :meth:`nni.trace` recursively.
62
63

For example,
64
65
66
67
68
69

.. code-block:: python

  import nni.retiarii.evaluator.pytorch.lightning as pl
  from torchvision import transforms

70
71
72
73
74
  transform = nni.trace(transforms.Compose, [nni.trace(transforms.ToTensor()), nni.trace(transforms.Normalize, (0.1307,), (0.3081,))])
  train_dataset = nni.trace(MNIST, root='data/mnist', train=True, download=True, transform=transform)
  test_dataset = nni.trace(MNIST, root='data/mnist', train=False, download=True, transform=transform)

  # pl.DataLoader and pl.Classification is already traced and supports serialization.
75
  evaluator = pl.Classification(train_dataloaders=pl.DataLoader(train_dataset, batch_size=100),
76
77
78
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=10)

79
80
81
82
83
Customize Evaluator with PyTorch-Lightning
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Another approach is to write training code in PyTorch-Lightning style, that is, to write a LightningModule that defines all elements needed for training (e.g., loss function, optimizer) and to define a trainer that takes (optional) dataloaders to execute the training. Before that, please read the `document of PyTorch-lightning <https://pytorch-lightning.readthedocs.io/>`__ to learn the basic concepts and components provided by PyTorch-lightning.

Yuge Zhang's avatar
Yuge Zhang committed
84
In practice, writing a new training module in Retiarii should inherit :class:`nni.retiarii.evaluator.pytorch.LightningModule`, which has a ``set_model`` that will be called after ``__init__`` to save the candidate model (generated by strategy) as ``self.model``. The rest of the process (like ``training_step``) should be the same as writing any other lightning module. Evaluators should also communicate with strategies via two API calls (:meth:`nni.report_intermediate_result` for periodical metrics and :meth:`nni.report_final_result` for final metrics), added in ``on_validation_epoch_end`` and ``teardown`` respectively. 
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

An example is as follows:

.. code-block:: python

    from nni.retiarii.evaluator.pytorch.lightning import LightningModule  # please import this one

    @nni.trace
    class AutoEncoder(LightningModule):
        def __init__(self):
            super().__init__()
            self.decoder = nn.Sequential(
                nn.Linear(3, 64),
                nn.ReLU(),
                nn.Linear(64, 28*28)
            )

        def forward(self, x):
            embedding = self.model(x)  # let's search for encoder
            return embedding

        def training_step(self, batch, batch_idx):
            # training_step defined the train loop.
            # It is independent of forward
            x, y = batch
            x = x.view(x.size(0), -1)
            z = self.model(x)  # model is the one that is searched for
            x_hat = self.decoder(z)
            loss = F.mse_loss(x_hat, x)
            # Logging to TensorBoard by default
            self.log('train_loss', loss)
            return loss

        def validation_step(self, batch, batch_idx):
            x, y = batch
            x = x.view(x.size(0), -1)
            z = self.model(x)
            x_hat = self.decoder(z)
            loss = F.mse_loss(x_hat, x)
            self.log('val_loss', loss)

        def configure_optimizers(self):
            optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
            return optimizer

        def on_validation_epoch_end(self):
            nni.report_intermediate_result(self.trainer.callback_metrics['val_loss'].item())

        def teardown(self, stage):
            if stage == 'fit':
                nni.report_final_result(self.trainer.callback_metrics['val_loss'].item())

Yuge Zhang's avatar
Yuge Zhang committed
137
Then, users need to wrap everything (including LightningModule, trainer and dataloaders) into a :class:`nni.retiarii.evaluator.pytorch.Lightning` object, and pass this object into a Retiarii experiment.
138
139
140
141
142
143
144
145

.. code-block:: python

    import nni.retiarii.evaluator.pytorch.lightning as pl
    from nni.retiarii.experiment.pytorch import RetiariiExperiment

    lightning = pl.Lightning(AutoEncoder(),
                             pl.Trainer(max_epochs=10),
146
                             train_dataloaders=pl.DataLoader(train_dataset, batch_size=100),
147
148
                             val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))
    experiment = RetiariiExperiment(base_model, lightning, mutators, strategy)