admm_pruning_torch.py 5.64 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

'''
NNI example for supported ADMM pruning algorithms.
In this example, we show the end-to-end pruning process: pre-training -> pruning -> fine-tuning.
7
Note that pruners use masks to simulate the real pruning. In order to obtain a real compressed model, model speedup is required.
8
9
10

'''
import argparse
11
import sys
12
13
14
15
16

import torch
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import MultiStepLR

J-shang's avatar
J-shang committed
17
import nni
18
from nni.compression.pytorch.speedup import ModelSpeedup
J-shang's avatar
J-shang committed
19
20
from nni.compression.pytorch.utils import count_flops_params
from nni.compression.pytorch.pruning import ADMMPruner
21

22
from pathlib import Path
J-shang's avatar
J-shang committed
23
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
24
from cifar10.vgg import VGG
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
g_epoch = 0

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=True, transform=transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ]), download=True),
    batch_size=128, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=128, shuffle=False)

def trainer(model, optimizer, criterion):
    global g_epoch
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx and batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                g_epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
    g_epoch += 1

def evaluator(model):
    model.eval()
    correct = 0.0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    acc = 100 * correct / len(test_loader.dataset)
    print('Accuracy: {}%\n'.format(acc))
    return acc

75
def optimizer_scheduler_generator(model, _lr=0.1, _momentum=0.9, _weight_decay=5e-4, total_epoch=160):
76
    optimizer = torch.optim.SGD(model.parameters(), lr=_lr, momentum=_momentum, weight_decay=_weight_decay)
77
    scheduler = MultiStepLR(optimizer, milestones=[int(total_epoch * 0.5), int(total_epoch * 0.75)], gamma=0.1)
78
79
80
81
82
83
84
85
86
87
88
89
    return optimizer, scheduler

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='PyTorch Example for model comporession')
    parser.add_argument('--pretrain-epochs', type=int, default=20,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--fine-tune-epochs', type=int, default=20,
                        help='number of epochs to fine tune the model')
    args = parser.parse_args()

    print('\n' + '=' * 50 + ' START TO TRAIN THE MODEL ' + '=' * 50)
    model = VGG().to(device)
90
    optimizer, scheduler = optimizer_scheduler_generator(model, total_epoch=args.pretrain_epochs)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    criterion = torch.nn.CrossEntropyLoss()
    pre_best_acc = 0.0
    best_state_dict = None

    for i in range(args.pretrain_epochs):
        trainer(model, optimizer, criterion)
        scheduler.step()
        acc = evaluator(model)
        if acc > pre_best_acc:
            pre_best_acc = acc
            best_state_dict = model.state_dict()
    print("Best accuracy: {}".format(pre_best_acc))
    model.load_state_dict(best_state_dict)
    pre_flops, pre_params, _ = count_flops_params(model, torch.randn([128, 3, 32, 32]).to(device))
    g_epoch = 0

    # Start to prune and speedup
    print('\n' + '=' * 50 + ' START TO PRUNE THE BEST ACCURACY PRETRAINED MODEL ' + '=' * 50)
    config_list = [{
        'sparsity': 0.8,
        'op_types': ['Conv2d'],
    }]
113

J-shang's avatar
J-shang committed
114
115
    # make sure you have used nni.trace to wrap the optimizer class before initialize
    traced_optimizer = nni.trace(torch.optim.SGD)(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
116
    pruner = ADMMPruner(model, config_list, trainer, traced_optimizer, criterion, iterations=10, training_epochs=1, granularity='coarse-grained')
117
118
119
    _, masks = pruner.compress()
    pruner.show_pruned_weights()

120
121
122
    pruner._unwrap_model()
    ModelSpeedup(model, torch.randn([128, 3, 32, 32]).to(device), masks).speedup_model()

123
124
125
126
127
    print('\n' + '=' * 50 + ' EVALUATE THE MODEL AFTER PRUNING ' + '=' * 50)
    evaluator(model)

    # Optimizer used in the pruner might be patched, so recommend to new an optimizer for fine-tuning stage.
    print('\n' + '=' * 50 + ' START TO FINE TUNE THE MODEL ' + '=' * 50)
128
    optimizer, scheduler = optimizer_scheduler_generator(model, _lr=0.01, total_epoch=args.fine_tune_epochs)
129
130
131
132
133
134
135
136
137
138

    best_acc = 0.0
    g_epoch = 0
    for i in range(args.fine_tune_epochs):
        trainer(model, optimizer, criterion)
        scheduler.step()
        best_acc = max(evaluator(model), best_acc)
    flops, params, results = count_flops_params(model, torch.randn([128, 3, 32, 32]).to(device))
    print(f'Pretrained model FLOPs {pre_flops/1e6:.2f} M, #Params: {pre_params/1e6:.2f}M, Accuracy: {pre_best_acc: .2f}%')
    print(f'Finetuned model FLOPs {flops/1e6:.2f} M, #Params: {params/1e6:.2f}M, Accuracy: {best_acc: .2f}%')