iterative_pruning_torch.py 5.02 KB
Newer Older
1
2
3
4
5
6
7
8
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

'''
NNI example for supported iterative pruning algorithms.
In this example, we show the end-to-end iterative pruning process: pre-training -> pruning -> fine-tuning.

'''
9
import sys
10
import argparse
11
12
13
14
15
from tqdm import tqdm

import torch
from torchvision import datasets, transforms

J-shang's avatar
J-shang committed
16
from nni.compression.pytorch.pruning import (
17
18
    LinearPruner,
    AGPPruner,
19
    LotteryTicketPruner
20
)
21

22
from pathlib import Path
J-shang's avatar
J-shang committed
23
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
24
from cifar10.vgg import VGG
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=True, transform=transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ]), download=True),
    batch_size=128, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=128, shuffle=False)
criterion = torch.nn.CrossEntropyLoss()

def trainer(model, optimizer, criterion, epoch):
    model.train()
    for data, target in tqdm(iterable=train_loader, desc='Epoch {}'.format(epoch)):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def finetuner(model):
    model.train()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    criterion = torch.nn.CrossEntropyLoss()
    for data, target in tqdm(iterable=train_loader, desc='Epoch PFs'):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def evaluator(model):
    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in tqdm(iterable=test_loader, desc='Test'):
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    acc = 100 * correct / len(test_loader.dataset)
    print('Accuracy: {}%\n'.format(acc))
    return acc


if __name__ == '__main__':
85
86
87
88
89
90
91
92
93
94
95
96
    parser = argparse.ArgumentParser(description='PyTorch Iterative Example for model comporession')
    parser.add_argument('--pruner', type=str, default='linear',
                        choices=['linear', 'agp', 'lottery'],
                        help='pruner to use')
    parser.add_argument('--pretrain-epochs', type=int, default=10,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--total-iteration', type=int, default=10,
                        help='number of iteration to iteratively prune the model')
    parser.add_argument('--pruning-algo', type=str, default='l1',
                        choices=['level', 'l1', 'l2', 'fpgm', 'slim', 'apoz',
                                 'mean_activation', 'taylorfo', 'admm'],
                        help='algorithm to evaluate weights to prune')
97
98
    parser.add_argument('--speedup', type=bool, default=False,
                        help='Whether to speedup the pruned model')
99
100
101
102
103
    parser.add_argument('--reset-weight', type=bool, default=True,
                        help='Whether to reset weight during each iteration')

    args = parser.parse_args()

104
105
106
107
108
    model = VGG().to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    criterion = torch.nn.CrossEntropyLoss()

    # pre-train the model
109
    for i in range(args.pretrain_epochs):
110
        trainer(model, optimizer, criterion, i)
111
        evaluator(model)
112
113
114
115
116
117

    config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
    dummy_input = torch.rand(10, 3, 32, 32).to(device)

    # if you just want to keep the final result as the best result, you can pass evaluator as None.
    # or the result with the highest score (given by evaluator) will be the best result.
118
119
120
121
122
    kw_args = {'pruning_algorithm': args.pruning_algo,
               'total_iteration': args.total_iteration,
               'evaluator': None,
               'finetuner': finetuner}

123
124
    if args.speedup:
        kw_args['speedup'] = args.speedup
125
126
127
128
129
130
131
132
133
        kw_args['dummy_input'] = torch.rand(10, 3, 32, 32).to(device)

    if args.pruner == 'linear':
        iterative_pruner = LinearPruner
    elif args.pruner == 'agp':
        iterative_pruner = AGPPruner
    elif args.pruner == 'lottery':
        kw_args['reset_weight'] = args.reset_weight
        iterative_pruner = LotteryTicketPruner
134

135
    pruner = iterative_pruner(model, config_list, **kw_args)
136
137
    pruner.compress()
    _, model, masks, _, _ = pruner.get_best_result()
138
    evaluator(model)