simple_pruning_torch.py 2.87 KB
Newer Older
1
import sys
2
3
4
5
6
from tqdm import tqdm

import torch
from torchvision import datasets, transforms

J-shang's avatar
J-shang committed
7
from nni.compression.pytorch.pruning import L1NormPruner
8
9
from nni.compression.pytorch.speedup import ModelSpeedup

10
from pathlib import Path
J-shang's avatar
J-shang committed
11
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
12
from cifar10.vgg import VGG
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=True, transform=transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ]), download=True),
    batch_size=128, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=128, shuffle=False)
criterion = torch.nn.CrossEntropyLoss()

def trainer(model, optimizer, criterion, epoch):
    model.train()
    for data, target in tqdm(iterable=train_loader, desc='Epoch {}'.format(epoch)):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def evaluator(model):
    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in tqdm(iterable=test_loader, desc='Test'):
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    acc = 100 * correct / len(test_loader.dataset)
    print('Accuracy: {}%\n'.format(acc))
    return acc


if __name__ == '__main__':
    model = VGG().to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    criterion = torch.nn.CrossEntropyLoss()

    print('\nPre-train the model:')
    for i in range(5):
        trainer(model, optimizer, criterion, i)
        evaluator(model)

    config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
    pruner = L1NormPruner(model, config_list)
    _, masks = pruner.compress()

    print('\nThe accuracy with masks:')
    evaluator(model)

    pruner._unwrap_model()
78
    ModelSpeedup(model, dummy_input=torch.rand(10, 3, 32, 32).to(device), masks_file=masks).speedup_model()
79

80
    print('\nThe accuracy after speedup:')
81
82
    evaluator(model)

83
84
    # Need a new optimizer due to the modules in model will be replaced during speedup.
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
85
    print('\nFinetune the model after speedup:')
86
87
88
    for i in range(5):
        trainer(model, optimizer, criterion, i)
        evaluator(model)