amc_pruning_torch.py 3.92 KB
Newer Older
Panacea's avatar
Panacea committed
1
2
3
4
5
6
7
import sys
from tqdm import tqdm

import torch
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import MultiStepLR

J-shang's avatar
J-shang committed
8
9
from nni.compression.pytorch.pruning import AMCPruner
from nni.compression.pytorch.utils import count_flops_params
Panacea's avatar
Panacea committed
10

11
from pathlib import Path
J-shang's avatar
J-shang committed
12
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
Panacea's avatar
Panacea committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from cifar10.vgg import VGG


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=True, transform=transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ]), download=True),
    batch_size=128, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=128, shuffle=False)
criterion = torch.nn.CrossEntropyLoss()

def trainer(model, optimizer, criterion, epoch):
    model.train()
    for data, target in tqdm(iterable=train_loader, desc='Epoch {}'.format(epoch)):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def finetuner(model):
    model.train()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    criterion = torch.nn.CrossEntropyLoss()
    for data, target in tqdm(iterable=train_loader, desc='Epoch PFs'):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def evaluator(model):
    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in tqdm(iterable=test_loader, desc='Test'):
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    acc = 100 * correct / len(test_loader.dataset)
    print('Accuracy: {}%\n'.format(acc))
    return acc


if __name__ == '__main__':
    # model = MobileNetV2(n_class=10).to(device)
    model = VGG().to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    scheduler = MultiStepLR(optimizer, milestones=[50, 75], gamma=0.1)
    criterion = torch.nn.CrossEntropyLoss()

    for i in range(100):
        trainer(model, optimizer, criterion, i)
    pre_best_acc = evaluator(model)

    dummy_input = torch.rand(10, 3, 32, 32).to(device)
    pre_flops, pre_params, _ = count_flops_params(model, dummy_input)

    config_list = [{'op_types': ['Conv2d'], 'total_sparsity': 0.5, 'max_sparsity_per_layer': 0.8}]

    # if you just want to keep the final result as the best result, you can pass evaluator as None.
    # or the result with the highest score (given by evaluator) will be the best result.
    ddpg_params = {'hidden1': 300, 'hidden2': 300, 'lr_c': 1e-3, 'lr_a': 1e-4, 'warmup': 100, 'discount': 1., 'bsize': 64,
                   'rmsize': 100, 'window_length': 1, 'tau': 0.01, 'init_delta': 0.5, 'delta_decay': 0.99, 'max_episode_length': 1e9, 'epsilon': 50000}
    pruner = AMCPruner(400, model, config_list, dummy_input, evaluator, finetuner=finetuner, ddpg_params=ddpg_params, target='flops')
    pruner.compress()
    _, model, masks, best_acc, _ = pruner.get_best_result()
    flops, params, _ = count_flops_params(model, dummy_input)
    print(f'Pretrained model FLOPs {pre_flops/1e6:.2f} M, #Params: {pre_params/1e6:.2f}M, Accuracy: {pre_best_acc: .2f}%')
    print(f'Finetuned model FLOPs {flops/1e6:.2f} M, #Params: {params/1e6:.2f}M, Accuracy: {best_acc: .2f}%')